Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Talanta ; 278: 126519, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39002261

RESUMEN

There is growing interest in developing diamond electrodes with defined geometries such as, for example, micrometer-sized electrode arrays to acquire signals for electroanalysis. For electroanalytical sensing applications, it is essential to achieve precise conductive patterns on the insulating surface. This work provides a novel approach to boron-doped diamond patterning using nichrome masking for selective seeding on an oxidized silicon substrate. The optimized process involves nichrome deposition, sonication, chemical etching, seeding, and tailored chemical vapor deposition of boron-doped diamond with an intrinsic layer to suppress boron diffusion. Through a systematic investigation, it was determined that isolated boron-doped diamond band electrodes can be efficiently produced on non-conductive silica. Additionally, the influence of boron doping on electrochemical performance was studied, with higher doping enhancing the electrochemical response of band electrodes. To demonstrate sensing capabilities, boron-doped diamond bands were used to detect posaconazole, an antifungal drug, exploiting its electroactive behaviour. A linear correlation between posaconazole concentration and oxidation peak current was observed over 1.43 × 10-8 - 5.71 × 10-6 M with a 1.4 × 10-8 M detection limit. The developed boron-doped diamond microbands could significantly impact the field of electroanalysis, facilitating detection of diverse biologically relevant molecules. Overall, this diamond patterning approach overcomes major challenges towards all-diamond electrochemical sensor chips.

2.
ACS Appl Mater Interfaces ; 10(29): 24573-24582, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29956913

RESUMEN

Nowadays, linear-shaped batteries have received increasing attentions because the unique one-dimensional architecture offers an omni-directional flexibility. We developed a cable-type flexible rechargeable Zn microbattery based on a microscale MnO2@carbon nanotube fiberlike composite cathode and Zn wire anode. The Zn-MnO2 cable microbattery exhibits a large specific capacity, good rate performance, and cyclic stability. The capacity of Zn-MnO2 cable batteries are 322 and 290 mAh/g based on MnO2 with aqueous and gel polymer electrolyte, corresponding to the specific energy of 437 and 360 Wh/kg, respectively. Besides, the Zn-MnO2 cable battery shows excellent flexibility, which can be folded into arbitrary shapes without sacrificing electrochemical performance. Furthermore, we studied electrochemical properties of Zn-MnO2 cable microbatteries with different Zn salt electrolytes, such as Zn salt with small anions (ZnSO4 or ZnCl2, etc.) and Zn salt with bulky anions (Zn(CF3SO3)2, etc.). With the merits of impressive electrochemical performance and flexibility, this first flexible rechargeable Zn-MnO2 cable-like battery presents a new approach to develop high-performance power sources for portable and wearable electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA