Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.671
Filtrar
1.
BMC Microbiol ; 24(1): 286, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090543

RESUMEN

BACKGROUND: Bile acids (BAs) are steroid-derived molecules with important roles in digestion, the maintenance of host metabolism, and immunomodulation. Primary BAs are synthesized by the host, while secondary BAs are produced by the gut microbiome through transformation of the former. The regulation of microbial production of secondary BAs is not well understood, particularly the production of 7-dehydroxylated BAs, which are the most potent agonists for host BA receptors. The 7-dehydroxylation of cholic acid (CA) is well established and is linked to the expression of a bile acid-inducible (bai) operon responsible for this process. However, little to no 7-dehydroxylation has been reported for other host-derived BAs (e.g., chenodeoxycholic acid, CDCA or ursodeoxycholic acid, UDCA). RESULTS: Here, we demonstrate that the 7-dehydroxylation of CDCA and UDCA by the human isolate Clostridium scindens is induced when CA is present, suggesting that CA-dependent transcriptional regulation is required for substantial 7-dehydroxylation of these primary BAs. This is supported by the finding that UDCA alone does not promote expression of bai genes. CDCA upregulates expression of the bai genes but the expression is greater when CA is present. In contrast, the murine isolate Extibacter muris exhibits a distinct response; CA did not induce significant 7-dehydroxylation of primary BAs, whereas BA 7-dehydroxylation was promoted upon addition of germ-free mouse cecal content in vitro. However, E. muris was found to 7-dehydroxylate in vivo. CONCLUSIONS: The distinct expression responses amongst strains indicate that bai genes are regulated differently. CA promoted bai operon gene expression and the 7-dehydroxylating activity in C. scindens strains. Conversely, the in vitro activity of E. muris was promoted only after the addition of cecal content and the isolate did not alter bai gene expression in response to CA. The accessory gene baiJ was only upregulated in the C. scindens ATCC 35704 strain, implying mechanistic differences amongst isolates. Interestingly, the human-derived C. scindens strains were also capable of 7-dehydroxylating murine bile acids (muricholic acids) to a limited extent. This study shows novel 7-dehydroxylation activity in vitro resulting from the presence of CA and suggests distinct bai gene expression across bacterial species.


Asunto(s)
Ácidos y Sales Biliares , Ácido Cólico , Ácido Cólico/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Ratones , Humanos , Clostridium/metabolismo , Clostridium/genética , Regulación Bacteriana de la Expresión Génica , Hidroxilación , Operón , Ácido Quenodesoxicólico/metabolismo , Ácido Ursodesoxicólico/metabolismo , Microbioma Gastrointestinal
2.
Biochem Biophys Rep ; 39: 101776, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39099604

RESUMEN

Alzheimer's disease (AD) is the most widespread and irreversible form of dementia and accounts for more than half of dementia cases. The most significant risk factors for AD are aging-related exacerbations, degradation of anatomical pathways, environmental variables and mitochondrial dysfunction. Finding a decisive therapeutic solution is a major current issue. Nuanced interactions between major neuropathological mechanisms in AD in patients and microbiome have recently gained rising attention. The presence of bacterial amyloid in the gut triggers the immune system, resulting in increased immune feedbacks and endogenous neuronal amyloid within the CNS. Also, early clinical research revealed that changing the microbiome with beneficial bacteria or probiotics could affect brain function in AD. New approaches focus on the possible neuroprotective action of disease-modifying medications in AD. In the present review, we discuss the impact of the gut microbiota on the brain and review emerging research that suggests a disruption in the microbiota-brain axis can affect AD by mediating neuroinflammation. Such novel methods could help the development of novel therapeutics for AD.

3.
Trends Ecol Evol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39112138

RESUMEN

Host-associated organisms (i.e., symbionts) commonly interact within their shared hosts to form complex ecological communities. Here we suggest that within-host facilitation, where the presence of one symbiont group promotes establishment, growth, or reproduction of another, is prevalent, can arise from six fundamental mechanisms, and has broad implications for ecosystem dynamics.

4.
Prostate ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113216

RESUMEN

BACKGROUND: Prostate cancer is a complex disease that develops over time and is influenced by several lifestyle factors that also impact gut microbes. Gut dysbiosis is intricately linked to prostate carcinogenesis, but the precise mechanisms remain poorly understood. Mice are crucial for studying the relationships between gut microbes and prostate cancer, but discovering similarities between humans and mice may aid in elucidating new mechanisms. METHODS: We used 16s rRNA sequencing data from stool samples of tumor-bearing prostate-specific conditional Pten-knockout mice, disease-free wildtype mice, and a human cohort suspected of having prostate cancer to conduct taxonomic and metagenomic profiling. Features were associated with prostate cancer status and low risk (a negative biopsy of Gleason grade <2) or high risk (Gleason grade ≥2) in humans. RESULTS: In both humans and mice, community composition differed between individuals with and without prostate cancer. Odoribacter spp. and Desulfovibrio spp. were taxa associated with prostate cancer in mice and humans. Metabolic pathways associated with cofactor and vitamin synthesis were common in mouse and human prostate cancer, including bacterial synthesis of folate (vitamin B9), ubiquinone (CoQ10), phylloquinone (vitamin K1), menaquinone (vitamin K2), and tocopherol (vitamin E). CONCLUSIONS: Our study provides valuable data that can help bridge the gap between human and mouse microbiomes. Our findings provide evidence to support the notion that certain bacterial-derived metabolites may promote prostate cancer, as well as a preclinical model that can be used to characterize biological mechanisms and develop preventive interventions.

5.
Int J Cosmet Sci ; 46(4): 566-577, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39113314

RESUMEN

INTRODUCTION: Stratum corneum (SC) is essential for skin barrier function, mitigating water loss and shielding against potentially harmful substances and allergens. The SC's lipid matrix, arranged in a lamellar structure, is integral to its protective role. Our study explores the restoration effects of a multilamellar cream with an acidic pH compared to a basic placebo cream on skin physiology and its interaction with the skin microbiome after stress induction via tape stripping (TS). MATERIALS AND METHODS: In this double-blind study, 14 healthy participants aged 21-58 years were assessed pre- and post-tape stripping, followed by a 14 days application of a multilamellar test cream and a placebo cream with evaluations on days 7, 14 and 17 for sustained effects. Skin physiology was analysed in terms of epidermal barrier function, SC hydration and surface pH. The microbiome was analysed by 16S rRNA amplicon sequencing the 16S rRNA gene using Illumina MiSeq, with subsequent species identification. RESULTS: Our study showed significant improvements in skin barrier repair and SC hydration with verum, particularly after 14 days of application, while both creams initially enhanced stratum corneum hydration. No significant changes in surface-pH were detected. The skin microbiome analysis revealed that TS slightly decreased alpha diversity, a trend that verum significantly reversed, enhancing diversity beyond baseline levels after 14 days. Overall, while both creams contributed to a broader microbial phyla diversity over time, no significant changes in the abundance of specific genera or species were noted between treatments. DISCUSSION AND CONCLUSION: Our study delineates the efficacy of a pH-optimized multilamellar cream in enhancing epidermal barrier recovery and SC hydration post-sequential TS, in contrast to an unstructured basic placebo. Verum cream significantly improved skin barrier function and SC hydration at day 14, with sustained effects evident beyond the treatment period. Furthermore, the multilamellar formulation facilitated the restitution of cutaneous microbiome diversity, a key indicator of healthy skin ecology, underscoring the symbiotic relationship between barrier integrity and microbial composition. These findings underscore the importance of multilamellar emollient structures in dermatological therapeutics, with potential implications for the design of advanced skincare interventions that holistically support cutaneous resilience and homeostasis.


INTRODUCTION: La couche cornée (stratum corneum, SC) est essentielle pour la fonction de barrière cutanée, atténuant la perte d'eau et protégeant contre les substances et allergènes potentiellement nocifs. Disposée selon une structure lamellaire, la matrice lipidique de la SC est constitutive de son rôle protecteur. Notre étude explore les effets de restauration d'une crème multilamellaire à pH acide par rapport à une crème placebo de base sur la physiologie de la peau et son interaction avec le microbiome de la peau après induction de stress via un test tape stripping (TS). MATÉRIELS ET MÉTHODES: Dans cette étude en double aveugle, 14 participants en bonne santé âgés de 21 à 58 ans ont été évalués avant et après tape stipping, puis ont procédé à l'application pendant 14 jours d'une crème test multilamellaire et d'une crème placebo avec des évaluations aux jours 7, 14 et 17 pour les effets durables. La physiologie de la peau a été analysée en termes de fonction de la barrière épidermique, d'hydratation SC et de pH de surface. Le microbiome a été analysé par séquençage de l'amplicon de l'ARNr 16S sur le gène de l'ARNr 16S à l'aide d'Illumina MiSeq, avec identification ultérieure des espèces. RÉSULTATS: Notre étude a montré des améliorations significatives de la réparation de la barrière cutanée et de l'hydratation SC avec le traitement actif, en particulier après 14 jours d'application, tandis que les deux crèmes avaient initialement amélioré l'hydratation de la couche cornée. Aucun changement significatif du pH de surface n'a été détecté. L'analyse du microbiome cutané a révélé que le TS diminuait légèrement la diversité alpha, une tendance qui s'est significativement inversée avec le traitement actif : une amélioration de la diversité au­delà des taux initiaux était observée après 14 jours. Dans l'ensemble, bien que les deux crèmes aient contribué à une plus grande diversité des phyla microbiennes au fil du temps, aucune variation significative dans l'abondance de genres ou d'espèces spécifiques n'a été observée entre les traitements. DISCUSSION ET CONCLUSION: Notre étude délimite l'efficacité d'une crème multilamellaire à pH optimisé pour améliorer la réparation de la barrière épidermique et l'hydratation SC après un TS séquentiel, contrairement à un placebo basique non structuré. La crème contenant le traitement actif a significativement amélioré la fonction de barrière cutanée et l'hydratation SC au jour 14, avec des effets durables évidents au­delà de la période de traitement. En outre, la formulation multilamellaire a facilité la restitution de la diversité du microbiome cutané, un indicateur clé d'une écologie de peau en bonne santé, soulignant la relation symbiotique entre l'intégrité de la barrière et la composition microbienne. Ces résultats soulignent l'importance des structures émollientes multilamellaires dans les traitements dermatologiques, avec des implications potentielles pour la conception d'interventions cutanées avancées qui soutiennent de manière holistique la résilience cutanée et l'homéostasie.


Asunto(s)
Microbiota , Crema para la Piel , Fenómenos Fisiológicos de la Piel , Humanos , Método Doble Ciego , Adulto , Microbiota/efectos de los fármacos , Persona de Mediana Edad , Femenino , Adulto Joven , Fenómenos Fisiológicos de la Piel/efectos de los fármacos , Masculino , Epidermis/efectos de los fármacos , Epidermis/microbiología , Piel/microbiología , Piel/efectos de los fármacos
6.
J Invest Dermatol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39115524

RESUMEN

The function of keratinocytes (KCs) to form a barrier and produce cytokines is well-known, but recent progress has revealed many different roles for KCs in regulation of skin immunity. In this review, we provide an update on the current understanding of how KCs communicate with microbes, immunocytes, neurons, and other cells to form an effective immune barrier. We catalog the large list of genes and metabolites of KCs that participate in host defense and discuss the mechanisms of immune crosstalk, addressing how KCs simultaneously form a physical barrier, communicate with fibroblasts, and control immune signals. Overall, the signals sent and received by KCs are an exciting group of therapeutic targets to explore in the treatment of dermatologic disorders.

7.
Open Res Eur ; 4: 145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100073

RESUMEN

Blastocystis is the most prevalent intestinal eukaryotic microorganism with significant impacts on both human and animal health. Despite extensive research, its pathogenicity remains controversial. The COST Action CA21105, " Blastocystis under One Health" (OneHealthBlastocystis), aims to bridge gaps in our understanding by fostering a multidisciplinary network. This initiative focuses on developing standardised diagnostic methodologies, establishing a comprehensive subtype and microbiome databank, and promoting capacity building through education and collaboration. The Action is structured into five working groups, each targeting specific aspects of Blastocystis research, including epidemiology, diagnostics, 'omics technologies, in vivo and in vitro investigations, and data dissemination. By integrating advances across medical, veterinary, public, and environmental health, this initiative seeks to harmonise diagnostics, improve public health policies, and foster innovative research, ultimately enhancing our understanding of Blastocystis and its role in health and disease. This collaborative effort is expected to lead to significant advancements and practical applications, benefiting the scientific community and public health.


Blastocystis is a common microorganism found in the intestines of humans and animals. Its role in causing disease is still debated among scientists. The " Blastocystis under One Health" initiative aims to unite experts from human medicine, veterinary science, and environmental science to better understand this microorganism and its health effects. The project focuses on improving diagnostic methods, creating a comprehensive database of Blastocystis samples, and analysing its genetic and molecular makeup. Researchers will also study how Blastocystis interacts with other gut microbes and impacts gut health. Additionally, the initiative aims to educate healthcare professionals and the public about Blastocystis. By working together, scientists hope to develop better ways to diagnose, treat (if necessary), and/or prevent Blastocystis infections, ultimately protecting both human and animal health and enhancing our understanding of this widespread microorganism.

8.
R Soc Open Sci ; 11(6): 240649, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39100190

RESUMEN

Host-microbiota interactions play a critical role in the hosts' biology, and thus, it is crucial to elucidate the mechanisms that shape gut microbial communities. We leveraged threespine stickleback fish (Gasterosteus aculeatus) as a model system to investigate the contribution of host and environmental factors to gut microbiota variation. These fish offer a unique opportunity for experiments in naturalistic conditions; we reared benthic and limnetic ecotypes from three different lakes in experimental ponds, allowing us to assess the relative effects of shared environment (pond), geographic origin (lake-of-origin), trophic ecology and genetics (ecotype) and biological sex on gut microbiota α- and ß-diversity. Host ecotype had the strongest influence on α-diversity, with benthic fish exhibiting higher diversity than limnetic fish, followed by the rearing environment. ß-diversity was primarily shaped by rearing environment, followed by host ecotype, indicating that environmental factors play a crucial role in determining gut microbiota composition. Furthermore, numerous bacterial orders were differentially abundant across ponds, underlining the substantial contribution of environmental factors to gut microbiota variation. Our study illustrates the complex interplay between environmental and host ecological or genetic factors in shaping the stickleback gut microbiota and highlights the value of experiments conducted under naturalistic conditions for understanding gut microbiota dynamics.

9.
Front Vet Sci ; 11: 1422012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100768

RESUMEN

Introduction: The enteric microbiome and its possible modulation to improve feed conversion or vaccine efficacy is gaining more attention in pigs. Weaning pigs from their dam, along with many routine procedures, is stressful. A better understanding of the impact of this process on the microbiome may be important for improving pig production. The objective of this study was to develop a weaner pig cannulation model, thus allowing ileum content collection from the same pig over time for 16S rRNA sequencing under different porcine reproductive and respiratory syndrome virus (PRRSV) infection statuses. Methods: A total of 15 3-week-old pigs underwent abdominal surgery and were fitted with an ileum cannula, with ileum contents collected over time. In this pilot study, treatment groups included a NEG-CONTROL group (no vaccination, no PRRSV challenge), a POS-CONTROL group (no vaccination, challenged with PRRSV), a VAC-PRRSV group (vaccinated, challenged with PRRSV), a VAC-PRO-PRRSV group (vaccinated, supplemented with a probiotic, challenged with PRRSV), and a VAC-ANTI-PRRSV group (vaccinated, administered an antibiotic, challenged with PRRSV). We assessed the microbiome over time and measured anti-PRRSV serum antibodies, PRRSV load in serum and nasal samples, and the severity of lung lesions. Results: Vaccination was protective against PRRSV challenge, irrespective of other treatments. All vaccinated pigs mounted an immune response to PRRSV within 1 week after vaccination. A discernible impact of treatment on the diversity, structure, and taxonomic abundance of the enteric microbiome among the groups was not observed. Instead, significant influences on the ileum microbiome were observed in relation to time and treatment. Discussion: The cannulation model described in this pilot study has the potential to be useful in studying the impact of weaning, vaccination, disease challenge, and antimicrobial administration on the enteric microbiome and its impact on pig health and production. Remarkably, despite the cannulation procedures, all vaccinated pigs exhibited robust immune responses and remained protected against PRRSV challenge, as evidenced by the development of anti-PRRSV serum antibodies and viral shedding data.

10.
Front Microbiol ; 15: 1406190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101559

RESUMEN

Challenges from infections caused by biofilms and antimicrobial resistance highlight the need for novel antimicrobials that work in conjunction with antibiotics and minimize resistance risk. In this study we investigated the composite effect of HAMLET (human alpha-lactalbumin made lethal to tumor cells), a human milk protein-lipid complex and amoxicillin on microbial ecology using an ex vivo oral biofilm model with pooled saliva samples. HAMLET was chosen due to its multi-targeted antimicrobial mechanism, together with its synergistic effect with antibiotics on single species pathogens, and low risk of resistance development. The combination of HAMLET and low concentrations of amoxicillin significantly reduced biofilm viability, while each of them alone had little or no impact. Using a whole metagenomics approach, we found that the combination promoted a remarkable shift in overall microbial composition compared to the untreated samples. A large proportion of the bacterial species in the combined treatment were Lactobacillus crispatus, a species with probiotic effects, whereas it was only detected in a minor fraction in untreated samples. Although resistome analysis indicated no major shifts in alpha-diversity, the results showed the presence of TEM beta-lactamase genes in low proportions in all treated samples but absence in untreated samples. Our study illustrates HAMLET's capability to alter the effects of amoxicillin on the oral microbiome and potentially favor the growth of selected probiotic bacteria when in combination. The findings extend previous knowledge on the combined effects of HAMLET and antibiotics against target pathogens to include potential modulatory effects on polymicrobial biofilms of human origin.

11.
FEBS J ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102299

RESUMEN

Antigen-specific B and T cell responses play a critical role in vaccine-mediated protection against infectious diseases, but these responses are highly variable between individuals and vaccine immunogenicity is frequently sub-optimal in infants, the elderly and in people living in low- and middle-income countries. Although many factors such as nutrition, age, sex, genetics, environmental exposures, and infections may all contribute to variable vaccine immunogenicity, mounting evidence indicates that the gut microbiota is an important and targetable factor shaping optimal immune responses to vaccination. In this review, we discuss evidence from human, preclinical and experimental studies supporting a role for a healthy gut microbiota in mediating optimal vaccine immunogenicity, including the immunogenicity of COVID-19 vaccines. Furthermore, we provide an overview of the potential mechanisms through which this could occur and discuss strategies that could be used to target the microbiota to boost vaccine immunogenicity where it is currently sub-optimal.

12.
Environ Res ; : 119726, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39102937

RESUMEN

Genetically modified (GM) crop cultivation has received a lot of attention in recent years due to the substantial public debate. Consequently, an in-depth investigation of excessively used GM herbicide-tolerant crops is a vital step for the biosafety of genetically modified plants. Several studies have been conducted to study the impact of transgenic GM crops on soil microbial composition; however, research into the effects of non-transgenic GM crops is inadequate. In the current work, high-throughput sequencing was used to evaluate the impact of the acetolactate synthase (ALS)-mutant (WK170B), its control (YN19B), and the imazamox (IM) herbicide on the wheat rhizobiome. Under normal growth conditions, our work revealed a minimal impact of ALS-mutant WK170B on the rhizosphere microbiome compared to the control YN10B, except for some cyanobacterial microorganisms that showed a significant increase in abundance. This suggests that the gene mutation could potentially have a beneficial impact on the bacterial communities present in the rhizosphere. Following IM exposure, taxonomic analysis revealed a significant reduction in the relative abundance of Ralstonia pickettii and an unidentified member of the genus Ancylothrix 8PC. Analyses of both alpha and beta diversity revealed a statistically significant increase in both microbial richness and species diversity. IM-induced relative abundance modulation was also evident through Linear discriminant analysis Effect Size (LEfSe), MetaStat, and heatmap analyses. The SIMPER analysis revealed that the microbial taxa Massilia, Limnobacter, Hydrogenophaga, Ralstonia, Nitrospira, and Ramlibacter exhibited the highest vulnerability to IM exposure. The functional attributes analysis revealed that the relative abundance of genes associated with the extracellular matrix-receptor interaction, which is responsible for structural support and stress response, increased significantly following IM exposure. Collectively, our study identifies key microbial taxa in the wheat rhizobiome that are sensitive to IM herbicides and provides a foundation for assessing the environmental risks associated with IM herbicide use.

13.
J Dent Res ; : 220345241259417, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39104028

RESUMEN

There is a strong association between vitamin D levels and periodontal disease based on numerous epidemiological studies. We have previously shown that experimental deficiency of serum vitamin D in mice leads to gingival inflammation and alveolar bone loss. Treatment of cultured oral epithelial cells with the active form of vitamin D, 1,25(OH)2 vitamin D3 (1,25(OH)2D3), inhibits the extracellular growth and intracellular invasion of bacteria associated with periodontal disease. Maintenance of periodontal health may be due in part to the anti-inflammatory activities of vitamin D. Furthermore, this hormone can induce the expression of an antimicrobial peptide in cultured oral epithelial cells. We have shown that oral epithelial cells are capable of converting inactive vitamin D to the active form, suggesting that topical treatment of the oral epithelium with inactive vitamin D could prevent the development of periodontitis. We subjected mice to ligature-induced periodontitis (LIP), followed by daily treatment with inactive vitamin D or 1,25(OH)2D3. Treatment with both forms led to a reduction in ligature-induced bone loss and inflammation. Gingival tissues obtained from vitamin D-treated LIP showed production of specialized proresolving mediators (SPM) of inflammation. To examine the mechanism, we demonstrated that apical treatment of 3-dimensional cultures of primary gingival epithelial cells with vitamin D prevented lipopolysaccharide-induced secretion of proinflammatory cytokines and led to a similar production of SPM. Analysis of the oral microbiome of the mice treated with vitamin D showed significant changes in resident bacteria, which reflects a shift toward health-associated species. Together, our results show that topical treatment of oral tissues with inactive vitamin D can lead to the maintenance of periodontal health through the regulation of a healthy microbiome and the stimulation of resolution of inflammation. This strongly supports the development of a safe and effective vitamin D-based topical treatment or preventive agent for periodontal inflammation and disease.

14.
Hematol Oncol ; 42(5): e3301, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39104142

RESUMEN

Biomarkers for immune checkpoint inhibitors (ICIs) response and resistance include PD-L1 expression and other environmental factors, among which the gut microbiome (GM) is gaining increasing interest especially in lymphomas. To explore the potential role of GM in this clinical issue, feces of 30 relapsed/refractory lymphoma (Hodgkin and primary mediastinal B-cell lymphoma) patients undergoing ICIs were collected from start to end of treatment (EoT). GM was profiled through Illumina, that is, 16S rRNA sequencing, and subsequently processed through a bioinformatics pipeline. The overall response rate to ICIs was 30.5%, with no association between patients clinical characteristics and response/survival outcomes. Regarding GM, responder patients showed a peculiar significant enrichment of Lachnospira, while non-responder ones showed higher presence of Enterobacteriaceae (at baseline and maintained till EoT). Recognizing patient-related factors that may influence response to ICIs is becoming critical to optimize the treatment pathway of heavily pretreated, young patients with a potentially long-life expectancy. These preliminary results indicate potential early GM signatures of ICIs response in lymphoma, which could pave the way for future research to improve patients prognosis with new adjuvant strategies.


Asunto(s)
Microbioma Gastrointestinal , Inhibidores de Puntos de Control Inmunológico , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Linfoma/tratamiento farmacológico , Linfoma/microbiología , Adulto Joven , Pronóstico , Resultado del Tratamiento
15.
Wound Repair Regen ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105277

RESUMEN

The intricate relationship between regeneration and microbiota has recently gained attention, spanning diverse model organisms. Axolotl (Ambystoma mexicanum) is a critically endangered salamander species and a model organism for regenerative and developmental biology. Despite its significance, a noticeable gap exists in understanding the interplay between axolotl regeneration and its microbiome. Here, we analyse in depth bacterial 16S rRNA amplicon dataset that we reported before as data resource and profile fungal community by sequencing ITS amplicons at the critical stages of limb regeneration (0-1-4-7-30-60 days post amputation, 'dpa'). Results reveal a decline in richness and evenness in the course of limb regeneration, with bacterial community richness recovering beyond 30 dpa unlike fungi community. Beta diversity analysis reveals precise restructuring of the bacterial community along the three phases of limb regeneration, contrasting with less congruent changes in the fungal community. Temporal dynamics of the bacterial community highlight prevalent anaerobic bacteria in initiation phase and Flavobacterium bloom in the early phase correlating with limb blastema proliferation. Predicted functional analysis mirrors these shifts, emphasising a transition from amino acid metabolism to lipid metabolism control. Fungal communities shift from Blastomycota to Ascomycota dominance in the late regeneration stage. Our findings provide ecologically relevant insights into stage specific role of microbiome contributions to axolotl limb regeneration.

16.
Pediatr Pulmonol ; 59 Suppl 1: S70-S80, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39105345

RESUMEN

People with cystic fibrosis (pwCF) have an altered gastrointestinal microbiome. These individuals also demonstrate propensity toward developing small intestinal bacterial overgrowth (SIBO). The dysbiosis present has intestinal and extraintestinal implications, including potential links with the higher rates of gastrointestinal malignancies described in CF. Given these implications, there is growing interest in therapeutic options for microbiome modulation. Alternative therapies, including probiotics and prebiotics, and current CF transmembrane conductance regulator gene modulators are promising interventions for ameliorating gut microbiome dysfunction in pwCF. This article will characterize and discuss the current state of knowledge and expert opinions on gut dysbiosis and SIBO in the context of CF, before reviewing the current evidence supporting gut microbial modulating therapies in CF.


Asunto(s)
Fibrosis Quística , Disbiosis , Microbioma Gastrointestinal , Intestino Delgado , Probióticos , Fibrosis Quística/microbiología , Humanos , Microbioma Gastrointestinal/fisiología , Probióticos/uso terapéutico , Disbiosis/microbiología , Intestino Delgado/microbiología , Prebióticos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética
17.
Sci Rep ; 14(1): 17820, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090139

RESUMEN

The gut and oral microbiome is altered in people living with HIV (PLWH). While antiretroviral treatment (ART) is pivotal in restoring immune function in PLWH, several studies have identified an association between specific antiretrovirals, particularly integrase inhibitors (INSTI), and weight gain. In our study, we explored the differences in the oral and gut microbiota of PLWH under different ART regimens, and its correlation to Body Mass Index (BMI). Fecal and salivary samples were collected from PLWH (n = 69) and healthy controls (HC, n = 80). We performed taxonomy analysis to determine the microbial composition and relationship between microbial abundance and ART regimens, BMI, CD4+T-cell count, CD4/CD8 ratio, and ART duration. PLWH showed significantly lower richness compared to HC in both the oral and gut environment. The gut microbiome composition of INSTI-treated individuals was enriched with Faecalibacterium and Bifidobacterium, whereas non-nucleotide reverse transcriptase inhibitor (NNRTI)-treated individuals were enriched with Gordonibacter, Megasphaera, and Staphylococcus. In the oral microenvironment, Veillonella was significantly more abundant in INSTI-treated individuals and Fusobacterium and Alloprevotella in the NNRTI-treated individuals. Furthermore, Bifidobacterium and Dorea were enriched in gut milieu of PLWH with high BMI. Collectively, our findings identify distinct microbial profiles, which are associated with different ART regimens and BMI in PLWH on successful ART, thereby highlighting significant effects of specific antiretrovirals on the microbiome.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por VIH , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Boca/microbiología , Índice de Masa Corporal , Heces/microbiología , Antirretrovirales/uso terapéutico , Saliva/microbiología
18.
Sci Rep ; 14(1): 17791, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090156

RESUMEN

The generic term "Gill disease" refers to a wide range of disorders that affect the gills and severely impact salmonid aquaculture systems worldwide. In rainbow trout freshwater aquaculture, various etiological agents causing gill diseases have been described, particularly Flavobacterium and Amoeba species, but research studies suggest a more complex and multifactorial aetiology. Here, a cohort of rainbow trout affected by gill disease is monitored both through standard laboratory techniques and 16S rRNA Next-Generation Sequencing (NGS) analysis during a natural disease outbreak and subsequent antibiotic treatment with Oxytetracycline. NGS results show a clear clustering of the samples between pre- and post-treatment based on the microbial community of the gills. Interestingly, the three main pathogenic bacteria species in rainbow trout (Yersinia ruckeri, Flavobacterium psychrophilum, and Flavobacterium branchiophilum) appear to be weak descriptors of the diversity between pre-treatment and post-treatment groups. In this study, the dynamics of the gill microbiome during the outbreak and subsequent treatment are far more complex than previously reported in the literature, and environmental factors seem of the utmost importance in determining gill disease. These findings present a potential novel perspective on the diagnosis and management of gill diseases, showing the limitations of conventional laboratory methodologies in elucidating the complexity of this disease in rainbow trout. To the authors' knowledge, this work is the first to describe the microbiome of rainbow trout gills during a natural outbreak and subsequent antibiotic treatment. The results of this study suggest that NGS can play a critical role in the analysis and comprehension of gill pathology. Using NGS in future research is highly recommended to gain deeper insights into such diseases correlating gill's microbiome with other possible cofactors and establish strong prevention guidelines.


Asunto(s)
Acuicultura , Brotes de Enfermedades , Enfermedades de los Peces , Flavobacterium , Branquias , Microbiota , Oncorhynchus mykiss , ARN Ribosómico 16S , Animales , Oncorhynchus mykiss/microbiología , Branquias/microbiología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/epidemiología , Flavobacterium/genética , Flavobacterium/aislamiento & purificación , Flavobacterium/patogenicidad , Brotes de Enfermedades/veterinaria , ARN Ribosómico 16S/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Yersinia ruckeri/genética , Infecciones por Flavobacteriaceae/veterinaria , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/epidemiología , Oxitetraciclina/uso terapéutico , Oxitetraciclina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
19.
Sci Rep ; 14(1): 17933, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095393

RESUMEN

The microbiome is a key factor in the health, well-being, and success of vertebrates, contributing to the adaptive capacity of the host. However, the impact of geographic and biotic factors that may affect the microbiome of wild birds in polar environments is not well defined. To address this, we determined the bacterial 16S rRNA gene sequence profiles in faecal samples from pygoscelid penguin populations in the Scotia Arc, focusing on gentoo penguins. This mesopredatory group breeds in defined colonies across a wide geographic range. Since diet could influence microbiome structure, we extracted dietary profiles from a eukaryotic 18S rRNA gene sequence profile. The bacterial microbiome profiles were considered in the context of a diverse set of environmental and ecological measures. Integrating wide geographic sampling with bacterial 16S and eukaryotic 18S rRNA gene sequencing of over 350 faecal samples identified associations between the microbiome profile and a suite of geographic and ecological factors. Microbiome profiles differed according to host species, colony identity, distance between colonies, and diet. Interestingly there was also a relationship between the proportion of host DNA (in relation to total 18S rRNA gene signal) and the microbiome, which may reflect gut passage time. Colony identity provided the strongest association with differences in microbiome profiles indicating that local factors play a key role in the microbiome structure of these polar seabirds. This may reflect the influence of local transfer of microbes either via faecal-oral routes, during chick feeding or other close contact events. Other factors including diet and host species also associate with variation in microbiome profile, and in at least some locations, the microbiome composition varies considerably between individuals. Given the variation in penguin microbiomes associated with diverse factors there is potential for disruption of microbiome associations at a local scale that could influence host health, productivity, and immunological competence. The microbiome represents a sensitive indicator of changing conditions, and the implications of any changes need to be considered in the wider context of environmental change and other stressors.


Asunto(s)
Heces , Microbiota , ARN Ribosómico 16S , Spheniscidae , Animales , Spheniscidae/microbiología , ARN Ribosómico 16S/genética , Microbiota/genética , Heces/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ARN Ribosómico 18S/genética , Dieta , Microbioma Gastrointestinal/genética
20.
Microbiome ; 12(1): 145, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107803

RESUMEN

BACKGROUND: This study aimed to engineer and optimise a dysbiotic biofilm model to develop in vitro root caries for investigating microbial modulation strategies. The model involved growing complex biofilms from a saliva inoculum collected from four volunteers using two strategies. In the first strategy ("pre-treatment strategy"), bovine root slabs were used, and two natural compounds were incorporated at time 0 of the 10-day biofilm experiment, which included sucrose cycles mimicking the cariogenic environment. In the second strategy ("post-treatment strategy"), mature biofilms were grown in a modified Calgary biofilm device coated with collagen and hydroxyapatite for 7 days and then were exposed to the same natural compounds. The metatranscriptome of each biofilm was then determined and analysed. Collagenase activity was examined, and the biofilms and dentine were imaged using confocal and scanning electron microscopy (SEM). Mineral loss and lesion formation were confirmed through micro-computed tomography (µ-CT). RESULTS: The pH confirmed the cariogenic condition. In the metatranscriptome, we achieved a biofilm compositional complexity, showing a great diversity of the metabolically active microbiome in both pre- and post-treatment strategies, including reads mapped to microorganisms other than bacteria, such as archaea and viruses. Carbohydrate esterases had increased expression in the post-treated biofilms and in samples without sugar cycles, while glucosyltransferases were highly expressed in the presence of sucrose cycles. Enrichment for functions related to nitrogen compound metabolism and organic cyclic component metabolism in groups without sucrose compared to the sucrose-treated group. Pre-treatment of the roots with cranberry reduced microbial viability and gelatinase (but not collagenase) activity (p < 0.05). SEM images showed the complexity of biofilms was maintained, with a thick extracellular polysaccharides layer. CONCLUSIONS: This root caries model was optimized to produce complex cariogenic biofilms and root caries-like lesions, and could be used to test microbial modulation in vitro. Pre-treatments before biofilm development and cariogenic challenges were more effective than post-treatments. The clinical significance lies in the potential to apply the findings to develop varnish products for post-professional tooth prophylaxis, aiming at implementing a strategy for dysbiosis reversal in translational research. Video Abstract.


Asunto(s)
Biopelículas , Microbiota , Caries Radicular , Saliva , Humanos , Caries Radicular/microbiología , Saliva/microbiología , Bovinos , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Dentina/microbiología , Colagenasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA