Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Cell Biol ; 102(4): 151370, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37922811

RESUMEN

A fair amount of research on microtubules since their discovery in 1963 has focused on their dynamic tips. In contrast, the microtubule lattice was long believed to be highly regular and static, and consequently received far less attention. Yet, as it turned out, the microtubule lattice is neither as regular, nor as static as previously believed: structural studies uncovered the remarkable wealth of different conformations the lattice can accommodate. In the last decade, the microtubule lattice was shown to be labile and to spontaneously undergo renovation, a phenomenon that is intimately linked to structural defects and was called "microtubule self-repair". Following this breakthrough discovery, further recent research provided a deeper understanding of the lattice self-repair mechanism, which we review here. Instrumental to these discoveries were in vitro microtubule reconstitution assays, in which microtubules are grown from the minimal components required for their dynamics. In this review, we propose a shift from the term "lattice self-repair" to "lattice dynamics", since this phenomenon is an inherent property of microtubules and can happen without microtubule damage. We focus on how in vitro microtubule reconstitution assays helped us learn (1) which types of structural variations microtubules display, (2) how these structural variations influence lattice dynamics and microtubule damage caused by mechanical stress, (3) how lattice dynamics impact tip dynamics, and (4) how microtubule-associated proteins (MAPs) can play a role in structuring the lattice. Finally, we discuss the unanswered questions about lattice dynamics and how technical advances will help us tackle these questions.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Microtúbulos , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Tubulina (Proteína)/análisis , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
2.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36866642

RESUMEN

Microtubules are critical for a variety of important functions in eukaryotic cells. During intracellular trafficking, molecular motor proteins of the kinesin superfamily drive the transport of cellular cargoes by stepping processively along the microtubule surface. Traditionally, the microtubule has been viewed as simply a track for kinesin motility. New work is challenging this classic view by showing that kinesin-1 and kinesin-4 proteins can induce conformational changes in tubulin subunits while they are stepping. These conformational changes appear to propagate along the microtubule such that the kinesins can work allosterically through the lattice to influence other proteins on the same track. Thus, the microtubule is a plastic medium through which motors and other microtubule-associated proteins (MAPs) can communicate. Furthermore, stepping kinesin-1 can damage the microtubule lattice. Damage can be repaired by the incorporation of new tubulin subunits, but too much damage leads to microtubule breakage and disassembly. Thus, the addition and loss of tubulin subunits are not restricted to the ends of the microtubule filament but rather, the lattice itself undergoes continuous repair and remodeling. This work leads to a new understanding of how kinesin motors and their microtubule tracks engage in allosteric interactions that are critical for normal cell physiology.


Asunto(s)
Cinesinas , Tubulina (Proteína) , Microtúbulos , Proteínas Asociadas a Microtúbulos , Citoesqueleto
3.
J Cell Sci ; 134(1)2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33262310

RESUMEN

In invertebrates, UNC-45 regulates myosin stability and functions. Vertebrates have two distinct isoforms of the protein: UNC-45B, expressed in muscle cells only, and UNC-45A, expressed in all cells and implicated in regulating both non-muscle myosin II (NMII)- and microtubule (MT)-associated functions. Here, we show that, in vitro and in human and rat cells, UNC-45A binds to the MT lattice, leading to MT bending, breakage and depolymerization. Furthermore, we show that UNC-45A destabilizes MTs independent of its C-terminal NMII-binding domain and even in the presence of the NMII inhibitor blebbistatin. These findings identified UNC-45A as a novel type of MT-severing protein with a dual non-mutually exclusive role in regulating NMII activity and MT stability. Because many human diseases, from cancer to neurodegenerative diseases, are caused by or associated with deregulation of MT stability, our findings have profound implications in the biology of MTs, as well as the biology of human diseases and possible therapeutic implications for their treatment.This article has an associated First Person interview with the joint first authors of the paper.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Microtúbulos , Animales , Humanos , Chaperonas Moleculares , Miosina Tipo II/genética , Miosinas , Ratas
4.
Bio Protoc ; 10(21): e3814, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659467

RESUMEN

The α-ß tubulin heterodimer undergoes subtle conformational changes during microtubule assembly. These can be modulated by external factors, whose effects on microtubule structure can be characterized on 2D views obtained by cryo-electron microscopy. Analysis of microtubule images is facilitated if they are straight enough to interpret and filter their image Fourier transform, which provide useful information concerning the arrangement of tubulin molecules inside the microtubule lattice. Here, we describe the use of the TubuleJ software to straighten microtubules and determine their lattice parameters. Basic 3D reconstructions can be performed to evaluate the relevance of these parameters. This approach can be used to analyze the effects of nucleotide analogues, drugs or MAPs on microtubule structure, or to select microtubule images prior to high-resolution 3D reconstructions.

5.
J Alzheimers Dis ; 65(4): 1185-1207, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30124450

RESUMEN

Abnormal fibrillary aggregation of tau protein is a pathological condition observed in Alzheimer's disease and other tauopathies; however, the presence and pathological significance of early non-fibrillary aggregates of tau remain under investigation. In cell and animal models expressing normal or modified tau, toxic effects altering the structure and function of several membranous organelles have also been reported in the absence of fibrillary structures; however, how these abnormalities are produced is an issue yet to be addressed. In order to obtain more insights into the mechanisms by which tau may disturb intracellular membranous elements, we transiently overexpressed human full-length tau and several truncated tau variants in cultured neuroblastoma cells. After 48 h of transfection, either full-length or truncated tau forms produced significant fragmentation of the Golgi apparatus (GA) with no changes in cell viability. Noteworthy is that in the majority of cells exhibiting dispersion of the GA, a ring-shaped array of cortical or perinuclear microtubule (Mt) bundles was also generated under the expression of either variant of tau. In contrast, Taxol treatment of non-transfected cells increased the amount of Mt bundles but not sufficiently to produce fragmentation of the GA. Tau-induced ring-shaped Mt bundles appeared to be well-organized and stable structures because they were resistant to Nocodazole post-treatment and displayed a high level of tubulin acetylation. These results further indicate that a mechanical force generated by tau-induced Mt-bundling may be responsible for Golgi fragmentation and that the repeated domain region of tau may be the main promoter of this effect.


Asunto(s)
Citoesqueleto/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Microtúbulos/metabolismo , Neuroblastoma/ultraestructura , Proteínas tau/metabolismo , Brefeldino A/farmacología , Metabolismo de los Hidratos de Carbono/fisiología , Línea Celular Tumoral , Supervivencia Celular/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Glicoproteínas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Mutación/genética , Neuroblastoma/patología , Nocodazol/farmacología , Compuestos Orgánicos/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Transfección , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA