Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38839074

RESUMEN

Skin sympathetic nerve activity (SSNA) is primarily involved in thermoregulation and emotional expression; however, the brain regions involved in the generation of SSNA are not completely understood. In recent years, our laboratory has shown that blood-oxygen-level-dependent signal intensity in the ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are positively correlated with bursts of SSNA during emotional arousal and increases in signal intensity in the vmPFC occurring with increases in spontaneous bursts of SSNA even in the resting state. We have recently shown that unilateral transcranial alternating current stimulation (tACS) of the dlPFC causes modulation of SSNA but given that the current was delivered between electrodes over the dlPFC and the nasion, it is possible that the effects were due to current acting on the vmPFC. To test this, we delivered tACS to target the right vmPFC or dlPFC and nasion and recorded SSNA in 11 healthy participants by inserting a tungsten microelectrode into the right common peroneal nerve. The similarity in SSNA modulation between ipsilateral vmPFC and dlPFC suggests that the ipsilateral vmPFC, rather than the dlPFC, may be causing the modulation of SSNA during ipsilateral dlPFC stimulation.


Asunto(s)
Corteza Prefrontal , Piel , Sistema Nervioso Simpático , Estimulación Transcraneal de Corriente Directa , Humanos , Corteza Prefrontal/fisiología , Masculino , Femenino , Adulto , Sistema Nervioso Simpático/fisiología , Adulto Joven , Piel/inervación , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Eléctrica/métodos , Nervio Peroneo/fisiología , Lateralidad Funcional/fisiología
2.
J Affect Disord ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897296

RESUMEN

BACKGROUND: Sympathetic and blood pressure (BP) hyper-reactivity to stress may contribute to increased cardiovascular disease (CVD) risk in adults with major depressive disorder (MDD); however, whether this is evident in young adults with MDD without comorbid disease remains unclear. We hypothesized that acute stress-induced increases in muscle sympathetic nerve activity (MSNA) and BP would be exaggerated in young adults with MDD compared to healthy non-depressed young adults (HA) and that, in adults with MDD, greater symptom severity would be positively related to MSNA and BP reactivity. METHODS: In 28 HA (17 female) and 39 young adults with MDD of mild-to-moderate severity (unmedicated; 31 female), MSNA (microneurography) and beat-to-beat BP (finger photoplethysmography) were measured at rest and during the cold pressor test (CPT) and Stroop color word test (SCWT). RESULTS: There were no group differences in resting MSNA (p = 0.24). Neither MSNA nor BP reactivity to either the CPT [MSNA: ∆24 ±â€¯10 HA vs. ∆21 ±â€¯11 bursts/min MDD, p = 0.67; mean arterial pressure (MAP): ∆22 ±â€¯7 HA vs. ∆21 ±â€¯10 mmHg MDD, p = 0.46)] or the SCWT (MSNA: ∆-4 ±â€¯6 HA vs. ∆-5 ±â€¯8 bursts/min MDD, p = 0.99; MAP: ∆7 ±â€¯8 HA vs ∆9 ±â€¯5 mmHg MDD; p = 0.82) were different between groups. In adults with MDD, symptom severity predicted MAP reactivity to the CPT (ß = 0.78, SE = 0.26, p = 0.006), but not MSNA (p = 0.42). LIMITATIONS: The mild-to-moderate symptom severity reflects only part of the MDD spectrum. CONCLUSIONS: Neither sympathetic nor BP stress reactivity are exaggerated in young adults with MDD; however, greater symptom severity may amplify BP reactivity to stress, thereby increasing CVD risk.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38766771

RESUMEN

Body posture and biological sex exhibit independent effects on the sympathetic neural responses to dynamic exercise. However, the neural mechanisms (e.g., baroreflex) by which posture impacts sympathetic outflow during rhythmic muscular contractions and whether biological sex affects posture-mediated changes in efferent sympathetic nerve traffic during exercise remains unknown. Thus, we tested the hypotheses that increases in muscle sympathetic nerve activity (MSNA) would be greater during upright compared to supine rhythmic handgrip (RHG) exercise, and that females would demonstrate smaller increases in MSNA during upright RHG exercise than males. Twenty young (30 [6] years; mean [SD]) individuals (9 males, 11 females) underwent 6-minutes of supine and upright (head-up tilt 45°) RHG exercise at 40% maximal voluntary contraction with continuous measurements of MSNA (microneurography), blood pressure (photoplethysmography) and heart rate (electrocardiogram). In the pooled group, absolute MSNA burst frequency (P<0.001), amplitude (P=0.009), and total MSNA (P<0.001) were higher during upright compared to supine RHG exercise. However, body posture did not impact the peak change in MSNA during RHG exercise (range: P=0.063-0.495). Spontaneous sympathetic baroreflex gain decreased from rest to RHG exercise (P=0.006) and was not impacted by posture (P=0.347). During upright RHG exercise, males demonstrated larger increases in MSNA burst amplitude (P=0.002) and total MSNA (P=0.001) compared to females, that coincided with greater reductions in sympathetic baroreflex gain (P=0.004). Collectively, these data indicate that acute attenuation of baroreflex-mediated sympathoinhibition permits increases in MSNA during RHG exercise, and that males exhibit a greater reserve for efferent sympathetic neural recruitment during orthostasis than females.

4.
J Appl Physiol (1985) ; 136(4): 917-927, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385178

RESUMEN

Microneurographic recordings of muscle sympathetic nerve activity (MSNA) and the succeeding changes in beat-to-beat blood pressure (i.e., sympathetic transduction) provide important insights into the neural control of the circulation in humans. Despite its widespread use, the reliability of this technique remains unknown. Herein, we assessed the intra- and interday test-retest reliability of signal-averaging sympathetic transduction to blood pressure. Data were analyzed from 15 (9 M/6 F) young, healthy participants who completed two baseline recordings of fibular nerve MSNA separated by 60 min (intraday). The interday reliability was obtained in a subset of participants (n = 13, 9 M/4 F) who completed a follow-up MSNA study. Signal-averaging sympathetic transduction was quantified as peak change in diastolic (DBP) and mean arterial pressure (MAP) following a burst of MSNA. Analyses were also computed considering different MSNA burst sizes (quartiles of normalized MSNA) and burst patterns (singlets, couplets, triplets, and quadruplets+), as well as nonburst responses. Intraclass-correlation coefficients (ICCs) were used as the main reliability measure. Peak changes in MAP [intraday: ICC = 0.76 (0.30-0.92), P = 0.006; interday: ICC = 0.91 (0.63-0.97), P < 0.001] demonstrated very good to excellent reliability. Sympathetic transduction of MSNA burst size displayed moderate to very good reliability, though the reliability of MSNA burst pattern was poor to very good. Nonburst responses revealed poor intraday [ICC = 0.37 (-1.05 to 0.80), P = 0.21], but very good interday [ICC = 0.76 (0.18-0.93), P = 0.01] reliability. Intraday reliability measures were consistently lower than interday reliability. Similar results were obtained using DBP. Collectively, these findings provide evidence that the burst-triggering signal-averaging technique is a reliable measure of sympathetic transduction to blood pressure in young, healthy adults.NEW & NOTEWORTHY We found that signal-averaging sympathetic transduction to blood pressure displayed very good to excellent intra- and interday test-retest reliability in healthy, young adults. Reliability analyses according to muscle sympathetic burst size, burst pattern, and nonburst response were less consistent. Results were similar when using diastolic or mean arterial pressure in the transduction calculation. These findings suggest that the signal-averaging technique can be used with confidence to investigate sympathetic transduction to blood pressure in humans across time.


Asunto(s)
Músculo Esquelético , Sistema Nervioso Simpático , Adulto Joven , Humanos , Presión Sanguínea/fisiología , Reproducibilidad de los Resultados , Músculo Esquelético/fisiología , Sistema Nervioso Simpático/fisiología , Frecuencia Cardíaca/fisiología
5.
Am J Physiol Heart Circ Physiol ; 326(3): H752-H759, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38214902

RESUMEN

Sleep disturbance, one of the most common menopausal symptoms, contributes to autonomic dysfunction and is linked to hypertension and cardiovascular risk. Longitudinal studies suggest that hyperreactivity of blood pressure (BP) to a stressor can predict the future development of hypertension. It remains unknown if postmenopausal females who experience sleep disturbance (SDG) demonstrate greater hemodynamic and sympathetic neural hyperreactivity to a stressor. We hypothesized that postmenopausal females with reported sleep disturbance would exhibit increased hemodynamic and sympathetic reactivity to a stressor compared with postmenopausal females without sleep disturbance (non-SDG). Fifty-five postmenopausal females (age, 62 ± 4 yr old; SDG, n = 36; non-SDG; n = 19) completed two study visits. The Menopause-Specific Quality of Life Questionnaire (MENQOL) was used to assess the presence of sleep disturbance (MENQOL sleep scale, ≥2 units). Beat-to-beat BP (finger plethysmography), heart rate (HR; electrocardiogram), and muscle sympathetic nerve activity (MSNA; microneurography; SDG, n = 25; non-SDG, n = 15) were continuously measured during a 10-min baseline and 2-min stressor (cold pressor test; CPT) in both groups. Menopause age and body mass index were similar between groups (P > 0.05). There were no differences between resting BP, HR, or MSNA (P > 0.05). HR and BP reactivity were not different between SDG and non-SDG (P > 0.05). In contrast, MSNA reactivity had a more rapid increase in the first 30 s of the CPT in the SDG (burst incidence, Δ10.2 ± 14.8 bursts/100 hb) compared with the non-SDG (burst incidence, Δ4.0 ± 14.8 bursts/100 hb, time × group, P = 0.011). Our results demonstrate a more rapid sympathetic neural reactivity to a CPT in postmenopausal females with perceived sleep disturbance, a finding that aligns with and advances recent evidence that sleep disturbance is associated with sympathetic neural hyperactivity in postmenopausal females.NEW & NOTEWORTHY This is the first study to demonstrate that muscle sympathetic nerve activity (MSNA) to a cold pressor test is augmented in postmenopausal females with perceived sleep disturbance. The more rapid increase in MSNA reactivity during the cold pressor test in the sleep disturbance group was present despite similar increases in the perceived pain levels between groups. Baseline MSNA burst incidence and burst frequency, as well as blood pressure and heart rate, were similar between the sleep disturbance and nonsleep disturbance groups.


Asunto(s)
Hipertensión , Trastornos del Sueño-Vigilia , Humanos , Femenino , Persona de Mediana Edad , Anciano , Posmenopausia , Calidad de Vida , Músculo Esquelético/inervación , Presión Sanguínea/fisiología , Sistema Nervioso Simpático , Frecuencia Cardíaca/fisiología , Sueño , Trastornos del Sueño-Vigilia/diagnóstico
6.
eNeuro ; 11(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38272674

RESUMEN

Tactile discrimination has been extensively studied, but mechanical pain discrimination remains poorly characterized. Here, we measured the capacity for mechanical pain discrimination using a two-alternative forced choice paradigm, with force-calibrated indentation stimuli (Semmes-Weinstein monofilaments) applied to the hand and foot dorsa of healthy human volunteers. In order to characterize the relationship between peripheral nociceptor activity and pain perception, we recorded single-unit activity from myelinated (A) and unmyelinated (C) mechanosensitive nociceptors in the skin using microneurography. At the perceptual level, we found that the foot was better at discriminating noxious forces than the hand, which stands in contrast to that for innocuous force discrimination, where the hand performed better than the foot. This observation of superior mechanical pain discrimination on the foot compared to the hand could not be explained by the responsiveness of individual nociceptors. We found no significant difference in the discrimination performance of either the myelinated or unmyelinated class of nociceptors between skin regions. This suggests the possibility that other factors such as skin biophysics, receptor density or central mechanisms may underlie these regional differences.


Asunto(s)
Dolor , Piel , Humanos , Estimulación Física , Nociceptores , Percepción del Dolor
7.
Exp Physiol ; 109(1): 27-34, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37029664

RESUMEN

Hereditary sensory and autonomic neuropathy type III (HSAN III), also known as familial dysautonomia or Riley-Day syndrome, results from an autosomal recessive genetic mutation that causes a selective loss of specific sensory neurones, leading to greatly elevated pain and temperature thresholds, poor proprioception, marked ataxia and disturbances in blood pressure control. Stretch reflexes are absent throughout the body, which can be explained by the absence of functional muscle spindle afferents - assessed by intraneural microelectrodes inserted into peripheral nerves in the upper and lower limbs. This also explains the greatly compromised proprioception at the knee joint, as assessed by passive joint-angle matching. Moreover, there is a tight correlation between loss of proprioceptive acuity at the knee and the severity of gait impairment. Surprisingly, proprioception is normal at the elbow, suggesting that participants are relying more on sensory cues from the overlying skin; microelectrode recordings have shown that myelinated tactile afferents in the upper and lower limbs appear to be normal. Nevertheless, the lack of muscle spindles does affect sensorimotor control in the upper limb: in addition to poor performance in the finger-to-nose test, manual performance in the Purdue pegboard task is much worse than in age-matched healthy controls. Unlike those rare individuals with large-fibre sensory neuropathy, in which both muscle spindle and cutaneous afferents are absent, those with HSAN III present as a means of assessing sensorimotor control following the selective loss of muscle spindle afferents.


Asunto(s)
Disautonomía Familiar , Husos Musculares , Humanos , Husos Musculares/fisiología , Nervios Periféricos , Reflejo de Estiramiento , Rodilla
8.
Am J Physiol Regul Integr Comp Physiol ; 326(1): R10-R18, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955129

RESUMEN

Maternal obesity increases the risk of adverse pregnancy outcomes. The mechanisms that contribute to this elevated risk are unclear but may be related to greater activity of the sympathetic nervous system, which is associated with hypertensive disorders of pregnancy. We hypothesized that resting muscle sympathetic nerve activity (MSNA) would be greater in women with obesity during pregnancy when compared with normal-weight women. Blood pressure, heart rate, and MSNA were recorded during 5 min of supine rest in 14 normal-weight women [body mass index (BMI) 22.1 ± 2.1 (SD) kg/m2] and 14 women with obesity (BMI 33.9 ± 3.5 kg/m2) during (early and late) pregnancy and postpartum. All women had uncomplicated pregnancies. Resting MSNA burst frequency was not different between groups during early (normal weight 17 ± 10 vs. obesity 22 ± 15 bursts/min, P = 0.35) but was significantly greater in the obesity group during late pregnancy (23 ± 13 vs. 35 ± 15 bursts/min, P = 0.031) and not different postpartum (10 ± 6 vs. 9 ± 7 bursts/min, P = 0.74). These findings were also apparent when comparing burst incidence and total activity. Although still within the normotensive range, systolic blood pressure was greater in the obesity group across all time points (P = 0.002). Diastolic blood pressure was lower during pregnancy compared with postpartum (P < 0.001) and not different between groups (P = 0.488). Heart rate increased throughout pregnancy in both groups (P < 0.001). Our findings suggest that maternal obesity is associated with greater increases in sympathetic activity even during uncomplicated pregnancy. Future research is needed to determine if this is linked with an increased risk of adverse outcomes or is required to maintain homeostasis in pregnancy.NEW & NOTEWORTHY The impact of maternal obesity on resting muscle sympathetic nerve activity was examined during (early and late) and after uncomplicated pregnancy. Resting muscle sympathetic nerve activity is not different during early pregnancy or postpartum but is significantly elevated in women with obesity during late pregnancy when compared with normal-weight women. Future research is needed to determine if this is linked with an increased risk of adverse outcomes or is required to maintain homeostasis in pregnancy.


Asunto(s)
Obesidad Materna , Humanos , Femenino , Embarazo , Masculino , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Músculo Esquelético/inervación , Obesidad/diagnóstico , Sistema Nervioso Simpático
9.
J Transl Med ; 21(1): 908, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087354

RESUMEN

BACKGROUND: Chronic itch (chronic pruritus) is a major therapeutic challenge that remains poorly understood despite the extensive recent analysis of human pruriceptors. It is unclear how the peripheral nervous system differentiates the signaling of non-histaminergic itch and pain. METHODS: Here we used psychophysical analysis and microneurography (single nerve fiber recordings) in healthy human volunteers to explore the distinct signaling mechanisms of itch, using the pruritogens ß-alanine, BAM 8-22 and cowhage extract. RESULTS: The mode of application (injection or focal application using inactivated cowhage spicules) influenced the itch/pain ratio in sensations induced by BAM 8-22 and cowhage but not ß-alanine. We found that sensitizing pre-injections of prostaglandin E2 increased the pain component of BAM 8-22 but not the other pruritogens. A-fibers contributed only to itch induced by ß-alanine. TRPV1 and TRPA1 were necessary for itch signaling induced by all three pruritogens. In single-fiber recordings, we found that BAM 8-22 and ß-alanine injection activated nearly all CM-fibers (to different extents) but not CMi-fibers, whereas cowhage extract injection activated only 56% of CM-fibers but also 25% of CMi-fibers. A "slow bursting discharge pattern" was evoked in 25% of CM-fibers by ß-alanine, in 35% by BAM 8-22, but in only 10% by cowhage extract. CONCLUSION: Our results indicate that no labeled line exists for these pruritogens in humans. A combination of different mechanisms, specific for each pruritogen, leads to itching sensations rather than pain. Notably, non-receptor-based mechanisms such as spatial contrast or discharge pattern coding seem to be important processes. These findings will facilitate the discovery of therapeutic targets for chronic pruritus, which are unlikely to be treated effectively by single receptor blockade.


Asunto(s)
Capsaicina , Piel , Humanos , Capsaicina/farmacología , Prurito/inducido químicamente , Dolor , Transducción de Señal , beta-Alanina/efectos adversos
10.
Front Comput Neurosci ; 17: 1265958, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156040

RESUMEN

Objective: Patients with small fiber neuropathy (SFN) suffer from neuropathic pain, which is still a therapeutic problem. Changed activation patterns of mechano-insensitive peripheral nerve fibers (CMi) could cause neuropathic pain. However, there is sparse knowledge about mechanisms leading to CMi dysfunction since it is difficult to dissect specific molecular mechanisms in humans. We used an in-silico model to elucidate molecular causes of CMi dysfunction as observed in single nerve fiber recordings (microneurography) of SFN patients. Approach: We analyzed microneurography data from 97 CMi-fibers from healthy individuals and 34 of SFN patients to identify activity-dependent changes in conduction velocity. Using the NEURON environment, we adapted a biophysical realistic preexisting CMi-fiber model with ion channels described by Hodgkin-Huxley dynamics for identifying molecular mechanisms leading to those changes. Via a grid search optimization, we assessed the interplay between different ion channels, Na-K-pump, and resting membrane potential. Main results: Changing a single ion channel conductance, Na-K-pump or membrane potential individually is not sufficient to reproduce in-silico CMi-fiber dysfunction of unchanged activity-dependent conduction velocity slowing and quicker normalization of conduction velocity after stimulation as observed in microneurography. We identified the best combination of mechanisms: increased conductance of potassium delayed-rectifier and decreased conductance of Na-K-pump and depolarized membrane potential. When the membrane potential is unchanged, opposite changes in Na-K-pump and ion channels generate the same effect. Significance: Our study suggests that not one single mechanism accounts for pain-relevant changes in CMi-fibers, but a combination of mechanisms. A depolarized membrane potential, as previously observed in patients with neuropathic pain, leads to changes in the contribution of ion channels and the Na-K-pump. Thus, when searching for targets for the treatment of neuropathic pain, combinations of several molecules in interplay with the membrane potential should be regarded.

11.
Kidney Int Rep ; 8(11): 2254-2264, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38025218

RESUMEN

Introduction: Reductions in sympathetic nervous system activity may contribute to beneficial effects of sodium glucose cotransporter 2 (SGLT2) inhibition on cardiovascular outcomes. Therefore, we tested the hypothesis that SGLT2 inhibition with empagliflozin (Empa) lowers muscle sympathetic nerve activity (MSNA) in patients with type 2 diabetes mellitus (T2DM) compared with hydrochlorothiazide (HCT) to discern SGLT2-specific actions from responses to increased natriuresis. Methods: We randomized patients with T2DM on metformin monotherapy to either 25 mg/d Empa (n = 20) or 25 mg/d HCT (n = 21) for 6 weeks in a parallel, double-blind fashion. We assessed MSNA by peroneal microneurography, blood pressure, cardiovascular and metabolic biomarkers at baseline and at the end of treatment. Results: Both drugs elicited volume depletion, as indicated by increased thoracic impedance. Compared with HCT, Empa caused 1.23 kg more body weight loss (P = 0.011) and improved glycemic control. Seated systolic blood pressure decreased with both treatments (P < 0.002). MSNA did not change significantly with either treatment; however, MSNA changes were negatively correlated with changes in body weight on Empa (P = 0.042) and on HCT(P = 0.001). The relationship was shifted to lower MSNA on Empa compared with HCT (P = 0.002). Conclusion: Increased renal sodium excretion eliciting body weight loss may promote sympathetic activation. However, sympathetic excitation in the face of increased sodium loss may be attenuated by SGLT2 inhibitor-specific actions.

12.
Front Neuroinform ; 17: 1250260, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780458

RESUMEN

In the field of neuroscience, a considerable number of commercial data acquisition and processing solutions rely on proprietary formats for data storage. This often leads to data being locked up in formats that are only accessible by using the original software, which may lead to interoperability problems. In fact, even the loss of data access is possible if the software becomes unsupported, changed, or otherwise unavailable. To ensure FAIR data management, strategies should be established to enable long-term, independent, and unified access to data in proprietary formats. In this work, we demonstrate PyDapsys, a solution to gain open access to data that was acquired using the proprietary recording system DAPSYS. PyDapsys enables us to open the recorded files directly in Python and saves them as NIX files, commonly used for open research in the electrophysiology domain. Thus, PyDapsys secures efficient and open access to existing and prospective data. The manuscript demonstrates the complete process of reverse engineering a proprietary electrophysiological format on the example of microneurography data collected for studies on pain and itch signaling in peripheral neural fibers.

13.
Physiol Rep ; 11(17): e15821, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37701968

RESUMEN

Aging augments resting muscle sympathetic nerve activity (MSNA) and sympatho-inhibition during mild dynamic 1-leg exercise. To elucidate which reflexes elicit exercise-induced inhibition, we recruited 19 (9 men) healthy volunteers (mean age 56 ± 9 SD years), assessed their peak oxygen uptake (VO2peak ), and, on another day, measured heart rate (HR), blood pressure (BP) and MSNA (microneurography) at rest and during 1-leg cycling (2 min each at 0 load and 30%-40% VO2peak ), 3 times: (1) seated +2 min of postexercise circulatory occlusion (PECO) (elicit muscle metaboreflex); (2) supine (stimulate cardiopulmonary baroreflexes);and (3) seated, breathing 32% oxygen (suppress peripheral chemoreceptor reflex). While seated, MSNA decreased similarly during mild and moderate exercise (p < 0.001) with no increase during PECO (p = 0.44). Supine posture lowered resting MSNA (main effect p = 0.01) BP and HR. MSNA fell further (p = 0.04) along with diastolic BP and HR during mild, not moderate, supine cycling. Hyperoxia attenuated resting (main effect p = 0.01), but not exercise MSNA. In healthy middle-age, the cardiopulmonary baroreflex and arterial chemoreflex modulate resting MSNA, but contrary to previous observations in young subjects, without counter-regulatory offset by the sympatho-excitatory metaboreflex, resulting in an augmented sympatho-inhibitory response to mild dynamic leg exercise.


Asunto(s)
Pierna , Reflejo , Masculino , Persona de Mediana Edad , Humanos , Anciano , Terapia por Ejercicio , Presión Sanguínea , Arterias
14.
Stud Health Technol Inform ; 307: 3-11, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37697832

RESUMEN

Metadata is essential for handling medical data according to FAIR principles. Standards are well-established for many types of electrophysiological methods but are still lacking for microneurographic recordings of peripheral sensory nerve fibers in humans. Developing a new concept to enhance laboratory workflows is a complex process. We propose a standard for structuring and storing microneurography metadata based on odML and odML-tables. Further, we present an extension to the odML-tables GUI that enables user-friendly search functionality of the database. With our open-source repository, we encourage other microneurography labs to incorporate odML-based metadata into their experimental routines.


Asunto(s)
Diseño Interior y Mobiliario , Metadatos , Humanos , Bases de Datos Factuales , Laboratorios , Flujo de Trabajo
15.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R629-R644, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37694305

RESUMEN

While biological sex affects the neurocirculatory adjustments to exercise, the effects of sex hormones on sympathetic action potential (AP) patterns and ensuing vascular transduction remain unknown. We tested the hypothesis that males, and females using oral contraceptive pills (OCPs), would demonstrate larger increases in sympathetic activation and sympathetic vascular transduction compared with naturally menstruating females during static handgrip exercise (SHG) and postexercise circulatory occlusion (PECO). Young males [n = 14, 25 (5) yr], females using OCPs [n = 16, 24 (6) yr], and naturally menstruating females [n = 18, 26 (4) yr] underwent assessments of multiunit muscle sympathetic nerve activity (MSNA)/AP discharge patterns (microneurography) and femoral artery blood flow (ultrasound) during fatiguing SHG at 40% maximum voluntary contraction and 2-min PECO. Sympathetic vascular transduction was determined as the quotient of the change in leg vascular conductance (LVC) and MSNA/AP discharge. Males demonstrated greater increases in APs/burst [males: Δ7 (6) vs. midluteal: Δ2 (3), P = 0.028] and total AP clusters [males: Δ5 (3) vs. midluteal: Δ2 (3), P = 0.008] compared with naturally menstruating females only but not those using OCPs during exercise (APs/burst: P = 0.171, total clusters: P = 0.455). Sympathetic vascular transduction of MSNA burst amplitude, APs/burst, and total AP clusters was greater in males and females using OCPs compared with naturally menstruating females (range: P = 0.004-0.044). In contrast, during PECO no group differences were observed in AP discharge (range: P = 0.510-0.872), and AP discharge was not related to LVC during PECO (range: P = 0.08-0.949). These data indicate that biological sex and OCP use impact the central generation of AP discharge, as well as the transduction of these neuronal messages into peripheral vasoconstriction during static exercise.

16.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R474-R489, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37642283

RESUMEN

We conducted a systematic review and meta-analysis to determine the effect of acute poikilocapnic, high-altitude, and acute isocapnia hypoxemia on muscle sympathetic nerve activity (MSNA) and cardiovascular function. A comprehensive search across electronic databases was performed until June 2021. All observational designs were included: population (healthy individuals); exposures (MSNA during hypoxemia); comparators (hypoxemia severity and duration); outcomes (MSNA; heart rate, HR; and mean arterial pressure, MAP). Sixty-one studies were included in the meta-analysis. MSNA burst frequency increased by a greater extent during high-altitude hypoxemia [P < 0.001; mean difference (MD), +22.5 bursts/min; confidence interval (CI) = -19.20 to 25.84] compared with acute poikilocapnic hypoxemia (P < 0.001; MD, +5.63 bursts/min; CI = -4.09 to 7.17) and isocapnic hypoxemia (P < 0.001; MD, +4.72 bursts/min; CI = -3.37 to 6.07). MSNA burst amplitude was only elevated during acute isocapnic hypoxemia (P = 0.03; standard MD, +0.46 au; CI = -0.03 to 0.90), and MSNA burst incidence was only elevated during high-altitude hypoxemia [P < 0.001; MD, 33.05 bursts/100 heartbeats; CI = -28.59 to 37.51]. Meta-regression analysis indicated a strong relationship between MSNA burst frequency and hypoxemia severity for acute isocapnic studies (P < 0.001) but not acute poikilocapnia (P = 0.098). HR increased by the same extent across each type of hypoxemia [P < 0.001; MD +13.81 heartbeats/min; 95% CI = 12.59-15.03]. MAP increased during high-altitude hypoxemia (P < 0.001; MD, +5.06 mmHg; CI = 3.14-6.99), and acute isocapnic hypoxemia (P < 0.001; MD, +1.91 mmHg; CI = 0.84-2.97), but not during acute poikilocapnic hypoxemia (P = 0.95). Both hypoxemia type and severity influenced sympathetic nerve and cardiovascular function. These data are important for the better understanding of healthy human adaptation to hypoxemia.


Asunto(s)
Presión Arterial , Músculo Esquelético , Humanos , Músculo Esquelético/inervación , Hipoxia , Frecuencia Cardíaca/fisiología , Sistema Nervioso Simpático , Presión Sanguínea/fisiología
17.
Am J Physiol Heart Circ Physiol ; 325(4): H917-H932, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37594483

RESUMEN

Bursts of muscle sympathetic nerve activity (MSNA) and the ensuing vasoconstriction are pivotal determinants of beat-by-beat blood pressure regulation. Although age and sex impact blood pressure regulation, how these factors affect the central and peripheral arcs of the baroreflex remains unclear. In 27 young [25 (SD 3) yr] males (YM; n = 14) and females (YF; n = 13) and 23 older [71 (SD 5) yr] males (OM; n = 11) and females (OF; n = 12), femoral artery blood flow, blood pressure, and MSNA were recorded for 10 min of supine rest. Sympathetic baroreflex sensitivity (i.e., central arc) was quantified as the relationship between diastolic blood pressure and MSNA burst incidence. Signal averaging was used to determine sympathetic vascular transduction into leg vascular conductance (LVC) for 12 cardiac cycles following MSNA bursts (i.e., peripheral arc). Older adults demonstrated attenuated sympathetic transduction into LVC (both P < 0.001) following MSNA bursts, and smaller increases in sympathetic transduction as a function of MSNA burst size and firing pattern compared with young adults (range, P = 0.004-0.032). YM (r2 = 0.36; P = 0.032) and OM (r2 = 0.51; P = 0.014) exhibited an inverse relationship between the central and peripheral arcs of the baroreflex, whereas females did not (YF, r2 = 0.03, P = 0.621; OF, r2 = 0.06, P = 0.445). MSNA burst incidence was inversely related to sympathetic transduction in YM and OF (range, P = 0.03-0.046) but not in YF or OM (range, P = 0.360-0.603). These data indicate that age is associated with attenuated sympathetic vascular transduction, whereas age- and sex-specific changes are present in the relationship between the central and peripheral arcs of the baroreflex regulation of blood pressure.NEW & NOTEWORTHY Sympathetic vascular transduction is attenuated in older compared with young adults, regardless of biological sex. Males, but not females (regardless of age), demonstrate an inverse relationship between central (sympathetic baroreflex sensitivity) and peripheral (sympathetic vascular transduction) components of the baroreflex arc. Young males and older females exhibit an inverse relationship between resting sympathetic outflow and sympathetic vascular transduction. Our results indicate that age and sex exert independent and interactive effects on sympathetic vascular transduction and sympathetic neurohemodynamic balance in humans.


Asunto(s)
Barorreflejo , Arteria Femoral , Masculino , Femenino , Adulto Joven , Humanos , Anciano , Presión Sanguínea , Corazón , Extremidad Inferior
18.
Clin Auton Res ; 33(4): 421-432, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37460866

RESUMEN

PURPOSE: Orthostatic hypotension is a common condition with heterogeneous and, in many cases, unclear underlying pathophysiology. Frequent symptoms are syncope and falls with a strong impact on daily life. A two-generation family with eight individuals segregating early-onset severe orthostatic hypotension with persistent tachycardia in upright position and repeated faints was identified. Our aim was to elucidate the underlying pathophysiology. METHODS: One severely affected individual underwent thorough investigation with neurophysiological and blood pressure (BP) measurements, including direct recording of baroreflex-governed sympathetic nerve signalling and induction of BP rise with phenylephrine. Family members underwent parts of the examination. Genetic analysis using exome sequencing was performed. RESULTS: Marked postural hypotension with greatly reduced cardiac preload was observed, but without signs of autonomic nervous system dysfunction: sympathetic nerve signalling was normal, as were catecholamine levels, and phenylephrine stimulation revealed a normal increase in BP. The results of the genetic analysis using exome sequencing comprising all known genes associated with the regulation of BP and catecholamine metabolism were normal. CONCLUSION: The combined findings suggest an autosomal dominant form of early-onset orthostatic hypotension with variable clinical expression and without any additional autonomic dysfunction. It is possible that further investigation will reveal an as yet undescribed entity of orthostatic hypotension transmitted as an autosomal dominant trait.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Hipotensión Ortostática , Humanos , Hipotensión Ortostática/diagnóstico , Hipotensión Ortostática/genética , Suecia , Síncope , Fenilefrina , Catecolaminas
19.
Neurosci Biobehav Rev ; 151: 105236, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37196923

RESUMEN

Since their initial discovery in cats, low-threshold C-fiber mechanoreceptors have become a central interest of scientists studying the affective aspects of touch. Their pursuit in humans, here termed C-tactile (CT) afferents, has led to the establishment of a research field referred to as "affective touch", which is differentiated from "discriminative touch". Presently, we review these developments based on an automated semantic analysis of more than 1000 published abstracts as well as empirical evidence and the solicited opinions of leading experts in the field. Our review provides a historical perspective and update of CT research, it reflects on the meaning of "affective touch", and discusses how current insights challenge established views on the relation between CTs and affective touch. We conclude that CTs support gentle, affective touch, but that not every affective touch experience relies on CTs or must necessarily be pleasant. Moreover, we speculate that currently underappreciated aspects of CT signaling will prove relevant for the manner in which these unique fibers support how humans connect both physically and emotionally.


Asunto(s)
Percepción del Tacto , Tacto , Humanos , Animales , Gatos , Mecanorreceptores , Emociones , Fibras Nerviosas Amielínicas , Estimulación Física
20.
Stud Health Technol Inform ; 302: 368-369, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37203689

RESUMEN

Metadata standards are well-established for many types of electrophysiological methods but are still lacking for microneurographic recordings of peripheral sensory nerve fibers in humans. Finding a solution for daily work in the laboratory is a complex process. We have designed templates based on odML and odML-tables to structure and capture metadata and provided an extension to the existing GUI to enable database searching.


Asunto(s)
Metadatos , Cuidados Paliativos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...