Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Wellcome Open Res ; 3: 142, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30542666

RESUMEN

Background: Malaria parasite species differ greatly in the harm they do to humans. While P. falciparum kills hundreds of thousands per year, P. vivax kills much less often and P. malariae is relatively benign. Strains of the rodent malaria parasite Plasmodium chabaudi show phenotypic variation in virulence during infections of laboratory mice. This make it an excellent species to study genes which may be responsible for this trait. By understanding the mechanisms which underlie differences in virulence we can learn how parasites adapt to their hosts and how we might prevent disease. Methods: Here we present a complete reference genome sequence for a more virulent P. chabaudi strain, PcCB, and perform a detailed comparison with the genome of the less virulent PcAS strain. Results: We found the greatest variation in the subtelomeric regions, in particular amongst the sequences of the pir gene family, which has been associated with virulence and establishment of chronic infection. Despite substantial variation at the sequence level, the repertoire of these genes has been largely maintained, highlighting the requirement for functional conservation as well as diversification in host-parasite interactions. However, a subset of pir genes, previously associated with increased virulence, were more highly expressed in PcCB, suggesting a role for this gene family in virulence differences between strains. We found that core genes involved in red blood cell invasion have been under positive selection and that the more virulent strain has a greater preference for reticulocytes, which has elsewhere been associated with increased virulence. Conclusions: These results provide the basis for a mechanistic understanding of the phenotypic differences between Plasmodium chabaudi strains, which might ultimately be translated into a better understanding of malaria parasites affecting humans.

2.
Methods Mol Biol ; 1832: 309-325, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30073535

RESUMEN

Histone post-translational modifications (PTMs) are thought to participate in a range of essential molecular and cellular processes, including gene expression, replication, and nuclear organization. Importantly, histone PTMs are also thought to be prime candidates for carriers of epigenetic information across cell cycles and generations. However, directly testing the necessity of histone PTMs themselves in these processes by mutagenesis has been extremely difficult to carry out because of the highly repetitive nature of histone genes in animal genomes. We developed a transgenic system to generate Drosophila melanogaster genotypes in which the entire complement of replication-dependent histone genes is mutant at a residue of interest. We built a BAC vector containing a visible marker for lineage tracking along with the capacity to clone large (60-100 kb) inserts that subsequently can be site-specifically integrated into the D. melanogaster genome. We demonstrate that artificial tandem arrays of the core 5 kb replication-dependent histone repeat can be generated with relative ease. This genetic platform represents the first histone replacement system to leverage a single tandem transgenic insertion for facile genetics and analysis of molecular and cellular phenotypes. We demonstrate the utility of our system for directly preventing histone residues from being modified, and studying the consequent phenotypes. This system can be generalized to the cloning and transgenic insertion of any tandemly repeated sequence of biological interest.


Asunto(s)
Clonación Molecular/métodos , Drosophila melanogaster/genética , Técnicas de Transferencia de Gen , Histonas/genética , Familia de Multigenes , Secuencias Repetidas en Tándem/genética , Animales , Cromosomas Artificiales Bacterianos/genética , Drosophila melanogaster/embriología , Femenino , Genoma de los Insectos , Masculino , Modelos Animales , Reproducibilidad de los Resultados , Transgenes
3.
Genetics ; 205(4): 1619-1639, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28159755

RESUMEN

Gene duplications enable the evolution of novel gene function, but strong positive selection is required to preserve advantageous mutations in a population. This is because frequent ectopic gene conversions (EGCs) between highly similar, tandem-duplicated, sequences, can rapidly remove fate-determining mutations by replacing them with the neighboring parent gene sequences. Unfortunately, the high sequence similarities between tandem-duplicated genes severely hamper empirical studies of this important evolutionary process, because deciphering their correct sequences is challenging. In this study, we employed the eukaryotic model organism Saccharomyces cerevisiae to clone and functionally characterize all 30 alleles of an important pair of tandem-duplicated multidrug efflux pump genes, ABC1 and ABC11, from seven strains of the diploid pathogenic yeast Candida krusei Discovery and functional characterization of their closest ancestor, C. krusei ABC12, helped elucidate the evolutionary history of the entire gene family. Our data support the proposal that the pleiotropic drug resistance (PDR) transporters Abc1p and Abc11p have evolved by concerted evolution for ∼134 MY. While >90% of their sequences remained identical, very strong purifying selection protected six short DNA patches encoding just 18 core amino acid (aa) differences in particular trans membrane span (TMS) regions causing two distinct efflux pump functions. A proline-kink change at the bottom of Abc11p TMS3 was possibly fate determining. Our data also enabled the first empirical estimates for key parameters of eukaryotic gene evolution, they provided rare examples of intron loss, and PDR transporter phylogeny confirmed that C. krusei belongs to a novel, yet unnamed, third major Saccharomycotina lineage.


Asunto(s)
Candida/genética , Evolución Molecular , Proteínas Fúngicas/genética , Conversión Génica , Pleiotropía Genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Candida/efectos de los fármacos , Variaciones en el Número de Copia de ADN , Farmacorresistencia Fúngica
4.
G3 (Bethesda) ; 2(11): 1415-25, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23173093

RESUMEN

The nematode Caenorhabditis elegans is a powerful model system to study contemporary biological problems. This system would be even more useful if we had mutations in all the genes of this multicellular metazoan. The combined efforts of the C. elegans Deletion Mutant Consortium and individuals within the worm community are moving us ever closer to this goal. At present, of the 20,377 protein-coding genes in this organism, 6764 genes with associated molecular lesions are either deletions or null mutations (WormBase WS220). Our three laboratories have contributed the majority of mutated genes, 6841 mutations in 6013 genes. The principal method we used to detect deletion mutations in the nematode utilizes polymerase chain reaction (PCR). More recently, we have used array comparative genome hybridization (aCGH) to detect deletions across the entire coding part of the genome and massively parallel short-read sequencing to identify nonsense, splicing, and missense defects in open reading frames. As deletion strains can be frozen and then thawed when needed, these strains will be an enduring community resource. Our combined molecular screening strategies have improved the overall throughput of our gene-knockout facilities and have broadened the types of mutations that we and others can identify. These multiple strategies should enable us to eventually identify a mutation in every gene in this multicellular organism. This knowledge will usher in a new age of metazoan genetics in which the contribution to any biological process can be assessed for all genes.


Asunto(s)
Caenorhabditis elegans/genética , Técnicas de Inactivación de Genes , Pruebas Genéticas/métodos , Genoma de los Helmintos , Animales , Hibridación Genómica Comparativa , Eliminación de Gen , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA