Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 875
Filtrar
1.
J Biochem ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194026

RESUMEN

The skeletal muscle is a contractile tissue distributed throughout the body with various anatomical sizes, shapes, and functions. In pathological conditions, such as muscular dystrophy, age-related sarcopenia, and cancer cachexia, skeletal muscles are not uniformly affected throughout the body. This region-specific vulnerability cannot be fully explained by known physiological classifications, including muscle fiber types. Accumulating evidence indicates that the expression patterns of topographic homeobox (Hox) genes provide a molecular signature of positional memory, reflecting the anatomical locations and embryonic history of muscles and their associated muscle stem cells in adult mice and humans. Hox-based positional memory is not merely a remnant of embryonic development but is expected to be an intrinsic determinant controlling muscle function because recent studies have shown that aberrant Hox genes affect muscle stem cells. In this review, we discuss the concept of Hox-based positional memory, which may offer a new perspective on the region-specific pathophysiology of muscle disorders.

2.
Stem Cells ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39097775

RESUMEN

It has been documented that caspase 3 activity is necessary for skeletal muscle regeneration, but how its activity is regulated is largely unknown. Our previous report shows that intracellular TMEM16A, a calcium activated chloride channel, significantly regulates caspase 3 activity in myoblasts during skeletal muscle development. By using a mouse line with satellite cell (SC)-specific deletion of TMEM16A, we examined the role of TMEM16A in regulating caspase 3 activity in SC (or SC-derived myoblast) as well as skeletal muscle regeneration. The mutant animals displayed apparently impaired regeneration capacity in adult muscle along with enhanced ER stress and elevated caspase 3 activity in Tmem16a-/- SC derived myoblasts. Blockade of either excessive ER stress or caspase 3 activity by small molecules significantly restored the inhibited myogenic differentiation of Tmem16a-/- SCs, indicating that excessive caspase 3 activity resulted from TMEM16A deletion contributes to the impaired muscle regeneration and the upstream regulator of caspase 3 was ER stress. Our results revealed an essential role of TMEM16A in satellite cell mediated skeletal muscle regeneration by ensuring a moderate level of caspase 3 activity.

3.
Exp Cell Res ; 442(1): 114197, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39111382

RESUMEN

Single-cell technologies have recently expanded the possibilities for researchers to gain, at an unprecedented resolution level, knowledge about tissue composition, cell complexity, and heterogeneity. Moreover, the integration of data coming from different technologies and sources also offers, for the first time, the possibility to draw a holistic portrait of how cells behave to sustain tissue physiology during the human lifespan and disease. Here, we interrogated and integrated publicly available single-cell RNAseq data to advance the understanding of how macrophages, fibro/adipogenic progenitors, and other cell types establish gene regulatory networks and communicate with each other in the muscle tissue. We identified altered gene signatures and signaling pathways associated with the dystrophic condition, including an enhanced Spp1-Cd44 signaling in dystrophic macrophages. We shed light on the differences among dystrophic muscle aging, considering wild type, mdx, and more severe conditions as in the case of the mdx-2d model. Contextually, we provided details on existing communication relations between muscle niche cell populations, highlighting increased interactions and distinct signaling events that these cells stablish in the dystrophic microenvironment. We believe our findings can help scientists to formulate and test new hypotheses by moving towards a more complete understanding of muscle regeneration and immune system biology.


Asunto(s)
Macrófagos , Músculo Esquelético , Análisis de la Célula Individual , Animales , Macrófagos/metabolismo , Macrófagos/citología , Análisis de la Célula Individual/métodos , Músculo Esquelético/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/patología , Ratones , Adipogénesis/genética , Células Madre/metabolismo , Células Madre/citología , Humanos , Ratones Endogámicos mdx , Transducción de Señal , Redes Reguladoras de Genes
4.
Methods Mol Biol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39162976

RESUMEN

Regeneration is a remarkable characteristic of the skeletal muscle. Triggered by common lesions, regeneration is stimulated resulting in muscle fiber repair and restoration of muscle homeostasis in normal muscle. In genetic dystrophic muscle, the cycle of degeneration/regeneration is an endless loop that leads to impaired regeneration and substitution of muscle fibers by connective and adipose tissue, causing muscle weakness. Identification and characterization of muscle regeneration steps can help discover potential therapy targets for muscle diseases and aging. Muscle regeneration markers such as the number of satellite cells in the muscle, the proportion of activated satellite cells, and the quantity of regenerating muscle fiber can be quantified using immunolabeling.Here we are presenting a quantitative method to measure muscle regeneration that can be applied to different proposals. To demonstrate the protocol applicability, we used models for acute and chronic muscle injuries. As model of acute degeneration, a wild-type C57BL6 mice with muscle injury induced by electroporation was used, and the muscle was analyzed after 5 and 10 days post-injury. DMDmdx mouse muscle was used as a model of chronic degeneration. The methodologies presented here are among the gold standard methodologies for muscle regeneration analysis and can be easily applied to any type of muscle regeneration study.

5.
Pharmacol Res ; 208: 107376, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216837

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive degenerative disease of skeletal muscle, characterized by intramuscular inflammation, muscle regeneration disorder and replacement of muscle with fibroadipose tissue. DMD is caused by the absence of normal dystrophy. Impaired self-renew ability and limited differentiation capacity of satellite cells are proved as main reasons for muscle regeneration failure. The deficiency of estrogen impedes the process of muscle regeneration. However, the role of estrogen receptor ß (ERß) in muscle regeneration is still unclear. This study aims to investigate the role and the pharmacological effect of ERß activation on muscle regeneration in mdx mice. This study showed that mRNA levels of ERß and myogenic-related genes both witnessed increasing trends in dystrophic context. Our results revealed that treatment with selective ERß agonist (DPN, diarylpropionitrile) significantly increased myogenic differentiation 1 (MyoD-1) level and promoted muscle regeneration in mdx mice. Similarly, in mdx mice with muscle-specific estrogen receptor α (ERα) ablation, DPN treatment still promoted muscle regeneration. Moreover, we demonstrated that myoblasts differentiation was accompanied by raised nuclear accumulation of ERß. DPN treatment augmented the nuclear accumulation of ERß and, thus, contributed to myotubes formation. One important finding was that forkhead box O3A (FOXO3A), as a pivotal transcription factor in Myod-1 transcription, participated in the ERß-promoted muscle regeneration. Overall, we offered an interesting explanation about the crucial role of ERß during myogenesis.

6.
J Cell Sci ; 137(15)2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39037211

RESUMEN

Muscle stem cells (MuSCs) play an indispensable role in postnatal muscle growth and hypertrophy in adults. MuSCs also retain a highly regenerative capacity and are therefore considered a promising stem cell source for regenerative therapy for muscle diseases. In this study, we identify tumor-suppressor protein Tob1 as a Pax7 target protein that negatively controls the population expansion of MuSCs. Tob1 protein is undetectable in the quiescent state but is upregulated during activation in MuSCs. Tob1 ablation in mice accelerates MuSC population expansion and boosts muscle regeneration. Moreover, inactivation of Tob1 in MuSCs ameliorates the efficiency of MuSC transplantation in a murine muscular dystrophy model. Collectively, selective targeting of Tob1 might be a therapeutic option for the treatment of muscular diseases, including muscular dystrophy and age-related sarcopenia.


Asunto(s)
Músculo Esquelético , Factor de Transcripción PAX7 , Regeneración , Células Madre , Animales , Ratones , Músculo Esquelético/metabolismo , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , Células Madre/metabolismo , Células Madre/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proliferación Celular , Ratones Endogámicos C57BL
7.
Int Immunopharmacol ; 139: 112662, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39038385

RESUMEN

OBJECTIVE: Sarcopenia manifests as a chronic, low-level inflammation along with multiple inflammatory cells infiltration. Interleukin (IL)-25 can regulate the function of macrophages. However, the specific role and mechanisms through which IL-25 functions in sarcopenia are still not fully understood and require further investigation. METHODS: Aged mice were utilized as sarcopenia models and examined the expression of inflammatory factors. To investigate the effects of IL-25 on sarcopenia, the model mice received IL-25 treatment and underwent in vivo adoptive transfer of IL-25-induced macrophages. Meanwhile, RAW264.7 cells, bone marrow-derived macrophages, satellite cells and C2C12 cells were used in vitro. Shh insufficiency was induced through intramuscular administration of SHH-shRNA adenoviruses. Then, various assays including scratch wound, cell counting kit-8 and Transwell assays, as well as histological staining and molecular biological methods, were conducted. RESULTS: Aged mice exhibited an accelerated decline in muscle strength and mass, along with an increased muscle lipid droplets and macrophage infiltration, and decreased IL-25 levels compared to the young group. IL-25 therapy and the transfer of IL-25-preconditioned macrophages could improve these conditions by promoting M2 macrophage polarization in vivo as well as in vitro. M2 macrophage conditioned medium enhanced satellite cell proliferation and migration, as well as the vitality, migration, and differentiation of C2C12 cells in vitro. Furthermore, IL-25 enhanced Shh expression in macrophages in vitro, and activated the Shh signaling pathway in muscle tissue of aged mice, which could be suppressed by either the inhibitor cyclopamine or Shh knockdown. Mechanistic studies showed that Shh insufficiency suppressed the activation of Akt/mTOR signaling pathway in muscle tissue of aged mice. CONCLUSION: IL-25 promotes the secretion of Shh by M2 macrophages and activates the Shh/Akt/mTOR signaling pathway, which improves symptoms and function in sarcopenia mice. This suggests that IL-25 has potential as a therapeutic agent for treating sarcopenia.


Asunto(s)
Proteínas Hedgehog , Macrófagos , Ratones Endogámicos C57BL , Músculo Esquelético , Regeneración , Sarcopenia , Transducción de Señal , Animales , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Ratones , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Células RAW 264.7 , Masculino , Interleucina-17/metabolismo , Modelos Animales de Enfermedad , Humanos , Proliferación Celular/efectos de los fármacos
8.
FASEB J ; 38(14): e23841, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39051762

RESUMEN

Skeletal muscles undergo robust regeneration upon injury, and infiltrating immune cells play a major role in not only clearing damaged tissues but also regulating the myogenic process through secreted cytokines. Chemokine C-C motif ligand 8 (Ccl8), along with Ccl2 and Ccl7, has been reported to mediate inflammatory responses to suppress muscle regeneration. Ccl8 is also expressed by muscle cells, but a role of the muscle cell-derived Ccl8 in myogenesis has not been reported. In this study, we found that knockdown of Ccl8, but not Ccl2 or Ccl7, led to increased differentiation of C2C12 myoblasts. Analysis of existing single-cell transcriptomic datasets revealed that both immune cells and muscle stem cells (MuSCs) in regenerating muscles express Ccl8, with the expression by MuSCs at a much lower level, and that the temporal patterns of Ccl8 expression were different in MuSCs and macrophages. To probe a function of muscle cell-derived Ccl8 in vivo, we utilized a mouse system in which Cas9 was expressed in Pax7+ myogenic progenitor cells (MPCs) and Ccl8 gene editing was induced by AAV9-delivered sgRNA. Depletion of Ccl8 in Pax7+ MPCs resulted in accelerated muscle regeneration after barium chloride-induced injury in both young and middle-aged mice, and intramuscular administration of a recombinant Ccl8 reversed the phenotype. Accelerated regeneration was also observed when Ccl8 was depleted in Myf5+ or MyoD+ MPCs by similar approaches. Our results suggest that muscle cell-derived Ccl8 plays a unique role in regulating the initiation of myogenic differentiation during injury-induced muscle regeneration.


Asunto(s)
Diferenciación Celular , Quimiocina CCL8 , Desarrollo de Músculos , Músculo Esquelético , Mioblastos , Regeneración , Animales , Ratones , Regeneración/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Músculo Esquelético/lesiones , Desarrollo de Músculos/fisiología , Quimiocina CCL8/metabolismo , Quimiocina CCL8/genética , Mioblastos/metabolismo , Mioblastos/fisiología , Ratones Endogámicos C57BL , Línea Celular , Masculino , Quimiocina CCL7/metabolismo , Quimiocina CCL7/genética , Macrófagos/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-38982896

RESUMEN

BACKGROUND: Skeletal muscle injury is one of the most common sports injuries; if not properly treated or not effective rehabilitation treatment after injury, it can be transformed into chronic cumulative injury. Curcumin, an herbal ingredient, has been found to promote skeletal muscle injury repair and regeneration. The Wnt5a pathway is related to the expression of myogenic regulatory factors, and Ca2+ promotes the differentiation and fusion process of myoblasts. This study explored the effect and mechanism of curcumin on myoblast differentiation during the repair and regeneration of injured skeletal muscle and its relationship with the Wnt5a pathway and Ca2+ channel. METHODS: Myogenic differentiation of C2C12 cells was induced with 2% horse serum, and a mouse (male, 10 weeks old) model of acute skeletal muscle injury was established using cardiotoxin (20 µL). In addition, we constructed a Wnt5a knockdown C2C12 cell model and a Wnt5a knockout mouse model. Besides, curcumin was added to the cell culture solution (80 mg/L) and fed to the mice (50 mg/kg). Fluorescence microscopy was used to determine the concentration of Ca2+. Western blot and RT-qPCR were used to detect the protein and mRNA levels of Wnt5a, CaN, NFAT2, MyoD, Myf5, Pax7, and Myogenin. The expression levels of MyoD, Myf5, Myogenin, MHC, Desmin, and NFAT2 were detected using immunofluorescence techniques. In addition, MyoD expression was observed using immunohistochemistry, and morphological changes in mouse muscle tissue were observed using HE staining. RESULTS: During myoblast differentiation and muscle regeneration, Wnt5a expression was upregulated (P < 0.001) and the Wnt5a signalling pathway was activated. Wnt5a overexpression promoted the expression of MyoD, Myf5, Myogenin, MHC, and Desmin (P < 0.05), and conversely, knockdown of Wnt5a inhibited their expression (P < 0.001). The Wnt5a pathway mediated the opening of Ca2+ channels, regulated the expression levels of CaN, NFAT2, MyoD, Myf5, Myogenin, MHC, and Desmin (P < 0.01) and promoted the differentiation of C2C12 myoblasts and the repair and regeneration of injured skeletal muscle. The expression of Wnt5a, CaN, NFAT2, MyoD, Myogenin, Myf5, and MHC in C2C12 myoblast was significantly increased after curcumin intervention (P < 0.05); however, their expression decreased significantly after knocking down Wnt5a on the basis of curcumin intervention (P < 0.05). Similarly, in Wnt5a knockout mice, the promotion of muscle regeneration by curcumin was significantly attenuated. CONCLUSIONS: Curcumin can activate the Wnt5a signalling pathway and mediate the opening of Ca2+ channels to accelerate the myogenic differentiation of C2C12 cells and the repair and regeneration of injured skeletal muscle.

10.
Bioact Mater ; 40: 334-344, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38978803

RESUMEN

Volumetric muscle loss (VML) frequently results from traumatic incidents and can lead to severe functional disabilities. Hydrogels have been widely employed for VML tissue regeneration, which are unfortunately ineffective because of the lack of intimate contact with injured tissue for structural and mechanical support. Adhesive hydrogels allow for strong tissue connections for wound closure. Nevertheless, conventional adhesive hydrogels exhibit poor tissue adhesion in moist, bleeding wounds due to the hydration layer at the tissue-hydrogel interfaces, resulting in insufficient performance. In this study, we developed a novel, biocompatible, wet tissue adhesive powder hydrogel consisting of dextran-aldehyde (dex-ald) and gelatin for the regeneration of VML. This powder absorbs the interfacial tissue fluid and buffer solution on the tissue, spontaneously forms a hydrogel, and strongly adheres to the tissue via various molecular interactions, including the Schiff base reaction. In particular, the powder composition with a 1:4 ratio of dex-ald to gelatin exhibited optimal characteristics with an appropriate gelation time (258 s), strong tissue adhesion (14.5 kPa), and stability. Dex-ald/gelatin powder hydrogels presented strong adhesion to various organs and excellent hemostasis compared to other wet hydrogels and fibrin glue. A mouse VML injury model revealed that the dex-ald/gelatin powder hydrogel significantly improved muscle regeneration, reduced fibrosis, enhanced vascularization, and decreased inflammation. Consequently, our wet-adhesive powder hydrogel can serve as an effective platform for repairing various tissues, including the heart, muscle, and nerve tissues.

11.
EMBO Rep ; 25(8): 3627-3650, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38982191

RESUMEN

Skeletal muscle regeneration involves a signaling network that regulates the proliferation, differentiation, and fusion of muscle precursor cells to injured myofibers. IRE1α, one of the arms of the unfolded protein response, regulates cellular proteostasis in response to ER stress. Here, we demonstrate that inducible deletion of IRE1α in satellite cells of mice impairs skeletal muscle regeneration through inhibiting myoblast fusion. Knockdown of IRE1α or its downstream target, X-box protein 1 (XBP1), also inhibits myoblast fusion during myogenesis. Transcriptome analysis revealed that knockdown of IRE1α or XBP1 dysregulates the gene expression of molecules involved in myoblast fusion. The IRE1α-XBP1 axis mediates the gene expression of multiple profusion molecules, including myomaker (Mymk). Spliced XBP1 (sXBP1) transcription factor binds to the promoter of Mymk gene during myogenesis. Overexpression of myomaker in IRE1α-knockdown cultures rescues fusion defects. Inducible deletion of IRE1α in satellite cells also inhibits myoblast fusion and myofiber hypertrophy in response to functional overload. Collectively, our study demonstrates that IRE1α promotes myoblast fusion through sXBP1-mediated up-regulation of the gene expression of multiple profusion molecules, including myomaker.


Asunto(s)
Fusión Celular , Endorribonucleasas , Desarrollo de Músculos , Músculo Esquelético , Mioblastos , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteína 1 de Unión a la X-Box , Animales , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Mioblastos/metabolismo , Mioblastos/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/citología , Desarrollo de Músculos/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Células Satélite del Músculo Esquelético/metabolismo , Regeneración/genética , Diferenciación Celular/genética , Regulación de la Expresión Génica , Proteínas de la Membrana , Proteínas Musculares
12.
Ann Biomed Eng ; 52(9): 2325-2347, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39085677

RESUMEN

Severe injuries to skeletal muscles, including cases of volumetric muscle loss (VML), are linked to substantial tissue damage, resulting in functional impairment and lasting disability. While skeletal muscle can regenerate following minor damage, extensive tissue loss in VML disrupts the natural regenerative capacity of the affected muscle tissue. Existing clinical approaches for VML, such as soft-tissue reconstruction and advanced bracing methods, need to be revised to restore tissue function and are associated with limitations in tissue availability and donor-site complications. Advancements in tissue engineering (TE), particularly in scaffold design and the delivery of cells and growth factors, show promising potential for regenerating damaged skeletal muscle tissue and restoring function. This article provides a brief overview of the pathophysiology of VML and critiques the shortcomings of current treatments. The subsequent section focuses on the criteria for designing TE scaffolds, offering insights into various natural and synthetic biomaterials and cell types for effectively regenerating skeletal muscle. We also review multiple TE strategies involving both acellular and cellular scaffolds to encourage the development and maturation of muscle tissue and facilitate integration, vascularization, and innervation. Finally, the article explores technical challenges hindering successful translation into clinical applications.


Asunto(s)
Músculo Esquelético , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Ingeniería de Tejidos/métodos , Animales , Regeneración
13.
J Orthop Res ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967130

RESUMEN

Chronic rotator cuff (RC) injuries can lead to a degenerative microenvironment that favors chronic inflammation, fibrosis, and fatty infiltration. Recovery of muscle structure and function will ultimately require a complex network of muscle resident cells, including satellite cells, fibro-adipogenic progenitors (FAPs), and immune cells. Recent work suggests that signaling from adipose tissue and progenitors could modulate regeneration and recovery of function, particularly promyogenic signaling from brown or beige adipose (BAT). In this study, we sought to identify cellular targets of BAT signaling during muscle regeneration using a RC BAT transplantation mouse model. Cardiotoxin injured supraspinatus muscle had improved mass at 7 days postsurgery (dps) when transplanted with exogeneous BAT. Transcriptional analysis revealed transplanted BAT modulates FAP signaling early in regeneration likely via crosstalk with immune cells. However, this conferred no long-term benefit as muscle mass and function were not improved at 28 dps. To eliminate the confounding effects of endogenous BAT, we transplanted BAT in the "BAT-free" uncoupling protein-1 diphtheria toxin fragment A (UCP1-DTA) mouse and here found improved muscle contractile function, but not mass at 28 dps. Interestingly, the transplanted BAT increased fatty infiltration in all experimental groups, implying modulation of FAP adipogenesis during regeneration. Thus, we conclude that transplanted BAT modulates FAP signaling early in regeneration, but does not grant long-term benefits.

14.
Adv Sci (Weinh) ; : e2405299, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037903

RESUMEN

During the process of muscle regeneration post-injury in adults, muscle stem cells (MuSCs) function is facilitated by neighboring cells within the pro-regenerative niche. However, the precise mechanism triggering the initiation of signaling in the pro-regenerative niche remains unknown. Using single-cell RNA sequencing, 14 different muscle cells are comprehensively mapped during the initial stage following injury. Among these, macrophages and fibro-adipogenic progenitor cells (FAPs) exhibit the most pronounced intercellular communication with other cells. In the FAP subclusters, the study identifies an activated FAP phenotype that secretes chemokines, such as CXCL1, CXCL5, CCL2, and CCL7, to recruit macrophages after injury. Il1rl1, encoding the protein of the interleukin-33 (IL-33) receptor, is identified as a highly expressed signature surface marker of the FAP phenotype. Following muscle injury, autocrine IL-33, an alarmin, has been observed to activate quiescent FAPs toward this inflammatory phenotype through the IL1RL1-MAPK/NF-κB signaling pathway. Il1rl1 deficiency results in decreased chemokine expression and recruitment of macrophages, accompanied by impaired muscle regeneration. These findings elucidate a novel mechanism involving the IL-33/IL1RL1 signaling pathway in promoting the activation of FAPs and facilitating muscle regeneration, which can aid the development of therapeutic strategies for muscle-related disorders and injuries.

15.
Int J Biol Sci ; 20(9): 3530-3543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993551

RESUMEN

During muscle regeneration, interferon-gamma (IFN-γ) coordinates inflammatory responses critical for activation of quiescent muscle stem cells upon injury via the Janus kinase (JAK) - signal transducer and activator of transcription 1 (STAT1) pathway. Dysregulation of JAK-STAT1 signaling results in impaired muscle regeneration, leading to muscle dysfunction or muscle atrophy. Until now, the underlying molecular mechanism of how JAK-STAT1 signaling resolves during muscle regeneration remains largely elusive. Here, we demonstrate that epithelial-stromal interaction 1 (Epsti1), an interferon response gene, has a crucial role in regulating the IFN-γ-JAK-STAT1 signaling at early stage of muscle regeneration. Epsti1-deficient mice exhibit impaired muscle regeneration with elevated inflammation response. In addition, Epsti1-deficient myoblasts display aberrant interferon responses. Epsti1 interacts with valosin-containing protein (VCP) and mediates the proteasomal degradation of IFN-γ-activated STAT1, likely contributing to dampening STAT1-mediated inflammation. In line with the notion, mice lacking Epsti1 exhibit exacerbated muscle atrophy accompanied by increased inflammatory response in cancer cachexia model. Our study suggests a crucial function of Epsti1 in the resolution of IFN-γ-JAK-STAT1 signaling through interaction with VCP which provides insights into the unexplored mechanism of crosstalk between inflammatory response and muscle regeneration.


Asunto(s)
Interferón gamma , Regeneración , Factor de Transcripción STAT1 , Factor de Transcripción STAT1/metabolismo , Animales , Ratones , Regeneración/fisiología , Interferón gamma/metabolismo , Transducción de Señal , Inflamación/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Cells ; 13(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38995013

RESUMEN

Skeletal muscle regeneration after injury is a complex process involving inflammatory signaling and myoblast activation. Pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) are key mediators, but their effects on gene expression in proliferating myoblasts are unclear. We performed the RNA sequencing of TNF-α treated C2C12 myoblasts to elucidate the signaling pathways and gene networks regulated by TNF-α during myoblast proliferation. The TNF-α (10 ng/mL) treatment of C2C12 cells led to 958 differentially expressed genes compared to the controls. Pathway analysis revealed significant regulation of TNF-α signaling, along with the chemokine and IL-17 pathways. Key upregulated genes included cytokines (e.g., IL-6), chemokines (e.g., CCL7), and matrix metalloproteinases (MMPs). TNF-α increased myogenic factor 5 (Myf5) but decreased MyoD protein levels and stimulated the release of MMP-9, MMP-10, and MMP-13. TNF-α also upregulates versican and myostatin mRNA. Overall, our study demonstrates the TNF-α modulation of distinct gene expression patterns and signaling pathways that likely contribute to enhanced myoblast proliferation while suppressing premature differentiation after muscle injury. Elucidating the mechanisms involved in skeletal muscle regeneration can aid in the development of regeneration-enhancing therapeutics.


Asunto(s)
Proliferación Celular , Mioblastos , Transducción de Señal , Factor de Necrosis Tumoral alfa , Mioblastos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proliferación Celular/efectos de los fármacos , Animales , Ratones , Línea Celular , Quimiocinas/metabolismo , Quimiocinas/genética , Citocinas/metabolismo , Citocinas/genética , Regulación de la Expresión Génica/efectos de los fármacos
17.
Dev Cell ; 59(17): 2375-2392.e8, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38848717

RESUMEN

The histone H3 lysine 9 methyltransferase SETDB1 controls transcriptional repression to direct stem cell fate. Here, we show that Setdb1 expression by adult muscle stem cells (MuSCs) is required for skeletal muscle regeneration. We find that SETDB1 represses the expression of endogenous retroviruses (ERVs) in MuSCs. ERV de-repression in Setdb1-null MuSCs prevents their amplification following exit from quiescence and promotes cell death. Multi-omics profiling shows that chromatin decompaction at ERV loci activates the DNA-sensing cGAS-STING pathway, entailing cytokine expression by Setdb1-null MuSCs. This is followed by aberrant infiltration of inflammatory cells, including pathological macrophages. The ensuing histiocytosis is accompanied by myofiber necrosis, which, in addition to progressive MuSCs depletion, completely abolishes tissue repair. In contrast, loss of Setdb1 in fibro-adipogenic progenitors (FAPs) does not impact immune cells. In conclusion, genome maintenance by SETDB1 in an adult somatic stem cell is necessary for both its regenerative potential and adequate reparative inflammation.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Inflamación , Desarrollo de Músculos , Regeneración , Animales , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Inflamación/patología , Inflamación/metabolismo , Inflamación/genética , Regeneración/genética , Desarrollo de Músculos/genética , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Retrovirus Endógenos/genética , Células Madre/metabolismo , Células Madre/citología , Genoma , Diferenciación Celular/genética
18.
Front Cell Dev Biol ; 12: 1385399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840849

RESUMEN

Skeletal muscle regeneration relies on the intricate interplay of various cell populations within the muscle niche-an environment crucial for regulating the behavior of muscle stem cells (MuSCs) and ensuring postnatal tissue maintenance and regeneration. This review delves into the dynamic interactions among key players of this process, including MuSCs, macrophages (MPs), fibro-adipogenic progenitors (FAPs), endothelial cells (ECs), and pericytes (PCs), each assuming pivotal roles in orchestrating homeostasis and regeneration. Dysfunctions in these interactions can lead not only to pathological conditions but also exacerbate muscular dystrophies. The exploration of cellular and molecular crosstalk among these populations in both physiological and dystrophic conditions provides insights into the multifaceted communication networks governing muscle regeneration. Furthermore, this review discusses emerging strategies to modulate the muscle-regenerating niche, presenting a comprehensive overview of current understanding and innovative approaches.

19.
Acute Crit Care ; 39(2): 226-233, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38863353

RESUMEN

Post-intensive care syndrome (PICS) refers to persistent or new onset physical, mental, and neurocognitive complications that can occur following a stay in the intensive care unit. PICS encompasses muscle weakness; neuropathy; cognitive deficits including memory, executive, and attention impairments; post-traumatic stress disorder; and other mood disorders. PICS can last long after hospital admission and can cause significant physical, emotional, and financial stress for patients and their families. Several modifiable risk factors, such as duration of sepsis, delirium, and mechanical ventilation, are associated with PICS. However, due to limited awareness about PICS, these factors are often overlooked. The objective of this paper is to highlight the pathophysiology, clinical features, diagnostic methods, and available preventive and treatment options for PICS.

20.
Skelet Muscle ; 14(1): 13, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867250

RESUMEN

BACKGROUND: Adult muscle-resident myogenic stem cells, satellite cells (SCs), that play non-redundant role in muscle regeneration, are intrinsically impaired in Duchenne muscular dystrophy (DMD). Previously we revealed that dystrophic SCs express low level of anti-inflammatory and anti-oxidative heme oxygenase-1 (HO-1, HMOX1). Here we assess whether targeted induction of HMOX1 affect SC function and alleviates hallmark symptoms of DMD. METHODS: We generated double-transgenic mouse model (mdx;HMOX1Pax7Ind) that allows tamoxifen (TX)-inducible HMOX1 expression in Pax7 positive cells of dystrophic muscles. Mdx;HMOX1Pax7Ind and control mdx mice were subjected to 5-day TX injections (75 mg/kg b.w.) followed by acute exercise protocol with high-speed treadmill (12 m/min, 45 min) and downhill running to worsen skeletal muscle phenotype and reveal immediate effects of HO-1 on muscle pathology and SC function. RESULTS: HMOX1 induction caused a drop in SC pool in mdx;HMOX1Pax7Ind mice (vs. mdx counterparts), while not exaggerating the effect of physical exercise. Upon physical exercise, the proliferation of SCs and activated CD34- SC subpopulation, was impaired in mdx mice, an effect that was reversed in mdx;HMOX1Pax7Ind mice, however, both in vehicle- and TX-treated animals. This corresponded to the pattern of HO-1 expression in skeletal muscles. At the tissue level, necrotic events of selective skeletal muscles of mdx mice and associated increase in circulating levels of muscle damage markers were blunted in HO-1 transgenic animals which showed also anti-inflammatory cytokine profile (vs. mdx). CONCLUSIONS: Targeted expression of HMOX1 plays protective role in DMD and alleviates dystrophic muscle pathology.


Asunto(s)
Hemo-Oxigenasa 1 , Ratones Endogámicos mdx , Ratones Transgénicos , Músculo Esquelético , Distrofia Muscular de Duchenne , Células Satélite del Músculo Esquelético , Animales , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Ratones , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Masculino , Ratones Endogámicos C57BL , Condicionamiento Físico Animal , Proteínas de la Membrana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA