Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 653
Filtrar
1.
Ecotoxicol Environ Saf ; 285: 117132, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39362183

RESUMEN

Twenty-eight beekeepers around Slovakia were included in the research to evaluate the presence of mercury in honeybee bodies and selected bee-related products: bee pollen and honey. The samples were collected in May, June, and July (honeybee bodies only in May and June). During this period, moss and lichen bags for air quality assessment were exposed around the beehives and relative accumulation factor (RAF) was used for its evaluation. Mercury content in evaluated bioindicators was determined using AMA 254 analyser. Percentage of provisional tolerable intake (%PTWI) and target hazard quotient (THQ) were used to determine health risks related to bee pollen and honey consumption. Around the beehives the proportion of landscape structure elements was determined for each sampling locality, using a geographical informational system QGIS. The aim of the study was a comprehensive evaluation of the mercury content in the environment around beehives using several bioindicators and an assessment of the relationship between the presence of mercury pollution and the proportion of landscape structure elements in the vicinity of the beehives. The study also aimed to evaluate the transfer of contaminants between bee bodies and bee-related products and the health risks resulting from their consumption.

2.
Plant Divers ; 46(4): 537-541, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39280978

RESUMEN

Species richness generally decreases with increasing latitude, a biodiversity gradient that has long been considered as one of the few laws in ecology. This latitudinal diversity gradient has been observed in many major groups of organisms. In plants, the latitudinal diversity gradient has been observed in vascular plants, angiosperms, ferns, and liverworts. However, a conspicuous latitudinal diversity gradient in mosses at a global or continental scale has not been observed until now. Here, we analyze a comprehensive data set including moss species in each band of 20° in latitude worldwide. Our results show that moss species richness decreases strongly with increasing latitude, regardless of whether the globe is considered as a whole or different longitudinal segments (e.g., Old World versus New World) are considered separately. This result holds when variation in area size among latitudinal bands is taken into account. Pearson's correlation coefficient between latitude and species richness is -0.99 for both the Northern and Southern Hemispheres. Because bryophytes are an extant lineage of early land plants and because mosses not only include most of extant species of bryophytes but also are important constituents of most terrestrial ecosystems, understanding geographic patterns of mosses is particularly important. The finding of our study fills a critical knowledge gap.

3.
Plants (Basel) ; 13(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273837

RESUMEN

Assessment of air quality in urban areas is very important because pollutants affect both the environment and human health. In Perm (Russia), a moss biomonitoring method was used to assess the level of air pollution. The concentrations of 15 elements in 87 samples of moss Pleurozium schreberi in the city territory were determined using a direct mercury analyzer and an inductively coupled plasma atomic emission spectroscopy. Using factor and correlation analyses, the grouping of elements and their relationship with emission sources were established. The main sources of emissions of potentially toxic elements are the transportation (road and rail), metallurgical, and chemical industries. The level of atmospheric air pollution was assessed by calculating the environmental risk index, pollutant load index, and pollution coefficient. Based on the values of the pollution index, the level of atmospheric air pollution in Perm varies from unpolluted to highly polluted, with moderate environmental risk.

4.
Materials (Basel) ; 17(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274718

RESUMEN

The abundant pore structure and carbon composition of sphagnum peat moss render it a bio-based adsorbent for efficient methylene blue removal from wastewater. By utilizing sphagnum moss sourced from Guizhou, China, as raw material, a cost-effective and highly efficient bio-based adsorbent material was prepared through chemical modification. The structure and performance of the modified sphagnum moss were characterized using SEM, EDS, FTIR, and TGA techniques. Batch adsorption experiments explored the effects of contact time, adsorbent dosage, pH, initial dye concentration, and temperature on adsorption performance. Kinetics, isotherm models, and thermodynamics elucidated the adsorption behavior and mechanism. The modified sphagnum moss exhibited increased surface roughness and uniform surface modification, enhancing active site availability for improved adsorption. Experimental data aligned well with the Freundlich isotherm model and pseudo-second-order kinetic model, indicating efficient adsorption. The study elucidated the adsorption mechanism, laying a foundation for effective methylene blue removal. The utilization of modified sphagnum moss demonstrates significant potential in effectively removing MB from contaminated solutions due to its robust adsorption capability and efficient reusability.

5.
Biology (Basel) ; 13(9)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39336153

RESUMEN

Membrane lipid composition is critical for an organism's growth, adaptation, and functionality. Mosses, as early non-vascular land colonizers, show significant adaptations and changes, but their dynamic membrane lipid alterations remain unexplored. Here, we investigated the temporal changes in membrane lipid composition of the moss Physcomitrium patens during five developmental stages and analyzed the acyl content and composition of the lipids. We observed a gradual decrease in total lipid content from the filamentous protonema stage to the reproductive sporophytes. Notably, we found significant levels of very long-chain polyunsaturated fatty acids, particularly arachidonic acid (C20:4), which are not reported in vascular plants and may aid mosses in cold and abiotic stress adaptation. During vegetative stages, we noted high levels of galactolipids, especially monogalactosyldiacylglycerol, associated with chloroplast biogenesis. In contrast, sporophytes displayed reduced galactolipids and elevated phosphatidylcholine and phosphatidic acid, which are linked to membrane integrity and environmental stress protection. Additionally, we observed a gradual decline in the average double bond index across all lipid classes from the protonema stage to the gametophyte stage. Overall, our findings highlight the dynamic nature of membrane lipid composition during moss development, which might contribute to its adaptation to diverse growth conditions, reproductive processes, and environmental challenges.

6.
AoB Plants ; 16(5): plae043, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39347487

RESUMEN

Mosses are distributed all over the world including Antarctica. Although Antarctic mosses show active growth in a short summer season under harsh environments such as low temperature, drought and high levels of UV radiation, survival mechanisms for such multiple environmental stresses of Antarctic mosses have not yet been clarified. In the present study, transcriptome analyses were performed using one of the common mosses Bryum pseudotriquetrum grown under an Antarctic field and artificial cultivation conditions. Totally 88 205 contigs were generated by de novo assembly, among which 1377 and 435 genes were significantly up and downregulated, respectively, under Antarctic field conditions compared with artificial cultivation conditions at 15°C. Among the upregulated genes, a number of lipid metabolism-related and oil body formation-related genes were identified. Expression levels of these genes were increased by artificial environmental stress treatments such as low temperature, salt and osmic stress treatments. Consistent with these results, B. pseudotriquetrum grown under Antarctic field conditions contained large amounts of fatty acids, especially α-linolenic acid, linolenic acid and arachidonic acid. In addition, proportion of unsaturated fatty acids, which enhance membrane fluidity, to the total fatty acids was also higher in B. pseudotriquetrum grown under Antarctic field conditions. Since lipid accumulation and unsaturation of fatty acids are generally important factors for the acquisition of various environmental stress tolerance in plants, these intracellular physiological and metabolic changes may be responsible for the survival of B. pseudotriquetrum under Antarctic harsh environments.

7.
Sci Rep ; 14(1): 22168, 2024 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333734

RESUMEN

Moss-microbe interactions contribute to ecosystem processes in boreal forests. Yet, how host-specific characteristics and the environment drive the composition and metabolic potential of moss microbiomes is still poorly understood. In this study, we use shotgun metagenomics to identify the taxonomy and metabolic potential of the bacteria of four moss species of the boreal forests of Northern Québec, Canada. To characterize moss bacterial community composition and diversity, we assembled the genomes of 110 potentially novel bacterial species. Our results highlight that moss genus, species, gametophyte section, and to a lesser extent soil pH and soil temperature, drive moss-associated bacterial community composition and diversity. In the brown gametophyte section, two Stigonema spp. showed partial pathway completeness for photosynthesis and nitrogen fixation, while all brown-associated Hyphomicrobiales had complete assimilatory nitrate reduction pathways and many nearly complete carbon fixation pathways. Several brown-associated species showed partial to complete pathways for coenzyme M and F420 biosynthesis, important for methane metabolism. In addition, green-associated Hyphomicrobiales (Methylobacteria spp.) displayed potential for the anoxygenic photosystem II pathway. Overall, our findings demonstrate how host-specific characteristics and environmental factors shape the composition and metabolic potential of moss bacteria, highlighting their roles in carbon fixation, nitrogen cycling, and methane metabolism in boreal forests.


Asunto(s)
Bacterias , Briófitas , Metagenoma , Briófitas/microbiología , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Taiga , Metagenómica/métodos , Microbiota , Quebec , Fijación del Nitrógeno , Fotosíntesis
8.
J Exp Bot ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129663

RESUMEN

With the advent of genomic and other omics technologies the last decades have witnessed a series of steady and important breakthroughs in the understanding of the genetic determinants of the different reproductive systems of vascular plants and especially on how sexual reproduction shaped their evolution. In contrast, the molecular mechanisms of these fundamental aspects of the biology of bryophytes, a group of non-vascular embryophyte plants sister to all tracheophytes, are still largely obscure. The recent characterization of the sex chromosomes and genetic switches determining sex in bryophytes as well as emerging approaches for molecular sexing of gametophytes hold great promise for elucidation of the evolutionary history as well as the conservation of this species-rich but understudied group of land plants.

9.
J Exp Bot ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082751

RESUMEN

Water-to-land transition is a hallmark of terrestrialization for land plants and requires molecular adaptation to resist water deficiency. Lineages- or species-specific genes are widespread across eukaryotes, and yet the majority of those are functionally unknown and not annotated. Recent studies have revealed that some of such genes could play a role in adapting to environmental stress responses. Here, we identified a novel gene PpBCG1 (Bryophyte Co-retained Gene 1) in the moss Physcomitrium patens that was responsive to dehydration and rehydration. Under de- and rehydration treatments, PpBCG1 was significantly co-expressed with the dehydrin-encoding gene PpDHNA. Microarray data revealed that PpBCG1 was highly expressed in tissues of spores, female organ archegonia, and mature sporophytes. In addition, the Ppbcg1 mutant showed reduced ability of dehydration tolerance, whose plants were accompanied by a relatively low level of chlorophyll content during recovery. Comprehensive transcriptomics uncovered a detailed set of regulatory processes that were affected by the PpBCG1 disruption. Moreover, experimental evidence showed that PpBCG1 might function in the antioxidant activity, abscisic acid (ABA) pathway, and intracellular calcium (Ca2+) homeostasis to resist desiccation. Together, our study provides insights into the roles of one bryophyte co-retained gene in the desiccation tolerance.

10.
Sci Rep ; 14(1): 16793, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039156

RESUMEN

Global warming and increased atmospheric nitrogen (N) deposition can adversely impact Sphagnum moss populations and ecological functions in peatlands. Based on the anticipated increases in temperature and N levels at global scale, we investigated the effects of simultaneous warming and N treatment on growth and ecophysiological activity of Sphagnum papillosum, a predominant moss at mid-latitudes, utilizing a growth chamber experiment. Warming treatments increased the maximum yield of photosystem II (Fv/Fm) of S. papillosum while decreasing the stable carbon isotope ratio. However, warming treatment alone did not cause significant changes in the biomass increase from that of the control. Regarding N treatment, the low N treatment decreased Fv/Fm under the current temperature but did not affect the biomass increase. In contrast to these results, a simultaneous warming and high N treatment significantly enhanced the biomass production compared to that of the control, exhibiting additive effect of warming and high N treatment on Sphagnum biomass production. These responses were attributed to the improved photosynthetic performances by warming and N treatment. The results of this study contribute to the prediction of Sphagnum responses to warming and changes in N deposition.


Asunto(s)
Biomasa , Calentamiento Global , Nitrógeno , Fotosíntesis , Sphagnopsida , Nitrógeno/metabolismo , Sphagnopsida/metabolismo , Sphagnopsida/crecimiento & desarrollo , Temperatura , Isótopos de Carbono , Complejo de Proteína del Fotosistema II/metabolismo
11.
Sci Rep ; 14(1): 17754, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39085365

RESUMEN

The hyperaccumulation potential of zinc (Zn) and cadmium (Cd) and their synergistic effects were examined in relation to Christmas moss (Vesicularia montagnei (Bél) Broth., Hypnaceae), an aquatic and terrestrial moss, dosed with Cd (Cd1 and Cd2), Zn (Zn1 and Zn2) and combined Zn and Cd (Cd1Zn1 and Cd2Zn2). Zinc promoted plant growth and development, particularly in the highest Zn and combined Zn/Cd treatments (Zn2 and Cd2Zn2). The Zn treatment resulted in substantial moss chlorophyll content and highest percentage relative growth rate in biomass value (0.23 mg L-1 and 106.8%, respectively); however, the Cd2Zn2 treatment achieved maximal production of chlorophyll a and total chlorophyll (0.29 and 0.51 mg L-1, respectively) due to synergistic effects. These findings suggest that Christmas moss is a highly metal-tolerant and adaptable bryophyte species. Zinc was essential for reducing the detrimental effects of Cd while simultaneously promoting moss growth and biomass development. Furthermore, Christmas moss exhibited hyperaccumulation potential for Cd and Zn in the Cd2Zn2 and Zn alone treatments, as evidenced by highest Cd and Zn values in gametophores (1002 and 18,596 mg per colony volume, respectively). Using energy dispersive X-ray fluorescence (EDXRF) spectrometry, atomic percentages of element concentrations in moss gametophores in the Zn2, Cd2 and combined Zn/Cd treatments were generally in the order: K > Ca > P > Zn > Cd. When comparing the atomic percentages of Zn and Cd in gametophores, it is likely that the higher atomic percentage of Zn was because this element is essential for plant growth and development.


Asunto(s)
Biodegradación Ambiental , Cadmio , Zinc , Zinc/metabolismo , Cadmio/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Clorofila/metabolismo , Biomasa , Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Bryopsida/crecimiento & desarrollo , Briófitas/crecimiento & desarrollo , Briófitas/metabolismo , Briófitas/efectos de los fármacos
12.
Chemosphere ; 362: 142684, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909864

RESUMEN

Anthropogenic reactive nitrogen (N) deposition has increased significantly since the industrial revolution. Northern China has become a global hotspot for N deposition. However, few studies have been conducted to quantify the historical changes of atmospheric N deposition fluxes and source contributions in Northern China. By investigating N contents and δ15N values of mosses at Mount Tai (Northern China) in 1984 and 2021, we reconstructed fluxes and source contributions of wet inorganic N deposition and evaluated their historical changes. Compared with 1984, moss N contents (from 1.7 ± 0.3% to 2.1 ± 0.4%) showed a significant increase in 2021, which was mainly attributed to a significant increase in nitrate N deposition fluxes at Mount Tai. Moss δ15N values (from -5.9 ± 0.9‰ to -5.2 ± 2.4‰) showed a slight increase from 1984 to 2021 at Mount Tai. The importance of combustion-related NH3 (including vehicle exhaust, coal combustion, and biomass burning) in 2021 (51.2%) were higher than those in 1984 (43.9%), while the importance of volatilization NH3 sources (including waste and fertilizers) in 2021 (48.8%) were lower than those in 1984 (56.1%). It was fossil-fuel NOx (from vehicle exhaust and coal combustion) (54.1%) rather than non-fossil fuel NOx (from biomass burning and microbial N cycles) (45.9%) dominated NOx emissions in both 1984 and 2021. Our results revealed significant contributions of combustion-related NH3 and fossil-fuel NOx sources emissions to the elevation of N deposition at Mount Tai in Northern China, which are beneficial for mitigating N emissions and conducting ecological benefit assessments in Northern China.


Asunto(s)
Contaminantes Atmosféricos , Briófitas , Monitoreo del Ambiente , Nitrógeno , China , Briófitas/química , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Nitrógeno/análisis , Nitratos/análisis
13.
Materials (Basel) ; 17(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38930276

RESUMEN

In this work, we report on the fabrication of ZnO thin films doped with Ge via the ALD method. With an optimized amount of Ge doping, there was an improvement in the conductivity of the films owing to an increase in the carrier concentration. The optical properties of the films doped with Ge show improved transmittance and reduced reflectance, making them more attractive for opto-electronic applications. The band gap of the films exhibits a blue shift with Ge doping due to the Burstein-Moss effect. The variations in the band gap and the work function of ZnO depend strongly on the carrier density of the films. From the surface studies carried out using XPS, we could confirm that Ge replaces some of the Zn in the wurtzite structure. In the films containing Ge, the concentration of oxygen vacancies is also high, which is somehow related to the poor electrical properties of the films at higher Ge concentrations.

14.
Nat Prod Res ; : 1-7, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907648

RESUMEN

A novel polyphenolic compound named Polycommunin A (1) was discovered in the aerial part of the common haircap moss (Polýtrichum commune) widely spread in boreal and temperate climate zones. Aqueous ethanol and extraction of the plant material with further isolation of polyphenolic fraction and preparative HPLC separation allowed obtaining individual compound and identifying it as dimeric dihydrocinnamoyl bibenzyl by NMR spectroscopy and high-resolution tandem mass spectrometry. Polycommunin A demonstrated high in vitro antioxidant activity determined by FRAP and PCL assays and comparable to that of Trolox and Quercetin.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38903021

RESUMEN

In this study, the average values of vertical velocity of particles emitted from an aluminum smelter in the surface layer of the atmosphere were estimated using a semi-empirical method. The method is based on regression analysis of the horizontal profile of pollutants measured along the selected direction using moss bioindicators. The selection of epiphytic mosses Sanionia uncinata was carried out in 2013 in the zone of influence of a metallurgical industry enterprise in the city of Kandalaksha, Murmansk region. The concentrations of As, Si, Ni, Zn, Ti, Cd, Na, Pb, Co, K, Ba, Ca, Mg, Mn, Sr, Fe, Al, V, Cr, Cu were determined using atomic emission spectrometry. The conducted assessments showed that the average particle velocity toward the Earth's surface, when considering large spatial and temporal scales, is tens of times higher than gravitational settling velocities.


Asunto(s)
Contaminantes Atmosféricos , Aluminio , Monitoreo del Ambiente , Metalurgia , Aluminio/análisis , Aluminio/química , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Tamaño de la Partícula , Material Particulado/análisis , Material Particulado/química , Briófitas/química
16.
Plants (Basel) ; 13(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891247

RESUMEN

The two accessions of the polytrichaceous moss species Polytrichum formosum, namely German and Serbian genotypes, were subjected to salt stress, aiming to study the species' developmental and physiological features. Various concentrations of sodium chloride were applied to an axenic in vitro culture of the two moss genotypes, and the growth parameters as well as physiological feature changes were followed. As inferred by the morpho-developmental parameters and survival index, the Serbian genotype showed higher resistance to salt stress as compared to the German one. However, both moss genotypes survived the highest applied concentration (500 mM). As expected, short exposures to salt were rather easily overcome. No clear patterns in sugar content and changes were observed during the stress, but they are surely included in salt stress response and tolerance in P. formosum. Longer stress increased total chlorophyll content in both genotypes. In short-term applied salt stress, the Serbian genotype had a higher total chlorophyll concentration to control unstressed plants, while the German genotype decreased the total amount of chlorophyll. Similarly, carotenoids were shown to be significantly higher in the Serbian genotype, both in unstressed and treated plants, compared to the German one. The contents of tocopherols were higher in the Serbian genotype in controlled unstressed and subsequently short- and long-stressed plantlets compared to the German accession. In general, we can assume that P. formosum is unexpectedly tolerant to salt stress and that there are differences within various accessions of overall European populations, as referred by two randomly selected genotypes, which is most probably a consequence of different genetic structure.

17.
Plant J ; 119(3): 1481-1493, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38858852

RESUMEN

Structural maintenance of chromosome (SMC) complexes play roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of SMC proteins with a unique structure consisting of an ATPase head, long arm, and hinge. SMC complexes form long rod-like structures, which can change to ring-like and elbow-bent conformations upon binding ATP, DNA, and other regulatory factors. These SMC dynamic conformational changes are involved in their loading, translocation, and DNA loop extrusion. Here, we examined the binding and role of the PpNSE5 regulatory factor of Physcomitrium patens PpSMC5/6 complex. We found that the PpNSE5 C-terminal half (aa230-505) is required for binding to its PpNSE6 partner, while the N-terminal half (aa1-230) binds PpSMC subunits. Specifically, the first 71 amino acids of PpNSE5 were required for binding to PpSMC6. Interestingly, the PpNSE5 binding required the PpSMC6 head-proximal joint region and PpSMC5 hinge-proximal arm, suggesting a long distance between binding sites on PpSMC5 and PpSMC6 arms. Therefore, we hypothesize that PpNSE5 either links two antiparallel SMC5/6 complexes or binds one SMC5/6 in elbow-bent conformation, the later model being consistent with the role of NSE5/NSE6 dimer as SMC5/6 loading factor to DNA lesions. In addition, we generated the P. patens Ppnse5KO1 mutant line with an N-terminally truncated version of PpNSE5, which exhibited DNA repair defects while keeping a normal number of rDNA repeats. As the first 71 amino acids of PpNSE5 are required for PpSMC6 binding, our results suggest the role of PpNSE5-PpSMC6 interaction in SMC5/6 loading to DNA lesions.


Asunto(s)
Bryopsida , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bryopsida/genética , Bryopsida/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromosomas de las Plantas/genética , Unión Proteica
18.
J Environ Radioact ; 276: 107448, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749215

RESUMEN

Among environment contaminants, 210Pb and 210Po have gained significant research attention due to their radioactive toxicity. Moss, with its exceptional adsorption capability for these radionuclides, serves as an indicator for environmental 210Pb and 210Po pollution. The paper reviews a total of 138 articles, summarizing the common methods and analytical results of 210Pb and 210Po research in moss. It elucidates the accumulation characteristics of 210Pb and 210Po in moss, discusses current research challenges, potential solutions, and future prospects in this field. Existing literature indicates limitations in common measurement techniques for 210Pb and 210Po in moss, characterized by high detection limits or lengthy sample processing. The concentration of 210Pb and 210Po within moss display substantial variations across different regions worldwide, ranging from

Asunto(s)
Briófitas , Radioisótopos de Plomo , Polonio , Monitoreo de Radiación , Radioisótopos de Plomo/análisis , Polonio/análisis , Briófitas/química , Monitoreo de Radiación/métodos
19.
Plants (Basel) ; 13(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732425

RESUMEN

Mosses host diverse bacterial communities essential for their fitness, nutrient acquisition, stress tolerance, and pathogen defense. Understanding the microbiome's taxonomic composition is the first step, but unraveling their functional capabilities is crucial for grasping their ecological significance. Metagenomics characterizes microbial communities by composition, while metatranscriptomics explores gene expression, providing insights into microbiome functionality beyond the structure. Here, we present for the first time a metatranscriptomic study of two moss species, Hypnum cupressiforme (Hedw.) and Platyhypnidium riparioides (Hedw.) Dixon., renowned as key biomonitors of atmospheric and water pollution. Our investigation extends beyond taxonomic profiling and offers a profound exploration of moss bacterial communities. Pseudomonadota and Actinobacteria are the dominant bacterial phyla in both moss species, but their proportions differ. In H. cupressiforme, Actinobacteria make up 62.45% and Pseudomonadota 32.48%, while in P. riparioides, Actinobacteria account for only 25.67% and Pseudomonadota 69.08%. This phylum-level contrast is reflected in genus-level differences. Our study also shows the expression of most genes related to nitrogen cycling across both microbiomes. Additionally, functional annotation highlights disparities in pathway prevalence, including carbon dioxide fixation, photosynthesis, and fatty acid biosynthesis, among others. These findings hint at potential metabolic distinctions between microbial communities associated with different moss species, influenced by their specific genotypes and habitats. The integration of metatranscriptomic data holds promise for enhancing our understanding of bryophyte-microbe partnerships, opening avenues for novel applications in conservation, bioremediation, and sustainable agriculture.

20.
Glob Chang Biol ; 30(5): e17295, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38804108

RESUMEN

Plant-soil biodiversity interactions are fundamental for the functioning of terrestrial ecosystems. Yet, the existence of a set of globally distributed topsoil microbial and small invertebrate organisms consistently associated with land plants (i.e., their consistent soil-borne microbiome), together with the environmental preferences and functional capabilities of these organisms, remains unknown. We conducted a standardized field survey under 150 species of land plants, including 58 species of bryophytes and 92 of vascular plants, across 124 locations from all continents. We found that, despite the immense biodiversity of soil organisms, the land plants evaluated only shared a small fraction (less than 1%) of all microbial and invertebrate taxa that were present across contrasting climatic and soil conditions and vegetation types. These consistent taxa were dominated by generalist decomposers and phagotrophs and their presence was positively correlated with the abundance of functional genes linked to mineralization. Finally, we showed that crossing environmental thresholds in aridity (aridity index of 0.65, i.e., the transition from mesic to dry ecosystems), soil pH (5.5; i.e., the transition from acidic to strongly acidic soils), and carbon (less than 2%, the lower limit of fertile soils) can result in drastic disruptions in the associations between land plants and soil organisms, with potential implications for the delivery of soil ecosystem processes under ongoing global environmental change.


Asunto(s)
Embryophyta , Microbiota , Microbiología del Suelo , Biodiversidad , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA