Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Gene ; : 148767, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39013483

RESUMEN

BACKGROUND: Zellweger Syndrome (ZS), or cerebrohepatorenal syndrome, is a rare disorder due to PEX gene mutations affecting peroxisome function. While PEX6 coding mutations are known to cause ZS, the impact of noncoding mutations is less clear. METHODS: A Chinese neonate and his family were subjected to whole exome sequencing (WES) and bioinformatics to assess variant pathogenicity. A minigene assay was also performed for detailed splicing variant analysis. RESULTS: WES identified compound heterozygous PEX6 variants: c.315G>A (p. Trp105Ter) and c.2095-3 T>G. Minigene assays indicated that the latter variant led to abnormal mRNA splicing and the loss of exon 11 in PEX6 expression, potentially causing nonsense-mediated mRNA decay (NMD) or truncated protein structure. CONCLUSION: The study suggests that PEX6: c.2095-3 T>G might be a genetic contributor to the patient's condition, broadening the known mutation spectrum of PEX6. These insights lay groundwork for potential gene therapy for such variants.

2.
Front Genet ; 15: 1353674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841723

RESUMEN

Background: X-linked hypophosphatemia (XLH, OMIM 307800) is a rare phosphorus metabolism disorder caused by PHEX gene variants. Many variants simply classified as missense or nonsense variants were only analyzed at the DNA level. However, growing evidence indicates that some of these variants may alter pre-mRNA splicing, causing diseases. Therefore, this study aimed to use bioinformatics tools and a minigene assay to ascertain the effects of PHEX variations on pre-mRNA splicing. Methods: We analyzed 174 variants in the PHEX gene described as missense or nonsense variants. Finally, we selected eight candidate variants using bioinformatics tools to evaluate their effects on pre-mRNA splicing using a minigene assay system. The complementary DNA (cDNA) sequence for the PHEX gene (RefSeq NM_000444.6) serves as the basis for DNA variant numbering. Results: Of the eight candidate variants, three were found to cause abnormal splicing. Variants c.617T>G p.(Leu206Trp) and c.621T>A p.(Tyr207*) in exon 5 altered the splicing of pre-mRNA, owing to the activation of a cryptic splice site in exon 5, which produced an aberrant transcript lacking a part of exon 5, whereas variant c.1700G>C p.(Arg567Pro) in exon 16 led to the activation of a cryptic splice site in intron 16, resulting in a partial inclusion of intron 16. Conclusion: Our study employed a minigene system, which has a great degree of flexibility to assess abnormal splicing patterns under the circumstances of patient mRNA samples that are not available, to explore the impact of the exonic variants on pre-mRNA splicing. Based on the aforementioned experimental findings, we demonstrated the importance of analyzing exonic variants at the mRNA level.

3.
Hum Genomics ; 18(1): 68, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890714

RESUMEN

BACKGROUND: In Colombia and worldwide, breast cancer (BC) is the most frequently diagnosed neoplasia and the leading cause of death from cancer among women. Studies predominantly involve hereditary and familial cases, demonstrating a gap in the literature regarding the identification of germline mutations in unselected patients from Latin-America. Identification of pathogenic/likely pathogenic (P/LP) variants is important for shaping national genetic analysis policies, genetic counseling, and early detection strategies. The present study included 400 women with unselected breast cancer (BC), in whom we analyzed ten genes, using Whole Exome Sequencing (WES), know to confer risk for BC, with the aim of determining the genomic profile of previously unreported P/LP variants in the affected population. Additionally, Multiplex Ligation-dependent Probe Amplification (MLPA) was performed to identify Large Genomic Rearrangements (LGRs) in the BRCA1/2 genes. To ascertain the functional impact of a recurrent intronic variant (ATM c.5496 + 2_5496 + 5delTAAG), a minigene assay was conducted. RESULTS: We ascertained the frequency of P/LP germline variants in BRCA2 (2.5%), ATM (1.25%), BRCA1 (0.75%), PALB2 (0.50%), CHEK2 (0.50%), BARD1 (0.25%), and RAD51D (0.25%) genes in the population of study. P/LP variants account for 6% of the total population analyzed. No LGRs were detected in our study. We identified 1.75% of recurrent variants in BRCA2 and ATM genes. One of them corresponds to the ATM c.5496 + 2_5496 + 5delTAAG. Functional validation of this variant demonstrated a splicing alteration probably modifying the Pincer domain and subsequent protein structure. CONCLUSION: This study described for the first time the genomic profile of ten risk genes in Colombian women with unselected BC. Our findings underscore the significance of population-based research, advocating the consideration of molecular testing in all women with cancer.


Asunto(s)
Proteína BRCA2 , Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Femenino , Mutación de Línea Germinal/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/epidemiología , Colombia/epidemiología , Persona de Mediana Edad , Adulto , Proteína BRCA2/genética , Proteína BRCA1/genética , Secuenciación del Exoma , Anciano , Pruebas Genéticas/métodos , Proteínas de la Ataxia Telangiectasia Mutada/genética
4.
Clin Exp Nephrol ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877226

RESUMEN

BACKGROUND: Wilms tumor 1 (WT1; NM_024426) causes Denys-Drash syndrome, Frasier syndrome, or isolated focal segmental glomerulosclerosis. Several WT1 intron variants are pathogenic; however, the pathogenicity of some variants remains undefined. Whether a candidate variant detected in a patient is pathogenic is very important for determining the therapeutic options for the patient. METHODS: In this study, we evaluated the pathogenicity of WT1 gene intron variants with undetermined pathogenicity by comparing their splicing patterns with those of the wild-type using an in vitro splicing assay using minigenes. The three variants registered as likely disease-causing genes: Mut1 (c.1017-9 T > C(IVS5)), Mut2 (c.1355-28C > T(IVS8)), Mut3 (c.1447 + 1G > C(IVS9)), were included as subjects along the 34 splicing variants registered in the Human Gene Mutation Database (HGMD)®. RESULTS: The results showed no significant differences in splicing patterns between Mut1 or Mut2 and the wild-type; however, significant differences were observed in Mut3. CONCLUSION: We concluded that Mut1 and Mut2 do not possess pathogenicity although they were registered as likely pathogenic, whereas Mut3 exhibits pathogenicity. Our results suggest that the pathogenicity of intronic variants detected in patients should be carefully evaluated.

5.
Front Genet ; 15: 1345081, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38798698

RESUMEN

Background: Congenital insensitivity to pain with anhidrosis (CIPA, OMIM #256800), also known as hereditary sensory and autonomic neuropathy type Ⅳ (HSAN-IV), is a rare autosomal recessive disorder characterized by recurrent episodic fevers, anhidrosis, insensitivity to noxious stimuli, self-mutilating behavior and intellectual disability. CIPA can be caused by the variants in NTRK1 gene, which encodes a high-affinity tyrosine kinase receptor for nerve growth factor. To ascertain the hereditary cause of a patient with CIPA accompanied by the additional symptoms of mild growth retardation, prone to fracture, underdeveloped nails of fingers and toes, irregular tooth alignment, enamel hypoplasia, postoperative wound healing difficulty, hand and limb deformity, and dislocation of hip joint, whole exome sequencing was used and revealed a compound heterozygous variant in NTRK1. Methods: DNA was extracted from peripheral blood samples of pediatric patients and their parents, and subjected to comprehensive analysis using whole-exome sequencing (WES), followed by verification of variant sites in the NTRK1 gene through Sanger sequencing. To elucidate the functional impact of the newly discovered variants, an in vitro experimental system was established. Splicing analysis was conducted using PCR and Sanger sequencing, while expression levels were assessed through qPCR and Western blot techniques. Results: One hotspot variant c.851-33T>A(ClinVar ID: 21308) and a novel variant c.850 + 5G>A(ClinVar ID:3069176) was inherited from her father and mother, respectively, identified in the affected individuals. The c.850 + 5G>A variant in NTRK1 resulted in two forms of aberrant mRNA splicing: 13bp deletion (c.838_850del13, p. Val280Ser fs180) and 25bp deletion (826_850del25, p. Val276Ser fs180) in exon 7, both leading to a translational termination at a premature stop codon and forming a C-terminal truncated protein. The expression of two abnormal splicing isoforms was decreased both in the level of mRNA and protein. Conclusion: In conclusion, this study elucidated the genetic cause of a patient with CIPA and identified a novel variant c.850 + 5G>A in NTRK1, which broadened the and enriched the NTRK1 mutation spectrum.

6.
Front Genet ; 15: 1330525, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818038

RESUMEN

Alport Syndrome (AS) is a genetic kidney disorder characterized by progressive hearing loss and atypical eye symptoms, resulting in a poor prognosis and lack of effective targeted therapy. The primary mode of inheritance is X-linked dominant (XLAS) due to variants in the COL4A5 gene. This study revealed a previously unidentified alternative form of the COL4A5 gene, namely, the c.4822-10T>C variant, which was confirmed through in vitro experiments. To investigate the impact of a splicing variant on COL4A5 mRNA production, an in vitro minigene splicing assay was utilized. Additionally, molecular dynamics was employed to predict the ability of α5(IV) to form a triple helix. Results from the experiment revealed that the wild-type (WT) plasmid produced two distinct mRNA products simultaneously. Sequence analysis using the BLAST database revealed a 173-bp deletion in the mRNA sequence of the first product, indicating a potential similarity to the XM_016942897.2 transcript of Pan troglodytes. The second mRNA product of the WT plasmid contained the full sequence of exons 51, 52, and 53, as anticipated. Conversely, the mutant (MT) plasmid generated a single mRNA product with a 173-bp deletion in exon 52, leading to the identification of the mature mRNA expression as NM_033380.2: COL4A5: c.4822_4994del. In the context of nonsense-mediated mRNA decay (NMD), the deletion c.4822_4994 results in the production of a truncated protein, p.His1608*, that terminates prematurely. This truncated protein may disrupt the secondary structure of α5(IV) and potentially cause an abnormal conformation of α345(IV). This study examines the relationship between the variable splicing pattern in the NM_033380.2 transcript of the COL4A5 gene in XLAS patients and the presence of the COL4A5 gene splice variant c.4822-10T>C. Our findings indicate that the c.4822-10T>C splice variant leads to activation of nonsense-mediated mRNA degradation (NMD) and reduced COL4A5 mRNA expression, resulting in inadequate synthesis of the corresponding proteins. This aligns with the patient's immunofluorescence results showing negative α5(IV) chain presence at the glomerular basement membrane, bursa, and tubular basement membrane, confirming the pathogenic nature of c.4822-10T>C.

7.
BMC Med Genomics ; 17(1): 108, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671472

RESUMEN

BACKGROUND: Alport syndrome (AS) is characterised by haematuria, proteinuria, a gradual decline in kidney function, hearing loss, and eye abnormalities. The disease is caused by mutations in COL4An (n = 3, 4, 5) that encodes 3-5 chains of type IV collagen in the glomerular basement membrane. AS has three genetic models: X-linked, autosomal recessive, and autosomal dominant. The most common type of AS is X-linked AS, which is caused by COL4A5. METHODS: We enrolled children with renal insufficiency and a family history of kidney disorders. The proband was identified using whole-exome sequencing. Sanger sequencing was performed to verify the mutation site. Minigene technology was used to analyse the influence of mutant genes on pre-mRNA shearing, and the Iterative Threading ASSEmbly Refinement (I-TASSER) server was used to analyse the protein structure changes. RESULTS: The proband, together with her mother and younger brother, displayed microscopic haematuria and proteinuria, Pathological examination revealed mesangial hyperplasia and sclerosis. A novel mutation (NM_000495.5 c.4298-8G > A) in the intron of the COL4A5 gene in the proband was discovered, which was also present in the proband's mother, brother, and grandmother. In vitro minigene expression experiments verified that the c.4298-8G > A mutation caused abnormal splicing, leading to the retention of six base pairs at the end of intron 46. The I-TASSER software predicted that the mutation affected the hydrogen-bonding structure of COL4A5 and the electrostatic potential on the surface of the protein molecules. CONCLUSIONS: Based on the patient's clinical history and genetic traits, we conclude that the mutation at the splicing site c.4298-8G > A of the COL4A5 gene is highly probable to be the underlying cause within this particular family. This discovery expands the genetic spectrum and deepens our understanding of the molecular mechanisms underlying AS.


Asunto(s)
Colágeno Tipo IV , Mutación , Nefritis Hereditaria , Linaje , Empalme del ARN , Adulto , Niño , Femenino , Humanos , Masculino , Pueblo Asiatico/genética , China , Colágeno Tipo IV/genética , Pueblos del Este de Asia , Nefritis Hereditaria/genética , Nefritis Hereditaria/patología
8.
Mol Biol Rep ; 51(1): 498, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598037

RESUMEN

BACKGROUND: Cutis laxa is a connective tissue disease caused by abnormal synthesis or secretion of skin elastic fibers, leading to skin flabby and saggy in various body parts. It can be divided into congenital cutis laxa and acquired cutis laxa, and inherited cutis laxa syndromes is more common in clinic. METHODS: In this study, we reported a case of a Han-Chinese male newborn with ATP6V0A2 gene variant leading to cutis laxa. The proband was identified by whole-exome sequencing to determine the novel variant, and their parents were verified by Sanger sequencing. Bioinformatics analysis and minigene assay were used to verify the effect of this variant on splicing function. RESULTS: The main manifestations of the proband are skin laxity, abnormal facial features, and enlargement of the anterior fontanelle. Whole-exome sequencing showed that the newborn carried a non-canonical splicing-site variant c.117 + 5G > T, p. (?) in ATP6V0A2 gene. Sanger sequencing showed that both parents of the proband carried the heterozygous variant. The results of bioinformatics analysis and minigene assay displayed that the variant site affected the splicing function of pre-mRNA of the ATP6V0A2 gene. CONCLUSIONS: In this study, it was identified that ATP6V0A2 gene c. 117 + 5G > T may be the cause of the disease. The non-canonical splicing variants of ATP6V0A2 gene were rarely reported in the past, and this variant expanded the variants spectrum of the gene. The functional study of minigene assay plays a certain role in improving the level of evidence for the pathogenicity of splicing variants, which lays a foundation for prenatal counseling and follow-up gene therapy.


Asunto(s)
Cutis Laxo , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Pueblo Asiatico/genética , China , Cutis Laxo/genética , ATPasas de Translocación de Protón , Empalme del ARN/genética , Piel
9.
Methods Mol Biol ; 2754: 411-433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512679

RESUMEN

Mutation of MAPT has been observed in patients with parkinsonism, progressive supranuclear palsy, and corticobasal degeneration and is a significant cause of frontotemporal dementia. In this chapter, we discuss considerations for next-generation sequencing analysis to identify MAPT mutations in patient genomic DNA and describe the validation of these mutations by Sanger sequencing. One of the most common effects of MAPT mutations is differential splicing of exon 10, which leads to an imbalance in the proportion of 3-repeat and 4-repeat tau isoforms. We describe how to investigate the effect of novel DNA variants on the splicing efficiency of this exon in vitro using the exon-trapping technique, also known as the splicing reporter minigene assay.


Asunto(s)
Demencia Frontotemporal , Proteínas tau , Humanos , Proteínas tau/genética , Demencia Frontotemporal/genética , Mutación , Empalme del ARN , Exones , ADN
10.
Front Neurol ; 15: 1359479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426167

RESUMEN

Introduction: CACNA1S related congenital myopathy is an emerging recently described entity. In this report we describe 2 sisters with mutations in the CACNA1S gene and the novel phenotype of congenital myopathy and infantile onset episodic weakness. Clinical description: Both sisters had neonatal onset hypotonia, muscle weakness, and delayed walking. Episodic weakness started in infancy and continued thereafter, provoked mostly by cold exposure. Muscle imaging revealed fat replacement of gluteus maximus muscles. Next generation sequencing found the missense p.Cys944Tyr variant and the novel splicing variant c.3526-2A>G in CACNA1S. Minigene assay revealed the splicing variant caused skipping of exon 28 from the transcript, potentially affecting protein folding and/or voltage dependent activation. Conclusion: This novel phenotype supports the notion that there are age related differences in the clinical expression of CACNA1S gene mutations. This expands our understanding of mutations located in regions of the CACNA1S outside the highly conserved S4 segment, where most mutations thus far have been identified.

11.
Mol Genet Genomic Med ; 12(3): e2403, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38439608

RESUMEN

BACKGROUND: Tuberous sclerosis complex (TSC), an autosomal-dominant disorder, is characterized by hamartomas affecting multiple organ systems. The underlying etiology of TSC is the pathogenic variations of the TSC1 or TSC2 genes. The phenotype variability of TSC could lead to missed diagnosis; therefore, the latest molecular diagnostic criteria for identifying a heterozygous pathogenic variant in either the TSC1 or TSC2 gene filled this gap. Furthermore, the pathogenicity of numerous variants remains unverified, potentially leading to misinterpretations of their functional consequences. METHODS: In this study, a single patient presenting with atypical vitiligo-like skin lesions suspected to have TSC was enrolled. Targeted next-generation sequencing and Sanger sequencing were employed to identify a pathogenic variant. Additionally, a minigene splicing assay was conducted to assess the impact of TSC1 c.1030-2A>T, located in intron 10, on RNA splicing. RESULTS: A novel TSC1: c.1030-2A>T heterozygosis variant was identified in intron 10. In vitro minigene assay revealed that the c.1030-2A>T variant caused exon 11 skipping, resulting in a frameshift in the absence of 112 base pairs of mature messenger RNA and premature termination after 174 base pairs (p.Ala344Glnfs*59). CONCLUSION: The detection of this novel pathogenic TSC1 variant in the patient with atypical vitiligo-like skin lesions enrolled in our study ultimately resulted in the diagnosis of TSC. As a result, our study contributes to expanding the mutational spectrum of the TSC1 gene and refining the genotype-phenotype map of TSC.


Asunto(s)
Hamartoma , Esclerosis Tuberosa , Vitíligo , Humanos , Mutación del Sistema de Lectura , Intrones , Esclerosis Tuberosa/genética , Vitíligo/genética
12.
Mol Genet Genomic Med ; 12(2): e2361, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38348997

RESUMEN

OBJECTIVE: We aimed to evaluate the genotype-phenotype relationship in two Chinese family members with enlarged vestibular aqueduct (EVA). METHODS: We collected blood samples and clinical data from each pedigree family member. Genomic DNA was isolated from peripheral leukocytes using standard methods. Targeted next-generation sequencing and Sanger sequencing were performed to find the pathogenic mutation in this family. Minigene assays were used to verify whether the novel intronic mutation SLC26A4c.765+4A>G influenced mRNA splicing. RESULTS: Hearing loss in the patients with EVA was diagnosed using auditory tests and imaging examinations. Two pathogenic mutations, c.765+4A>G and c.919-2A>G were detected in SLC26A4. In vitro minigene analysis confirmed that c.765+4A>G variant could cause aberrant splicing, resulting in skipping over exon 6. CONCLUSIONS: The SLC26A4c.765+4A>G mutation is the causative variant in the Chinese family with EVA. Particular attention should be paid to intronic variants.


Asunto(s)
Pérdida Auditiva Sensorineural , Proteínas de Transporte de Membrana , Hermanos , Acueducto Vestibular/anomalías , Humanos , Proteínas de Transporte de Membrana/genética , Mutación , China
13.
Clin Genet ; 105(5): 543-548, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38225712

RESUMEN

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant form of vascular dysplasia. Genetic diagnosis is made by identifying loss-of-function variants in genes, such as ENG and ACVRL1. However, the causal mechanisms of various variants of unknown significance remains unclear. In this study, we analyzed 12 Japanese patients from 11 families who were clinically diagnosed with HHT. Sequencing analysis identified 11 distinct variants in ACVRL1 and ENG. Three of the 11 were truncating variants, leading to a definitive diagnosis, whereas the remaining eight were splice-site and missense variants that required functional analyses. In silico splicing analyses demonstrated that three variants, c.526-3C > G and c.598C > G in ACVRL1, and c.690-1G > A in ENG, caused aberrant splicing, as confirmed by a minigene assay. The five remaining missense variants were p.Arg67Gln, p.Ile256Asn, p.Leu285Pro, and p.Pro424Leu in ACVRL and p.Pro165His in ENG. Nanoluciferase-based bioluminescence analyses demonstrated that these ACVRL1 variants impaired cell membrane trafficking, resulting in the loss of bone morphogenetic protein 9 (BMP9) signal transduction. In contrast, the ENG mutation impaired BMP9 signaling despite normal cell membrane expression. The updated functional analysis methods performed in this study will facilitate effective genetic testing and appropriate medical care for patients with HHT.


Asunto(s)
Telangiectasia Hemorrágica Hereditaria , Humanos , Telangiectasia Hemorrágica Hereditaria/genética , Endoglina/genética , Japón/epidemiología , Mutación , Pruebas Genéticas , Receptores de Activinas Tipo II/genética
14.
Front Neurol ; 14: 1296924, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38145127

RESUMEN

Introduction: Pure hereditary spastic paraplegia (SPG) type 4 (SPG4) is caused by mutations of SPAST gene. This study aimed to analyze SPAST variants in SPG4 patients to highlight the occurrence of splicing mutations and combine functional studies to assess the relevance of these variants in the molecular mechanisms of the disease. Methods: We performed an NGS panel in 105 patients, in silico analysis for splicing mutations, and in vitro minigene assay. Results and discussion: The NGS panel was applied to screen 105 patients carrying a clinical phenotype corresponding to upper motor neuron syndrome (UMNS), selectively affecting motor control of lower limbs. Pathogenic mutations in SPAST were identified in 12 patients (11.42%), 5 missense, 3 frameshift, and 4 splicing variants. Then, we focused on the patients carrying splicing variants using a combined approach of in silico and in vitro analysis through minigene assay and RNA, if available. For two splicing variants (i.e., c.1245+1G>A and c.1414-2A>T), functional assays confirm the types of molecular alterations suggested by the in silico analysis (loss of exon 9 and exon 12). In contrast, the splicing variant c.1005-1delG differed from what was predicted (skipping exon 7), and the functional study indicates the loss of frame and formation of a premature stop codon. The present study evidenced the high splice variants in SPG4 patients and indicated the relevance of functional assays added to in silico analysis to decipher the pathogenic mechanism.

15.
Int J Ophthalmol ; 16(10): 1595-1600, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854381

RESUMEN

AIM: To report a novel splicing mutation in the RPGR gene (encoding retinitis pigmentosa GTPase regulator) in a three-generation Chinese family with X-linked retinitis pigmentosa (XLRP). METHODS: Comprehensive ophthalmic examinations including best corrected visual acuity, fundus photography, vision field, and pattern-visual evoked potential were performed to identify the disease phenotype of a six-year-old boy from the family (proband). Genomic DNA was extracted from peripheral blood of five available members of the pedigree. Whole-exome sequencing (WES), Sanger sequencing, and pSPL3-based exon trapping were used to investigate the aberrant splicing of RPGR. Human Splice Finder v3.1 and NNSPLICE v0.9 were used for in silico prediction of splice site variants. RESULTS: The proband was diagnosed as having retinitis pigmentosa (RP). He had severe symptoms with early onset. A novel splicing mutation, c.619+1G>C in RPGR was identified in the proband by WES and in four family members by Sanger sequencing. Minigene splicing assays verified that c.619+1G>C in RPGR would result in the formation of a damaging alternative transcript in which the last 91 bp of exon 6 were skipped, leading to the subsequent deletion of 623 correct amino acids (c.529_619del p.Val177Glnfs*16). CONCLUSION: We identify a novel splice donor site mutation causing aberrant splicing of RPGR. Our findings add to the catalog of pathological mutations of RPGR and further emphasize the functional importance of RPGR in RP pathogenesis and its complex clinical phenotypes.

16.
Hum Hered ; 88(1): 91-97, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37899026

RESUMEN

INTRODUCTION: Spinocerebellar ataxia (SCA) is an autosomal dominant genetic disease characterized by cerebellar neurological deficits. Specifically, its primary clinical manifestation is ataxia accompanied by peripheral nerve damage. A total of 48 causative genes of SCA have been identified. This study aimed to identify causative genes of autosomal dominant SCA in a four-generation Chinese kindred comprising eight affected individuals. METHODS: Genomic DNA samples were extracted from the pedigree members, and genomic whole-exome sequencing was performed, followed by bidirectional Sanger sequencing, and minigene assays to identify mutation sites. RESULTS: A novel pathogenic heterozygous mutation in the splice region of the coiled-coil domain containing the 88C (CCDC88C) gene (NM_001080414:c.3636-4 A>G) was identified in four affected members. The minigene assay results indicated that this mutation leads to the insertion of CAG bases (c.3636-1_3636-3 insCAG). CONCLUSION: CCDC88C gene mutation leads to SCA40 (OMIM:616053), which is a rare subtype of SCA without symptoms during childhood. Our findings further demonstrated the role of the CCDC88C gene in SCA and indicated that the c.3636-4 A>G (NM_001080414) variant of CCDC88C is causative for a later-onset phenotype of SCA40. Our findings enrich the mutation spectrum of CCDC88C gene and provide a theoretical basis for the genetic counseling of SCA40.


Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Humanos , Ataxia/diagnóstico , Ataxia/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Microfilamentos/genética , Mutación/genética , Linaje , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/patología , Degeneraciones Espinocerebelosas/genética
17.
Reprod Biol Endocrinol ; 21(1): 76, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620942

RESUMEN

BACKGROUND: Diminished ovarian reserve (DOR) is a common cause of female infertility, with genetic factors being a significant contributor. However, due to high genetic heterogeneity, the etiology of DOR in many cases remains unknown. In this study, we analyzed the phenotype of a young woman with primary infertility and performed molecular genetic analysis to identify the genetic cause of her condition, thus providing important insights for genetic counseling and reproductive guidance. METHODS: We collected the patient's basic information, clinical data, as well as diagnostic and therapeutic history and performed whole-exome sequencing on her peripheral blood. Candidate pathogenic variants were validated by Sanger sequencing in family members, and the pathogenicity of variants was analyzed using ACMG guidelines. We used bioinformatics tools to predict variant effects on splicing and protein function, and performed in vitro experiments including minigene assay and expression analysis to evaluate their functional effects on HEK293T. RESULTS: We identified biallelic MSH4 variants, c.2374 A > G (p.Thr792Ala) and c.2222_2225delAAGA (p.Lys741Argfs*2) in the DOR patient. According to ACMG guidelines, the former was classified as likely pathogenic, while the latter was classified as pathogenic. The patient presented with poor oocyte quantity and quality, resulting in unsuccessful in vitro fertilization cycles. Bioinformatics and in vitro functional analysis showed that the c.2374 A > G variant altered the local conformation of the MutS_V domain without decreasing MSH4 protein expression, while the c.2222_2225delAAGA variant led to a reduction in MSH4 protein expression without impacting splicing. CONCLUSIONS: In this study, we present evidence of biallelic variants in MSH4 as a potential cause of DOR. Our findings indicate a correlation between MSH4 variants and reduced oocyte quality, as well as abnormal morphology of the first polar body, thereby expanding the phenotypic spectrum associated with MSH4 variants. Furthermore, Our study emphasizes the importance of utilizing whole-exome sequencing and functional analysis in diagnosing genetic causes, as well as providing effective genetic counseling and reproductive guidance for DOR patients.


Asunto(s)
Enfermedades del Ovario , Reserva Ovárica , Femenino , Humanos , Células HEK293 , Reserva Ovárica/genética , Bioensayo , Biología Computacional , Familia , Proteínas de Ciclo Celular
18.
BMC Med Genomics ; 16(1): 192, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596645

RESUMEN

BACKGROUND: Alport syndrome (AS; OMIM#308,940) is a hereditary kidney disease that progresses over time and is distinguished by hearing loss and ocular irregularities. The syndrome has three subtypes, namely X-linked (XL; OMIM#301,050), autosomal recessive (AR; OMIM#203,780), and autosomal dominant (AD; OMIM#104,200), which are categorized based on their respective modes of inheritance. XLAS is attributed to a pathogenic variant in the COL4A5 (OMIM*303,630) gene, which encodes the α5(IV) chain of type IV collagen (Col-IV). In contrast, ADAS and ARAS are the result of variants in the COL4A3 (OMIM*120,070) and COL4A4 (OMIM*120,131) genes, which encode the α3(IV) and α4(IV) chains of Col-IV, respectively. Typically, the diagnosis of AS necessitates hereditary or pathological assessments. The determination of splicing variants as pathogenic or non-pathogenic based on gene sequencing outcomes is challenging. METHODS: In this study, we conducted exome sequencing and Sanger sequencing on two unrelated Chinese patients with AS. We identified a deletion variant c.4414delG in the COL4A5 gene and a splicing variant c.4298-20T > A in the same gene. In order to ascertain the impact of c.4298-20T > A on the synthesis of COL4A5 mRNA, we performed experiments involving minigene splicing. Additionally, we predicted the ability of these two variants to affect triple helix formation of α345(IV) using molecular dynamics methods. RESULTS: The c.4414delG deletion variant caused a change in the genetic code of the COL4A5 gene. Specifically, it caused a shift in codon 1472 from encoding aspartate to encoding methionine. This shift resulted in a change of 75 amino acids in the protein sequence, ultimately leading to an early stop codon. This premature stop codon caused the production of a truncated α5(IV) chain with a predicted protein effect of p.D1472Mfs. The mRNA of the COL4A5 gene experienced intron 46 retention due to the splicing variant c.4298-20T > A, leading to the inclusion of six additional amino acids between amino acids 1432 and 1433 of the α5(IV) chain. This variant is predicted to have a protein effect of p.(P1432_G1433insDYFVEI). The impact of two variants, c.4414delG and c.4298-20T > A, on the aggregation region for α3(IV), α4(IV), and α5(IV) trimerisation were studied using molecular dynamics simulations. Results showed that the deletion variant c.4414delG had a significantly stronger disruption on NC1, compared to the splicing variant c.4298-20T > A. This difference in impact is consistent with the varying clinical phenotypes observed in the two patients. Based on the American College of Medical Genetics and Genomics (ACMG) classification criteria and guidelines for genetic variants, the deletion variant c.4414delG was rated as pathogenic while the splicing variant c.4298-20T > A was rated as likely-pathogenic. CONCLUSION: Our study has identified two novel pathogenic loci, the deletion variant c.4414delG and the splicing variant c.4298-20T > A, associated with XLAS. This finding expands the genetic spectrum of XLAS. We suggest that molecular dynamics can effectively model the effect of genetic variation on α345(IV) trimerization, which may offer valuable insights into the mechanisms of XLAS pathogenesis.


Asunto(s)
Sordera , Nefritis Hereditaria , Humanos , Aminoácidos , Colágeno Tipo IV/genética , Intrones , Simulación de Dinámica Molecular , Nefritis Hereditaria/genética
19.
Kidney Blood Press Res ; 48(1): 568-577, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37562365

RESUMEN

INTRODUCTION: Neurofibromatosis type 1 (NF-1) is caused by mutations in the NF1 gene that encodes neurofibromin, a negative regulator of RAS proto-oncogene. Approximately one-third of the reported pathogenic mutations in NF1 are splicing mutations, but most consequences are unclear. The objective of this study was to identify the pathogenicity of splicing mutation in a Chinese family with NF-1 and determine the effects of the pre-mRNA splicing mutation by in vitro functional analysis. METHODS: Next-generation sequencing was used to screen candidate mutations. We performed a minigene splicing assay to determine the effect of the splicing mutation on NF1 expression, and three-dimensional structure models of neurofibromin were generated using SWISS-MODEL and PROCHECK methods, respectively. RESULTS: A pathogenic splicing mutation c.479+1G>C in NF1 was found in the proband characterized by childhood-onset refractory hypertension. In vitro analysis demonstrated that c.479+1G>C mutation caused the skipping of exon 4, leading to a glutamine-to-valine substitution at position 97 in neurofibromin and an open reading frame shift terminating at codon 108. Protein modeling showed that several major domains were missing in the truncated neurofibromin protein. CONCLUSION: The splicing mutation c.479+1G>C identified in a Chinese patient with NF-1 and childhood-onset refractory hypertension caused the skipping of exon 4 and a truncated protein. Our findings offer new evidence for the molecular diagnosis of NF-1.


Asunto(s)
Hipertensión , Neurofibromatosis 1 , Niño , Humanos , Genes de Neurofibromatosis 1 , Hipertensión/genética , Mutación , Neurofibromatosis 1/genética , Neurofibromatosis 1/diagnóstico , Neurofibromina 1/genética
20.
BMC Genomics ; 24(1): 407, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468838

RESUMEN

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenic multisystem disease caused primarily by mutations in the PKD1 gene or PKD2 gene. There is increasing evidence that some of these variants, which are described as missense, synonymous or nonsense mutations in the literature or databases, may be deleterious by affecting the pre-mRNA splicing process. RESULTS: This study aimed to determine the effect of these PKD1 and PKD2 variants on exon splicing combined with predictive bioinformatics tools and minigene assay. As a result, among the 19 candidate single nucleotide alterations, 11 variants distributed in PKD1 (c.7866C > A, c.7960A > G, c.7979A > T, c.7987C > T, c.11248C > G, c.11251C > T, c.11257C > G, c.11257C > T, c.11346C > T, and c.11393C > G) and PKD2 (c.1480G > T) were identified to result in exon skipping. CONCLUSIONS: We confirmed that 11 variants in the gene of PKD1 and PKD2 affect normal splicing by interfering the recognition of classical splicing sites or by disrupting exon splicing enhancers and generating exon splicing silencers. This is the most comprehensive study to date on pre-mRNA splicing of exonic variants in ADPKD-associated disease-causing genes in consideration of the increasing number of identified variants in PKD1 and PKD2 gene in recent years. These results emphasize the significance of assessing the effect of exon single nucleotide variants in ADPKD at the mRNA level.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Precursores del ARN , Humanos , Exones , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Precursores del ARN/metabolismo , Empalme del ARN , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...