Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.552
Filtrar
1.
Methods Mol Biol ; 2854: 61-74, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39192119

RESUMEN

With the rapid development of CRISPR-Cas9 technology, gene editing has become a powerful tool for studying gene function. Specifically, in the study of the mechanisms by which natural immune responses combat viral infections, gene knockout mouse models have provided an indispensable platform. This article describes a detailed protocol for constructing gene knockout mice using the CRISPR-Cas9 system. This field focuses on the design of single-guide RNAs (sgRNAs) targeting the antiviral immune gene cGAS, embryo microinjection, and screening and verification of gene editing outcomes. Furthermore, this study provides methods for using cGAS gene knockout mice to analyze the role of specific genes in natural immune responses. Through this protocol, researchers can efficiently generate specific gene knockout mouse models, which not only helps in understanding the functions of the immune system but also offers a powerful experimental tool for exploring the mechanisms of antiviral innate immunity.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Inmunidad Innata , Ratones Noqueados , ARN Guía de Sistemas CRISPR-Cas , Animales , Inmunidad Innata/genética , Ratones , ARN Guía de Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Técnicas de Inactivación de Genes/métodos , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Virosis/inmunología , Virosis/genética
2.
Elife ; 132024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136115

RESUMEN

By altering which peptide antigens are presented to CD4+ T cells, adjuvants affect the specificity of the immune response.


Asunto(s)
Adyuvantes Inmunológicos , Linfocitos T CD4-Positivos , Adyuvantes Inmunológicos/farmacología , Humanos , Linfocitos T CD4-Positivos/inmunología , Animales , Presentación de Antígeno/inmunología
3.
Elife ; 122024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137024

RESUMEN

Hepatic factors secreted by the liver promote homeostasis and are pivotal for maintaining the liver-gut axis. Bile acid metabolism is one such example wherein, bile acid synthesis occurs in the liver and its biotransformation happens in the intestine. Dysfunctional interactions between the liver and the intestine stimulate varied pathological outcomes through its bidirectional portal communication. Indeed, aberrant bile acid metabolism has been reported in inflammatory bowel disease (IBD). However, the molecular mechanisms underlying these crosstalks that perpetuate intestinal permeability and inflammation remain obscure. Here, we identify a novel hepatic gene program regulated by Rela and Stat3 that accentuates the inflammation in an acute experimental colitis model. Hepatocyte-specific ablation of Rela and Stat3 reduces the levels of primary bile acids in both the liver and the gut and shows a restricted colitogenic phenotype. On supplementation of chenodeoxycholic acid (CDCA), knock-out mice exhibit enhanced colitis-induced alterations. This study provides persuasive evidence for the development of multi-organ strategies for treating IBD and identifies a hepatocyte-specific Rela-Stat3 network as a promising therapeutic target.


Asunto(s)
Ácidos y Sales Biliares , Colitis , Modelos Animales de Enfermedad , Hepatocitos , Ratones Noqueados , Factor de Transcripción STAT3 , Factor de Transcripción ReIA , Animales , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/genética , Colitis/patología , Hepatocitos/metabolismo , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Ratones , Ácidos y Sales Biliares/metabolismo , Regulación de la Expresión Génica , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL
4.
Brain Behav Immun ; 122: 266-278, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142424

RESUMEN

Anti-contactin associated protein receptor 2 (CASPR2) encephalitis is a severe autoimmune encephalitis with a variable clinical phenotype including behavioral abnormalities, cognitive decline, epileptic seizures, peripheral nerve hyperexcitability and neuropathic pain. The detailed mechanisms of how CASPR2 autoantibodies lead to synaptic dysfunction and clinical symptoms are largely unknown. Aiming for analyses from the molecular to the clinical level, we isolated antibody-secreting cells from the cerebrospinal fluid of two patients with CASPR2 encephalitis. From these we cloned four anti-CASPR2 human monoclonal autoantibodies (mAbs) with strong binding to brain and peripheral nerves. All were highly hypermutated and mainly of the IgG4 subclass. Mutagenesis studies determined selective binding to the discoidin domain of CASPR2. Surface plasmon resonance revealed affinities with dissociation constants KD in the pico- to nanomolar range. CASPR2 mAbs interrupted the interaction of CASPR2 with its binding partner contactin 2 in vitro and were internalized after binding to CASPR2-expressing cells. Electrophysiological recordings of rat hippocampal slices after stereotactic injection of CASPR2 mAbs showed characteristic afterpotentials following electrical stimulation. In vivo experiments with intracerebroventricular administration of human CASPR2 mAbs into mice and rats showed EEG-recorded brain hyperexcitability but no spontaneous recurrent seizures. Behavioral assessment of infused mice showed a subtle clinical phenotype, mainly affecting sociability. Mouse brain MRI exhibited markedly reduced resting-state functional connectivity without short-term structural changes. Together, the experimental data support the direct pathogenicity of CASPR2 autoantibodies. The minimally invasive EEG and MRI techniques applied here may serve as novel objective, quantifiable tools for improved animal models, in particular for subtle neuropsychiatric phenotypes or repeated measurements.

5.
Biomed Pharmacother ; 178: 117287, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39137652

RESUMEN

This study investigates the effects of inositol (INO) supplementation on cardiac changes caused by Li in mice. The study involved 4 groups of C57BL6 mice (n=10 each): (i) mice orally administered with Li2CO3 for 8 weeks, then 4 additional weeks without (Li_group) or (ii) with INO supplementation (Li_INOdelayed_group) (total of 12 weeks); (iii) mice given Li2CO3 and INO supplementation concurrently for 12 weeks (Li+INO_group); (iv) one group left untreated (C-group). The INO was administered as a mixture of myo-inositol and d-chiro-inositol (80:1) in drinking water. The mice were characterised for heart morphology, function, electrical activity, arrhythmogenic susceptibility, and multiorgan histopathology (heart, liver and kidney). Cardiomyocyte size, protein expression of key signalling pathways related to hypertrophy, and transcription levels of ion channel subunits and hypertrophy markers were evaluated in the ventricle tissue. The study found that INO supplementation reduced the Li-induced cardiac adverse effects, including systolic impairment and increased susceptibility to arrhythmias. The positive effect on arrhythmias might be attributed to the restored expression levels of the potassium channel subunit Kv 1.5. Additionally, INO improved cardiomyocyte hypertrophy, possibly by inhibiting the Li-induced activation of the ERK1/2 signalling pathway and by restoring the normal expression level of BNP, and alleviated injury in the liver and kidney. The effect was preventive if INO supplementation was taken concurrently with Li and therapeutic if INO was administered after Li-induced cardiac impairments were established. These results provide new insights into the cardioprotective effect of INO and suggest a potential treatment approach for Li-induced cardiac disease.


Asunto(s)
Suplementos Dietéticos , Inositol , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , Administración Oral , Inositol/farmacología , Inositol/administración & dosificación , Litio/administración & dosificación , Litio/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/prevención & control , Arritmias Cardíacas/tratamiento farmacológico , Cardiopatías/inducido químicamente , Cardiopatías/prevención & control , Cardiopatías/patología , Cardiopatías/tratamiento farmacológico
6.
Steroids ; 211: 109489, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117289

RESUMEN

The most prevalent reason for female infertility is polycystic ovarian syndrome (PCOS) exhibiting two of three phenotypes including biochemical or clinical hyperandrogenism, anovulation and polycystic ovaries. Insulin resistance and obesity are common in PCOS-afflicted women. Androgens are thought to be the primary cause of PCOS causing symptoms including anovulation, follicles that resemble cysts, higher levels of the luteinizing hormone (LH), increased adiposity, and insulin resistance. However, due to the heterogeneity of PCOS, it is challenging to establish a single model that accurately mimics all the reproductive and metabolic phenotypes seen in PCOS patients. In this review, we aimed to investigate rodent models of PCOS and related phenotypes with or without direct hormonal treatments and to determine the underlying mechanisms to comprehend PCOS better. We summarized rodent models of PCOS that includes direct and indirect hormone intervention and discussed the aetiology of PCOS and related phenotypes produced in rodent models. We presented combined insights on multiple rodent models of PCOS and compared their reproductive and/or metabolic phenotypes. Our review indicates that there are various models for studying PCOS and one should select a model most suitable for their purpose. This review will be helpful for consideration of rodent models for PCOS which are not conventionally used to determine mechanisms at the molecular/cellular levels encouraging development of novel treatments and control methods for PCOS.

7.
Mamm Genome ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191872

RESUMEN

The Mouse Metabolic Phenotyping Center (MMPC)Live Program was established in 2023 by the National Institute for Diabetes, Digestive and Kidney Diseases (NIDDK) at the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high quality phenotyping services for mouse models of diabetes and obesity. Emerging as the next iteration of the MMPC Program which served the biomedical research community for 20 years (2001-2021), MMPCLive is designed as an outwardly-facing consortium of service cores that collaborate to provide reduced-cost consultation and metabolic, physiologic, and behavioral phenotyping tests on live mice for U.S. biomedical researchers. Four MMPCLive Centers located at universities around the country perform complex and often unique procedures in vivo on a fee for service basis, typically on mice shipped from the client or directly from a repository or vendor. Current areas of expertise include energy balance and body composition, insulin action and secretion, whole body carbohydrate and lipid metabolism, cardiovascular and renal function, food intake and behavior, microbiome and xenometabolism, and metabolic pathway kinetics. Additionally, an opportunity arose to reduce barriers to access and expand the diversity of the biomedical research workforce by establishing the VIBRANT Program. Directed at researchers historically underrepresented in the biomedical sciences, VIBRANT-eligible investigators have access to testing services, travel and career development awards, expert advice and experimental design consultation, and short internships to learn test technologies. Data derived from experiments run by the Centers belongs to the researchers submitting mice for testing which can be made publicly available and accessible from the MMPCLive database following publication. In addition to services, MMPCLive staff provide expertise and advice to researchers, develop and refine test protocols, engage in outreach activities, publish scientific and technical papers, and conduct educational workshops and training sessions to aid researchers in unraveling the heterogeneity of diabetes and obesity.

8.
Sci Rep ; 14(1): 19839, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191928

RESUMEN

The compound NS5806 is a Kv4 channel modulator. This study investigated the chronic effects of NS5806 on cardiac hypertrophy induced by transverse aortic constriction (TAC) in mice in vivo and on neonatal rat ventricular cardiomyocyte hypertrophy induced by endothelin-1 (ET-1) in vitro. Four weeks after TAC, NS5806 was administered by gavage for 4 weeks. Echocardiograms revealed pronounced left ventricular (LV) hypertrophy in TAC-treated mice compared with sham mice. NS5806 attenuated LV hypertrophy, as manifested by the restoration of LV wall thickness and weight and the reversal of contractile dysfunction in TAC-treated mice. NS5806 also blunted the TAC-induced increases in the expression of cardiac hypertrophic and fibrotic genes, including ANP, BNP and TGF-ß. Electrophysiological recordings revealed a significant prolongation of action potential duration and QT intervals, accompanied by an increase in susceptibility to ventricular arrhythmias in mice with cardiac hypertrophy. However, NS5806 restored these alterations in electrical parameters and thus reduced the incidence of mouse sudden death. Furthermore, NS5806 abrogated the downregulation of the Kv4 protein in the hypertrophic myocardium but did not influence the reduction in Kv4 mRNA expression. In addition, NS5806 suppressed in vitro cardiomyocyte hypertrophy. The results provide novel insight for further ion channel modulator development as a potential treatment option for cardiac hypertrophy.


Asunto(s)
Cardiomegalia , Miocitos Cardíacos , Canales de Potasio Shal , Animales , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Canales de Potasio Shal/metabolismo , Canales de Potasio Shal/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/tratamiento farmacológico , Masculino , Ratas , Ratones Endogámicos C57BL , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Modelos Animales de Enfermedad , Compuestos de Fenilurea , Tetrazoles
9.
Artículo en Inglés | MEDLINE | ID: mdl-39191960

RESUMEN

Irritable bowel syndrome (IBS) is a multifactorial disorder, with altered intestinal motility, visceral hypersensitivity, and dysfunction of the gut-brain axis. The aim of our study was to analyze the role of nitric oxide (NO) in the inhibitory effects of sodium butyrate on spontaneous contractility of proximal colon in a mouse model of IBS. IBS was induced by intracolonic infusion of acetic acid in the early postnatal period. Spontaneous contractions of proximal colon segments were studied in isometric conditions. The amplitude and frequency of colon contractions were higher in the IBS group. Sodium butyrate exerted inhibitory effects on colon contractions, which were less pronounced in IBS group. NO donors decreased spontaneous colon contractility and prevented the inhibitory effects of sodium butyrate in control and IBS groups. Nitric oxide synthase (NOS) inhibition by L-NAME increased contractile activity more effective in the control group and decreased the inhibitory action of sodium butyrate. In IBS group, preliminary application of L-NAME did not prevent sodium butyrate action. Our data indicate that butyrate exerts its inhibitory effects on colon motility at least partially through activation of NO synthesis. In the IBS model group, the NO-dependent mechanisms were less effective probably due to downregulation of NOS.

10.
Elife ; 122024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163103

RESUMEN

Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.


Asunto(s)
Plaquetas , Diferenciación Celular , Células Precursoras de Oligodendrocitos , Remielinización , Animales , Células Precursoras de Oligodendrocitos/fisiología , Remielinización/fisiología , Ratones , Plaquetas/fisiología , Encefalomielitis Autoinmune Experimental/patología , Ratones Endogámicos C57BL , Esclerosis Múltiple/patología , Modelos Animales de Enfermedad , Oligodendroglía/fisiología , Femenino
11.
Elife ; 132024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163101

RESUMEN

Sepsis causes millions of deaths per year worldwide and is a current global health priority declared by the WHO. Sepsis-related deaths are a result of dysregulated inflammatory immune responses indicating the need to develop strategies to target inflammation. An important mediator of inflammation is extracellular adenosine triphosphate (ATP) that is released by inflamed host cells and tissues, and also by bacteria in a strain-specific and growth-dependent manner. Here, we investigated the mechanisms by which bacteria release ATP. Using genetic mutant strains of Escherichia coli (E. coli), we demonstrate that ATP release is dependent on ATP synthase within the inner bacterial membrane. In addition, impaired integrity of the outer bacterial membrane notably contributes to ATP release and is associated with bacterial death. In a mouse model of abdominal sepsis, local effects of bacterial ATP were analyzed using a transformed E. coli bearing an arabinose-inducible periplasmic apyrase hydrolyzing ATP to be released. Abrogating bacterial ATP release shows that bacterial ATP suppresses local immune responses, resulting in reduced neutrophil counts and impaired survival. In addition, bacterial ATP has systemic effects via its transport in outer membrane vesicles (OMV). ATP-loaded OMV are quickly distributed throughout the body and upregulated expression of genes activating degranulation in neutrophils, potentially contributing to the exacerbation of sepsis severity. This study reveals mechanisms of bacterial ATP release and its local and systemic roles in sepsis pathogenesis.


Sepsis is a severe condition often caused by the body's immune system overreacting to bacterial infections. This can lead to excessive inflammation which damages organs and requires urgent medical care. With sepsis claiming millions of lives each year, new and improved ways to treat this condition are urgently needed. One potential strategy for treating sepsis is to target the underlying mechanisms controlling inflammation. Inflamed and dying cells release molecules called ATP (the energy carrier of all living cells), which strongly influence the immune system, including during sepsis. In the early stages of an infection, ATP acts as a danger signal warning the body that something is wrong. However, over time, it can worsen infections by disturbing the immune response. Similar to human cells, bacteria release their own ATP, which can have different impacts depending on the type of bacteria and where they are located in the body. However, it is not well understood how bacterial ATP influences severe infections like sepsis. To investigate this question, Spari et al analysed how ATP is released from Escherichia coli, a type of bacteria that causes severe infections. This revealed that the bacteria secrete ATP directly in to their environment and via small membrane-bound structures called vesicles. Spari et al. then probed a mouse model of abdominal sepsis which had been infected with E. coli that release either normal or low levels of ATP. They found that the ATP released from E. coli impaired the mice's survival and lowered the number of neutrophils (immune cells which are important for defending against bacteria) at the site of the infection. The ATP secreted via vesicles also altered the role of neutrophils but in more distant regions, and it is possible that these changes may be contributing to the severity of sepsis. These findings provide a better understanding of how ATP released from bacteria impacts the immune system during sepsis. While further investigation is needed, these findings may offer new therapeutic targets for treating sepsis.


Asunto(s)
Adenosina Trifosfato , Escherichia coli , Inflamación , Sepsis , Animales , Adenosina Trifosfato/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sepsis/microbiología , Sepsis/metabolismo , Ratones , Inflamación/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/inmunología
12.
Elife ; 132024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163107

RESUMEN

Ribonucleoprotein (RNP) granules are membraneless electron-dense structures rich in RNAs and proteins, and involved in various cellular processes. Two RNP granules in male germ cells, intermitochondrial cement and the chromatoid body (CB), are associated with PIWI-interacting RNAs (piRNAs) and are required for transposon silencing and spermatogenesis. Other RNP granules in male germ cells, the reticulated body and CB remnants, are also essential for spermiogenesis. In this study, we disrupted FBXO24, a testis-enriched F-box protein, in mice and found numerous membraneless electron-dense granules accumulated in sperm flagella. Fbxo24 knockout (KO) mice exhibited malformed flagellar structures, impaired sperm motility, and male infertility, likely due to the accumulation of abnormal granules. The amount and localization of known RNP granule-related proteins were not disrupted in Fbxo24 KO mice, suggesting that the accumulated granules were distinct from known RNP granules. Further studies revealed that RNAs and two importins, IPO5 and KPNB1, abnormally accumulated in Fbxo24 KO spermatozoa and that FBXO24 could ubiquitinate IPO5. In addition, IPO5 and KPNB1 were recruited to stress granules, RNP complexes, when cells were treated with oxidative stress or a proteasome inhibitor. These results suggest that FBXO24 is involved in the degradation of IPO5, disruption of which may lead to the accumulation of abnormal RNP granules in sperm flagella.


Asunto(s)
Proteínas F-Box , Infertilidad Masculina , Ratones Noqueados , Cola del Espermatozoide , Masculino , Animales , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Ratones , Cola del Espermatozoide/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Gránulos Citoplasmáticos/metabolismo , Espermatozoides/metabolismo
13.
Front Immunol ; 15: 1451974, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165362

RESUMEN

T cells express an enormous repertoire of T cell receptors, enabling them to recognize any potential antigen. This large repertoire undergoes stringent selections in the thymus, where receptors that react to self- or non-danger-associated- antigens are purged. We know that thymic tolerance depends on signals and antigens presented by the thymic antigen presenting cells, but we still do not understand precisely how many of these cells actually contribute to tolerance. This is especially true for thymic dendritic cells (DC), which are composed of diverse subpopulations that are derived from different progenitors. Although the importance of thymic DCs has long been known, the functions of specific DC subsets have been difficult to untangle. There remains insufficient systematic characterization of the ontogeny and phenotype of thymic APCs in general. As a result, validated experimental models for studying thymic DCs are limited. Recent technological advancement, such as multi-omics analyses, has enabled new insights into thymic DC biology. These recent findings indicate a need to re-evaluate the current tools used to study the function of these cells within the thymus. This review will discuss how thymic DC subpopulations can be defined, the models that have been used to assess functions in the thymus, and models developed for other settings that can be potentially used for studying thymic DCs.


Asunto(s)
Células Dendríticas , Timo , Animales , Células Dendríticas/inmunología , Timo/inmunología , Timo/citología , Ratones , Diferenciación Celular/inmunología , Linfocitos T/inmunología , Tolerancia Inmunológica
14.
Curr Protoc ; 4(8): e1107, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39166803

RESUMEN

CAR-T cell therapy has emerged as a potent and effective tool in the immunotherapy of refractory cancers. However, challenges exist in their clinical application, necessitating extensive preclinical research to optimize their function. Various preclinical in vitro and in vivo models have been proposed for such purpose; among which immunocompetent mouse models serve as an invaluable tool in studying host immune interactions within a more realistic simulation of the tumor milieu. We hereby describe a standardized protocol for the generation of high-titer γ-retroviral vectors through transfection of the HEK293T packaging cell line. The virus-containing supernatant is further concentrated using an inhouse concentrator solution, titrated, and applied to mouse T cells purified via a convenient and rapid method by nylon-wool columns. Using the method presented here, we were able to achieve high titer γ-retrovirus and highly pure mouse T cells with desirable CAR transduction efficiency. The mouse CAR T cells produced through this protocol demonstrate favorable CAR expression and viability, thus making them suitable for further in vitro/in vivo assays. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Production of γ-retroviral vectors from retrovirus-backbone plasmids Basic Protocol 2: Concentration of γ-retrovirus-containing supernatants Basic Protocol 3: Titration of concentrated γ-retrovirus Basic Protocol 4: Isolation and activation of mouse T cells Basic Protocol 5: Transduction of activated mouse T cells, assessment of CAR expression, and expansion of CAR T cells for further in vitro/in vivo studies Support Protocol: Surface staining of cells for flow cytometric assessment of CAR expression.


Asunto(s)
Receptores Quiméricos de Antígenos , Linfocitos T , Animales , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Ratones , Humanos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Células HEK293 , Inmunoterapia Adoptiva/métodos , Modelos Animales de Enfermedad , Retroviridae/genética , Neoplasias/inmunología , Neoplasias/terapia , Vectores Genéticos
15.
Cell Rep ; 43(8): 114639, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39167488

RESUMEN

A key feature of neurons in the primary visual cortex (V1) of primates is their orientation selectivity. Recent studies using deep neural network models showed that the most exciting input (MEI) for mouse V1 neurons exhibit complex spatial structures that predict non-uniform orientation selectivity across the receptive field (RF), in contrast to the classical Gabor filter model. Using local patches of drifting gratings, we identified heterogeneous orientation tuning in mouse V1 that varied up to 90° across sub-regions of the RF. This heterogeneity correlated with deviations from optimal Gabor filters and was consistent across cortical layers and recording modalities (calcium vs. spikes). In contrast, model-synthesized MEIs for macaque V1 neurons were predominantly Gabor like, consistent with previous studies. These findings suggest that complex spatial feature selectivity emerges earlier in the visual pathway in mice than in primates. This may provide a faster, though less general, method of extracting task-relevant information.

16.
Immun Inflamm Dis ; 12(8): e1343, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39092750

RESUMEN

The involvement of neutrophils in the lungs during the recovery phase of coronavirus disease 2019 (COVID-19) is not well defined mainly due to the limited accessibility of lung tissues from COVID-19 survivors. The lack of an appropriate small animal model has affected the development of effective therapeutic strategies. We here developed a long COVID mouse model to study changes in neutrophil phenotype and association with lung injury. Our data shows persistent neutrophil recruitment and neutrophil extracellular trap formation in the lungs for up to 30 days post-infection which correlates with lung fibrosis and inflammation.


Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Trampas Extracelulares , Pulmón , Neutrófilos , SARS-CoV-2 , Animales , Trampas Extracelulares/inmunología , COVID-19/inmunología , COVID-19/complicaciones , Ratones , Neutrófilos/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Pulmón/patología , Pulmón/inmunología , Pulmón/virología , Lesión Pulmonar/inmunología , Lesión Pulmonar/virología , Lesión Pulmonar/patología , Lesión Pulmonar/etiología , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Infiltración Neutrófila/inmunología , Humanos , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/etiología
17.
Microbiome ; 12(1): 147, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113097

RESUMEN

BACKGROUND: Understanding the cause vs consequence relationship of gut inflammation and microbial dysbiosis in inflammatory bowel diseases (IBD) requires a reproducible mouse model of human-microbiota-driven experimental colitis. RESULTS: Our study demonstrated that human fecal microbiota transplant (FMT) transfer efficiency is an underappreciated source of experimental variability in human microbiota-associated (HMA) mice. Pooled human IBD patient fecal microbiota engrafted germ-free (GF) mice with low amplicon sequence variant (ASV)-level transfer efficiency, resulting in high recipient-to-recipient variation of microbiota composition and colitis severity in HMA Il-10-/- mice. In contrast, mouse-to-mouse transfer of mouse-adapted human IBD patient microbiota transferred with high efficiency and low compositional variability resulting in highly consistent and reproducible colitis phenotypes in recipient Il-10-/- mice. Engraftment of human-to-mouse FMT stochastically varied with individual transplantation events more than mouse-adapted FMT. Human-to-mouse FMT caused a population bottleneck with reassembly of microbiota composition that was host inflammatory environment specific. Mouse-adaptation in the inflamed Il-10-/- host reassembled a more aggressive microbiota that induced more severe colitis in serial transplant to Il-10-/- mice than the distinct microbiota reassembled in non-inflamed WT hosts. CONCLUSIONS: Our findings support a model of IBD pathogenesis in which host inflammation promotes aggressive resident bacteria, which further drives a feed-forward process of dysbiosis exacerbated by gut inflammation. This model implies that effective management of IBD requires treating both the dysregulated host immune response and aggressive inflammation-driven microbiota. We propose that our mouse-adapted human microbiota model is an optimized, reproducible, and rigorous system to study human microbiome-driven disease phenotypes, which may be generalized to mouse models of other human microbiota-modulated diseases, including metabolic syndrome/obesity, diabetes, autoimmune diseases, and cancer. Video Abstract.


Asunto(s)
Modelos Animales de Enfermedad , Disbiosis , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Interleucina-10 , Animales , Humanos , Ratones , Enfermedades Inflamatorias del Intestino/microbiología , Disbiosis/microbiología , Interleucina-10/genética , Colitis/microbiología , Heces/microbiología , Colon/microbiología , Ratones Noqueados , Ratones Endogámicos C57BL , Femenino , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Inflamación , Masculino
18.
Cell Rep ; 43(8): 114615, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39133615

RESUMEN

In vertebrate retina, individual neurons of the same type are distributed regularly across the tissue in a pattern known as a mosaic. Establishment of mosaics during development requires cell-cell repulsion among homotypic neurons, but the mechanisms underlying this repulsion remain unknown. Here, we show that two mouse retinal cell types, OFF and ON starburst amacrine cells, establish mosaic spacing by using their dendritic arbors to repel neighboring homotypic somata. Using transgenic tools and single-cell labeling, we identify a developmental period when starburst somata are contacted by neighboring starburst dendrites; these serve to exclude somata from settling within the neighbor's dendritic territory. Dendrite-soma exclusion is mediated by MEGF10, a cell-surface molecule required for starburst mosaic patterning. Our results implicate dendrite-soma exclusion as a key mechanism underlying starburst mosaic spacing and raise the possibility that this could be a general mechanism for mosaic patterning across many cell types and species.

19.
J Clin Invest ; 134(16)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-39145448

RESUMEN

Our study was to characterize sarcopenia in C57BL/6J mice using a clinically relevant definition to investigate the underlying molecular mechanisms. Aged male (23-32 months old) and female (27-28 months old) C57BL/6J mice were classified as non-, probable-, or sarcopenic based on assessments of grip strength, muscle mass, and treadmill running time, using 2 SDs below the mean of their young counterparts as cutoff points. A 9%-22% prevalence of sarcopenia was identified in 23-26 month-old male mice, with more severe age-related declines in muscle function than mass. Females aged 27-28 months showed fewer sarcopenic but more probable cases compared with the males. As sarcopenia progressed, a decrease in muscle contractility and a trend toward lower type IIB fiber size were observed in males. Mitochondrial biogenesis, oxidative capacity, and AMPK-autophagy signaling decreased as sarcopenia progressed in males, with pathways linked to mitochondrial metabolism positively correlated with muscle mass. No age- or sarcopenia-related changes were observed in mitochondrial biogenesis, OXPHOS complexes, AMPK signaling, mitophagy, or atrogenes in females. Our results highlight the different trajectories of age-related declines in muscle mass and function, providing insights into sex-dependent molecular changes associated with sarcopenia progression, which may inform the future development of novel therapeutic interventions.


Asunto(s)
Envejecimiento , Modelos Animales de Enfermedad , Sarcopenia , Animales , Sarcopenia/patología , Sarcopenia/metabolismo , Masculino , Ratones , Femenino , Envejecimiento/patología , Caracteres Sexuales , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fenotipo , Ratones Endogámicos C57BL , Factores de Edad , Autofagia , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Factores Sexuales
20.
Front Allergy ; 5: 1423938, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157265

RESUMEN

Asthma is a chronic respiratory disease of global importance. Mouse models of allergic asthma have been instrumental in advancing research and novel therapeutic strategies for patients. The application of relevant allergens and physiological routes of exposure in such models has led to valuable insights into the complexities of asthma onset and development as well as key disease mechanisms. Furthermore, environmental microbial exposures and infections have been shown to play a fundamental part in asthma pathogenesis and alter disease outcome. In this review, we delve into physiological mouse models of allergic asthma and explore literature reports on most significant interplays between microbial infections and asthma development with relevance to human disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA