Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.600
Filtrar
1.
Aging Cell ; : e14259, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961628

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder resulting from de novo mutations in the lamin A gene. Children with HGPS typically pass away in their teenage years due to cardiovascular diseases such as atherosclerosis, myocardial infarction, heart failure, and stroke. In this study, we characterized the G608G HGPS mouse model and explored cardiac and skeletal muscle function, along with senescence-associated phenotypes in fibroblasts. Homozygous G608G HGPS mice exhibited cardiac dysfunction, including decreased cardiac output and stroke volume, and impaired left ventricle relaxation. Additionally, skeletal muscle exhibited decreased isometric tetanic torque, muscle atrophy, and increased fibrosis. HGPS fibroblasts showed nuclear abnormalities, decreased proliferation, and increased expression of senescence markers. These findings provide insights into the pathophysiology of the G608G HGPS mouse model and inform potential therapeutic strategies for HGPS.

2.
Intern Med ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987186

RESUMEN

A 75-year-old woman presented with significant muscle weakness after statin use. A muscle biopsy revealed necrotizing myopathy, and the patient tested positive for serum anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) antibodies, leading to a diagnosis of anti-HMGCR immune-mediated necrotizing myopathy (IMNM). Computed tomography revealed intraperitoneal lymphadenopathy, which was diagnosed as a diffuse large B-cell lymphoma. Immunostaining confirmed HMGCR expression in the lymphoma cells. The patient received chemotherapy and achieved complete remission of the lymphoma, along with nearly complete recovery from IMNM. Although the etiologies of IMNM and lymphoma remain unclear, HMGCR expression in lymphoma cells is likely to be associated with the development of IMNM.

3.
Genome Med ; 16(1): 87, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982518

RESUMEN

BACKGROUND: Congenital myopathies are severe genetic diseases with a strong impact on patient autonomy and often on survival. A large number of patients do not have a genetic diagnosis, precluding genetic counseling and appropriate clinical management. Our objective was to find novel pathogenic variants and genes associated with congenital myopathies and to decrease diagnostic odysseys and dead-end. METHODS: To identify pathogenic variants and genes implicated in congenital myopathies, we established and conducted the MYOCAPTURE project from 2009 to 2018 to perform exome sequencing in a large cohort of 310 families partially excluded for the main known genes. RESULTS: Pathogenic variants were identified in 156 families (50%), among which 123 families (40%) had a conclusive diagnosis. Only 44 (36%) of the resolved cases were linked to a known myopathy gene with the corresponding phenotype, while 55 (44%) were linked to pathogenic variants in a known myopathy gene with atypical signs, highlighting that most genetic diagnosis could not be anticipated based on clinical-histological assessments in this cohort. An important phenotypic and genetic heterogeneity was observed for the different genes and for the different congenital myopathy subtypes, respectively. In addition, we identified 14 new myopathy genes not previously associated with muscle diseases (20% of all diagnosed cases) that we previously reported in the literature, revealing novel pathomechanisms and potential therapeutic targets. CONCLUSIONS: Overall, this approach illustrates the importance of massive parallel gene sequencing as a comprehensive tool for establishing a molecular diagnosis for families with congenital myopathies. It also emphasizes the contribution of clinical data, histological findings on muscle biopsies, and the availability of DNA samples from additional family members to the diagnostic success rate. This study facilitated and accelerated the genetic diagnosis of congenital myopathies, improved health care for several patients, and opened novel perspectives for either repurposing of existing molecules or the development of novel treatments.


Asunto(s)
Secuenciación del Exoma , Estudios de Asociación Genética , Fenotipo , Humanos , Masculino , Femenino , Predisposición Genética a la Enfermedad , Mutación , Exoma/genética , Linaje , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/congénito , Niño , Adulto
4.
MedComm (2020) ; 5(7): e649, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988494

RESUMEN

Skeletal muscle is an important motor organ with multinucleated myofibers as its smallest cellular units. Myofibers are formed after undergoing cell differentiation, cell-cell fusion, myonuclei migration, and myofibril crosslinking among other processes and undergo morphological and functional changes or lesions after being stimulated by internal or external factors. The above processes are collectively referred to as myogenesis. After myofibers mature, the function and behavior of skeletal muscle are closely related to the voluntary movement of the body. In this review, we systematically and comprehensively discuss the physiological and pathological processes associated with skeletal muscles from five perspectives: molecule basis, myogenesis, biological function, adaptive changes, and myopathy. In the molecular structure and myogenesis sections, we gave a brief overview, focusing on skeletal muscle-specific fusogens and nuclei-related behaviors including cell-cell fusion and myonuclei localization. Subsequently, we discussed the three biological functions of skeletal muscle (muscle contraction, thermogenesis, and myokines secretion) and its response to stimulation (atrophy, hypertrophy, and regeneration), and finally settled on myopathy. In general, the integration of these contents provides a holistic perspective, which helps to further elucidate the structure, characteristics, and functions of skeletal muscle.

5.
World J Clin Cases ; 12(19): 3665-3670, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38994273

RESUMEN

In this editorial, comments are made on an interesting article in the recent issue of the World Journal of Clinical Cases by Wang and Long. The authors describe the use of neural network model to identify risk factors for the development of intensive care unit (ICU)-acquired weakness. This condition has now become common with an increasing number of patients treated in ICUs and continues to be a source of morbidity and mortality. Despite identification of certain risk factors and corrective measures thereof, lacunae still exist in our understanding of this clinical entity. Numerous possible pathogenetic mechanisms at a molecular level have been described and these continue to be increasing. The amount of retrievable data for analysis from the ICU patients for study can be huge and enormous. Machine learning techniques to identify patterns in vast amounts of data are well known and may well provide pointers to bridge the knowledge gap in this condition. This editorial discusses the current knowledge of the condition including pathogenesis, diagnosis, risk factors, preventive measures, and therapy. Furthermore, it looks specifically at ICU acquired weakness in recipients of lung transplantation, because - unlike other solid organ transplants- muscular strength plays a vital role in the preservation and survival of the transplanted lung. Lungs differ from other solid organ transplants in that the proper function of the allograft is dependent on muscle function. Muscular weakness especially diaphragmatic weakness may lead to prolonged ventilation which has deleterious effects on the transplanted lung - ranging from ventilator associated pneumonia to bronchial anastomotic complications due to prolonged positive pressure on the anastomosis.

6.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000224

RESUMEN

Pericytes are a distinct type of cells interacting with endothelial cells in blood vessels and contributing to endothelial barrier integrity. Furthermore, pericytes show mesenchymal stem cell properties. Muscle-derived pericytes can demonstrate both angiogenic and myogenic capabilities. It is well known that regenerative abilities and muscle stem cell potential decline during aging, leading to sarcopenia. Therefore, this study aimed to investigate the potential of pericytes in supporting muscle differentiation and angiogenesis in elderly individuals and in patients affected by Ullrich congenital muscular dystrophy or by Bethlem myopathy, two inherited conditions caused by mutations in collagen VI genes and sharing similarities with the progressive skeletal muscle changes observed during aging. The study characterized pericytes from different age groups and from individuals with collagen VI deficiency by mass spectrometry-based proteomic and bioinformatic analyses. The findings revealed that aged pericytes display metabolic changes comparable to those seen in aging skeletal muscle, as well as a decline in their stem potential, reduced protein synthesis, and alterations in focal adhesion and contractility, pointing to a decrease in their ability to form blood vessels. Strikingly, pericytes from young patients with collagen VI deficiency showed similar characteristics to aged pericytes, but were found to still handle oxidative stress effectively together with an enhanced angiogenic capacity.


Asunto(s)
Colágeno Tipo VI , Pericitos , Proteoma , Humanos , Pericitos/metabolismo , Colágeno Tipo VI/metabolismo , Colágeno Tipo VI/genética , Proteoma/metabolismo , Células Cultivadas , Adulto , Persona de Mediana Edad , Anciano , Envejecimiento/metabolismo , Proteómica/métodos , Masculino , Femenino , Estrés Oxidativo , Diferenciación Celular
7.
Animals (Basel) ; 14(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38998058

RESUMEN

(1) Background: An adult dog was presented to a board-certified veterinary neurologist for evaluation of chronic weakness, exercise intolerance and lactic acidemia. (2) Methods: A mitochondrial myopathy was diagnosed based on the histological and histochemical phenotype of numerous COX-negative muscle fibers. Whole-genome sequencing established the presence of multiple extended deletions in the mitochondrial DNA (mtDNA), with the highest prevalence between the 1-11 kb positions of the approximately 16 kb mitochondrial chromosome. Such findings are typically suggestive of an underlying nuclear genome variant affecting mitochondrial replication, repair, or metabolism. (3) Results: Numerous variants in the nuclear genome unique to the case were identified in the whole-genome sequence data, and one, the insertion of a DYNLT1 retrogene, whose parent gene is a regulator of the mitochondrial voltage-dependent anion channel (VDAC), was considered a plausible causal variant. (4) Conclusions: Here, we add mitochondrial deletion disorders to the spectrum of myopathies affecting adult dogs.

8.
J Clin Med ; 13(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999487

RESUMEN

Atrial fibrillation (AF) is the most common cardiac sustained arrhythmia, and it is associated with increased stroke and dementia risk. While the established paradigm attributes these complications to blood stasis within the atria and subsequent thrombus formation with cerebral embolization, recent evidence suggests that atrial myopathy (AM) may play a key role. AM is characterized by structural and functional abnormalities of the atria, and can occur with or without AF. Moving beyond classifications based solely on episode duration, the 4S-AF characterization has offered a more comprehensive approach, incorporating patient's stroke risk, symptom severity, AF burden, and substrate assessment (including AM) for tailored treatment decisions. The "ABC" pathway emphasizes anticoagulation, symptom control, and cardiovascular risk modification and emerging evidence suggests broader benefits of early rhythm control strategies, potentially reducing stroke and dementia risk and improving clinical outcomes. However, a better integration of AM assessment into the current framework holds promise for further personalizing AF management and optimizing patient outcomes. This review explores the emerging concept of AM and its potential role as a risk factor for stroke and dementia and in AF patients' management strategies, highlighting the limitations of current risk stratification methods, like the CHA2DS2-VASc score. Echocardiography, particularly left atrial (LA) strain analysis, has shown to be a promising non-invasive tool for AM evaluation and recent studies suggest that LA strain analysis may be a more sensitive risk stratifier for thromboembolic events than AF itself, with some studies showing a stronger association between LA strain and thromboembolic events compared to traditional risk factors. Integrating it into routine clinical practice could improve patient management and targeted therapies for AF and potentially other thromboembolic events. Future studies are needed to explore the efficacy and safety of anticoagulation in AM patients with and without AF and to refine the diagnostic criteria for AM.

9.
Elife ; 132024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995680

RESUMEN

Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Miopatías Estructurales Congénitas , Proteínas Nucleares , Proteínas Supresoras de Tumor , Dominios Homologos src , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/genética , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Dinamina II/metabolismo , Dinamina II/genética , Mutación
10.
Poult Sci ; 103(9): 103921, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-39013298

RESUMEN

Heat stress (HS) and water scarcity are significant challenges to sustainable poultry production worldwide. It is, therefore, critical to identify effective strategies to prevent, withstand, or adapt to these challenges. After four generations of divergent selection for water efficiency, the present study was undertaken to determine the effect of HS on meat quality and muscle myopathy incidences in high (HWE)- and low (LWE)-water efficient broilers. Day-old male chicks (240 chicks/line) were allotted randomly by line and body weight-matched groups to 12 controlled-environmental chambers (2 pens/chamber). At d29, birds were exposed to 2 environmental conditions (thermoneutral (TN), 25°C; or cyclic HS, 36°C, 9h/d) in a 2 × 2 factorial design. On d49, birds were processed, carcass parts were weighed, meat quality and muscle myopathy incidence were assessed. Processing data were analyzed by Two-way ANOVA and Tukey's HSD multiple comparison test, and frequency of muscle myopathy score between groups was determined using Chi-square and Fisher's exact test. Significance was set at P < 0.05. As no significant environment by line interaction was discerned, the 2 main factors were analyzed separately. High water efficient birds had significantly higher tender- and leg quarter (LQ)-weight as well as carcass without giblet (WOG), chilled carcass WOG (CWOG), wing, LQ, and rack yields compared to their LWE counterparts. Both abdominal fat content and yields were significantly greater in LWE than HWE chickens. Chronic HS exposure significantly decreased dock, WOG, fat, CWOG, breast, tender, wing, and LQ weights as well as breast yield. HWE chickens had a significantly lower b* value compared to the LWE birds and HS significantly reduced the drip loss and the b* value compared to TN condition. Compared to LWE, HWE birds had higher and lower incidence of severe woody breast (WB) and white striping (WS) under TN and HS, respectively. HS reduced the incidence of both myopathies in both lines. In conclusion, the genetic selection for water efficiency seems to improve carcass yield, reduce fat content, and decrease the breast b* value. HWE birds had higher incidences of WB and WS under TN, which is reversed under HS conditions.

11.
Pediatr Neonatol ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39013721

RESUMEN

X-linked myotubular myopathy (XLMTM) is a severe type of congenital skeletal muscle disorder usually presenting at birth requiring extensive resuscitation. While having phenotypic variability, its diagnosis carries a poor prognosis due to high rates of hospitalization and mortality by early infancy. Management of patients with XLMTM should therefore be guided by shared decision-making with parents, considering the severity and progression of the disease, quality of life, and demands on caregivers. We describe a family unit of two half-siblings presenting with the severe neonatal form of XLMTM, with varying prognosis and outcomes. Furthermore, a novel maternally-derived c.343-1G > A variant in intron-5 of the MTM1 gene was identified in this family. Hereby, we propose an algorithm for the management of XLMTM, outlining important considerations during the antenatal and postnatal follow-up period.

12.
J Clin Neurol ; 20(4): 422-430, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38951975

RESUMEN

BACKGROUND AND PURPOSE: Multiple acyl-CoA dehydrogenase deficiency (MADD) is an inherited disorder of fatty acid oxidation that causes lipid storage myopathy (LSM). This is the first report on MADD that describes the phenotypic and genetic features of a Malaysian cohort. METHODS: Among the >2,500 patients in a local muscle biopsy database, patients with LSM were identified and their genomic DNA were extracted from muscle samples and peripheral blood. All 13 exons of the electron-transfer flavoprotein dehydrogenase gene (ETFDH) were subsequently sequenced. Fifty controls were included to determine the prevalence of identified mutations in the normal population. RESULTS: Fourteen (82%) of the 17 LSM patients had MADD with ETFDH mutations. Twelve (86%) were Chinese and two were Malay sisters. Other unrelated patients reported that they had no relevant family history. Nine (64%) were females. The median age at onset was 18.5 years (interquartile range=16-37 years). All 14 demonstrated proximal limb weakness, elevated serum creatine kinase levels, and myopathic changes in electromyography. Three patients experienced a metabolic crisis at their presentation. Sanger sequencing of ETFDH revealed nine different variants/mutations, one of which was novel: c.998A>G (p.Y333C) in exon 9. Notably, 12 (86%) patients, including the 2 Malay sisters, carried a common c.250G>A (p.A84T) variant, consistent with the hotspot mutation reported in southern China. All of the patients responded well to riboflavin therapy. CONCLUSIONS: Most of our Malaysian cohort with LSM had late-onset, riboflavin-responsive MADD with ETFDH mutations, and they demonstrated phenotypic and genetic features similar to those of cases reported in southern China. Furthermore, we report a novel ETFDH mutation and possibly the first ever MADD patients of Malay descent.

13.
Gene ; : 148750, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971548

RESUMEN

Distal myopathies are a group of rare heterogeneous diseases that are mostly caused by genetic factors. At least 20 genes have been associated with distal myopathies. We performed whole-exome sequencing to identify the genetic cause of disease in a family with distal myopathy. Following the American College of Medical Genetics and Genomics (ACMG) guidelines, we analyzed the sequencing results and screened suspicious mutations based on mutation frequency, functional impact, and disease inheritance pattern. The harmfulness of the mutations was predicted using bioinformatics methods, and the pathogenic mutations were determined. We identified a novel amino acid mutation (NP_005467.1:p.S663L) on the GNE gene that may cause familial distal myopathy. This mutation is the result of the simultaneous mutation of two adjacent nucleotides (c.1988C > T, c.1989C > A) in the codon. First, we measured the mRNA and protein expression of the GNE gene in the lymphoblastoid cell lines (LCLs) of the probands and their family members. Second, GNE vectors carrying the novel mutation, two other known pathogenic mutations, and the wild-type gene were constructed and transfected into HEK293T cells. The enzymatic activity of these GNE variants was investigated and showed that the p.S663L mutation significantly reduced the activity of the bifunctional GNE enzyme without altering the expression level of the GNE protein. Furthermore, the mutation may also alter the immunogenicity of the 3' end of the GNE protein, potentially affecting its oligomer formation. In this study, a novel GNE gene mutation that may cause distal myopathy was identified, expanding the spectrum of genetic mutations associated with this disease.

14.
Dermatol Reports ; 16(2): 9771, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38979520

RESUMEN

A subtype of cutaneous lupus erythematosus known as lupus erythematosus tumidus (LET) is characterized by sun-exposed areas that typically display urticaria-like papules and plaques. For LET, systemic therapy with antimalarials - particularly hydroxychloroquine (HCQ) - is the first line of treatment. Even though the safety profile of these medications appears to be high, there have been very few reports of side effects in the literature, including hemolytic anemia, retinal toxicity, maculopapular rash, gastrointestinal disturbance, and blue-gray discoloration of the skin or mucous membranes. Here, we report a unique instance of a 46-year-old LET smoker who, following HCQ treatment, developed a generalized myopathy.

15.
World J Clin Cases ; 12(18): 3644-3647, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38983411

RESUMEN

Intensive care unit-acquired weakness (ICU-AW; ICD-10 Code: G72.81) is a syndrome of generalized weakness described as clinically detectable weakness in critically ill patients with no other credible cause. The risk factors for ICU-AW include hyperglycemia, parenteral nutrition, vasoactive drugs, neuromuscular blocking agents, corticosteroids, sedatives, some antibiotics, immobilization, the disease severity, septicemia and systemic inflammatory response syndrome, multiorgan failure, prolonged mechanical ventilation (MV), high lactate levels, older age, female sex, and pre-existing systemic morbidities. There is a definite association between the duration of ICU stay and MV with ICU-AW. However, the interpretation that these are modifiable risk factors influencing ICU-AW, appears to be flawed, because the relationship between longer ICU stays and MV with ICU-AW is reciprocal and cannot yield clinically meaningful strategies for the prevention of ICU-AW. Prevention strategies must be based on other risk factors. Large multicentric randomized controlled trials as well as meta-analysis of such studies can be a more useful approach towards determining the influence of these risk factors on the occurrence of ICU-AW in different populations.

16.
Cell Calcium ; 123: 102926, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38959763

RESUMEN

Two recent papers have highlighted that STIM1, a key component of Store-operated Ca2+-entry, is able to translocate to the nucleus and participate in nuclear Ca2+-handling and in DNA repair. These finding opens new avenues on the role that this Ca2+-sensing protein may have in health and disease.

17.
Mol Genet Genomic Med ; 12(7): e2480, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38958145

RESUMEN

BACKGROUND: Pompe Disease (PD) is a metabolic myopathy caused by variants in the GAA gene, resulting in deficient enzymatic activity. We aimed to characterize the clinical features and related genetic variants in a series of Mexican patients. METHODS: We performed a retrospective study of clinical records of patients diagnosed with LOPD, IOPD or pseudodeficiency. RESULTS: Twenty-nine patients were included in the study, comprising these three forms. Overall, age of symptom onset was 0.1 to 43 years old. The most frequent variant identified was c.-32-13T>G, which was detected in 14 alleles. Among the 23 different variants identified in the GAA gene, 14 were classified as pathogenic, 5 were likely pathogenic, and 1 was a variant of uncertain significance. Two variants were inherited in cis arrangement and 2 were pseudodeficiency-related benign alleles. We identified two novel variants (c.1615 G>A and c.1076-20_1076-4delAAGTCGGCGTTGGCCTG). CONCLUSION: To the best of our knowledge, this series represent the largest phenotypic and genotypic characterization of patients with PD in Mexico. Patients within our series exhibited a combination of LOPD and IOPD associated variants, which may be related to genetic diversity within Mexican population. Further population-wide studies are required to better characterize the incidence of this disease in Mexican population.


Asunto(s)
Edad de Inicio , Enfermedad del Almacenamiento de Glucógeno Tipo II , Mutación , alfa-Glucosidasas , Humanos , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Masculino , Femenino , Preescolar , Niño , Adulto , alfa-Glucosidasas/genética , Lactante , México/epidemiología , Adolescente , Fenotipo , Estudios Retrospectivos , Estudios de Asociación Genética , Alelos , Adulto Joven
18.
J Neuromuscul Dis ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38968056

RESUMEN

Background: Congenital myopathies (CMs) are a diverse group of inherited muscle disorders with broad genotypic and phenotypic heterogeneity. While the literature on CM is available from European countries, comprehensive data from the Indian subcontinent is lacking. Objectives: This study aims to describe the clinical and histopathological characteristics of a cohort of genetically confirmed CMs from India and attempts to do phenotype-genotype correlation. Methods: A retrospective chart review of genetically confirmed CMs was evaluated between January 2016 and December 2020 at the neuromuscular clinic. The clinical, genetic, and follow-up data were recorded in a pre-structured proforma as per the medical records, and the data was analyzed. Results: A total of 31(M: F = 14 : 17) unrelated patients were included. The median age at onset and duration of illness are 2.0(IQR:1-8) years and 6.0(IQR:3-10) years respectively. Clinical features observed were proximodistal weakness (54.8%), facial weakness (64.5%), and myopathic facies (54.8%), followed by ptosis (33.3%), and ophthalmoplegia (19.4%). Muscle histopathology was available in 38.7% of patients, and centronuclear myopathy was the most common histopathology finding. The pathogenic genetic variants were identified in RYR1 (29.0%), DNM2 (19.4%), SELENON (12.9%), KBTBD13 (9.7%), NEB (6.5%), and MYPN (6.5%) genes. Novel mutations were observed in 30.3% of the cohort. Follow-up details were available in 77.4% of children, and the median duration of follow-up and age at last follow-up was 4.5 (Range 0.5-11) years and 13 (Range 3-35) years, respectively. The majority were ambulant with minimal assistance at the last follow-up. Mortality was noted in 8.3% due to respiratory failure in Centronuclear myopathy 1 and congenital myopathy 3 with rigid spines (SELENON). Conclusion: This study highlights the various phenotypes and patterns of genetic mutations in a cohort of pediatric patients with congenital myopathy from India. Centronuclear myopathy was the most common histological classification and the mutations in RYR1 followed by DNM2 gene were the common pathogenic variants identified. The majority were independent in their activities of daily living during the last follow-up, highlighting the fact that the disease has slow progression irrespective of the genotype.

19.
Equine Vet J ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965932

RESUMEN

BACKGROUND: Equine exercise-associated myopathies are prevalent, clinically heterogeneous, generally idiopathic disorders characterised by episodes of myofibre damage that occur in association with exercise. Episodes are intermittent and vary within and between affected horses and across breeds. The aetiopathogenesis is often unclear; there might be multiple causes. Poor phenotypic characterisation hinders genetic and other disease analyses. OBJECTIVES: The aim of this study was to characterise phenotypic patterns across exercise-associated myopathies in horses. STUDY DESIGN: Historical cross-sectional study, with subsequent masked case-control validation study. METHODS: Historical clinical and histological features from muscle samples (n = 109) were used for k-means clustering and validated using principal components analysis and hierarchical clustering. For further validation, a blinded histological study (69 horses) was conducted comparing two phenotypic groups with selected controls and horses with histopathological features characterised by myofibrillar disruption. RESULTS: We identified two distinct broad phenotypes: a non-classic exercise-associated myopathy syndrome (EAMS) subtype was associated with practitioner-described signs of apparent muscle pain (p < 0.001), reluctance to move (10.85, p = 0.001), abnormal gait (p < 0.001), ataxia (p = 0.001) and paresis (p = 0.001); while a non-specific classic RER subtype was not uniquely associated with any particular variables. No histological differences were identified between subtypes in the validation study, and no identifying histopathological features for other equine myopathies identified in either subtype. MAIN LIMITATIONS: Lack of an independent validation population; small sample size of smaller identified subtypes; lack of positive control myofibrillar myopathy cases; case descriptions derived from multiple independent and unblinded practitioners. CONCLUSIONS: This is the first study using computational clustering methods to identify phenotypic patterns in equine exercise-associated myopathies, and suggests that differences in patterns of presenting clinical signs support multiple disease subtypes, with EAMS a novel subtype not previously described. Routine muscle histopathology was not helpful in sub-categorising the phenotypes in our population.


CONTEXTE: Les myopathies induites à l'exercice demeurent fréquentes, hétérogènes cliniquement et représentent des désordres idiopathiques caractérisés par des épisodes de dommages myofibrillaires en lien avec l'exercice. Les épisodes sont intermittents et varient à la fois chez le même cheval, entre chevaux et entre les différentes races. L'étiopathogénie demeure obscure et pourrait être multifactorielle. La pauvre caractérisation phénotypique des myopathies ne simplifie pas les analyses génétiques ni celles d'autres maladies. OBJECTIFS: Le but de cette étude est de caractériser les patrons phénotypiques en lien avec les myopathies induites à l'exercice chez le cheval. TYPE D'ÉTUDE: Étude transversale historique et étude subséquente de validation de cas témoins aveugle. MÉTHODES: Les facteurs clés cliniques et histologiques provenant d'échantillons de muscles (n = 109) ont été utilisés pour l'algorithme de K­moyennes et validés par le biais d'analyse des composantes principales et de classification hiérarchique. Pour validation additionnelle, une étude histologique à l'aveugle (69 chevaux) a été faite comparant les deux groupes phénotypiques avec des contrôles sélectionnés et des chevaux avec éléments histopathologiques caractérisés par de la discontinuité myofibrillaire. RÉSULTATS: Deux phénotypes distincts ont été identifiés: un premier sous­type de syndrome de myopathie induite à l'exercice non­classique (EAMS) associé à de la douleur musculaire telle que décrite par le praticien suivant le cheval (χ2 (df=1,n=109) = 19.33, p < 0.001), difficulté à se déplacer (χ2 (df=1,n=109) = 10.85, p = 0.001), démarche anormale (χ2 (df=1,n=109) = 34.61, p < 0.001), ataxie (χ2 (df=1,n=109) = 10.88, p = 0.001) et parésie (χ2 (df=1,n=109) = 10.88, p = 0.001); alors qu'un sous­type RER classique non­spécifique n'était associé à aucune variable en particulier. Aucune différente histologique n'a été identifié entre les sous­types dans l'étude de validation et aucune caractéristique histopathologique d'autres myopathies équines n'a été identifiées dans les différents sous­types. LIMITES PRINCIPALES: Aucune population indépendante pour validation; petite taille d'échantillon pour les sous­types peu nombreux identifiés; aucun cas contrôles positifs de myopathie fibrillaire; description des cas provenant de multiples praticiens indépendants et non­aveugles. CONCLUSION: Cette étude est la première utilisant des méthodes de regroupement informatique pour identifier des patrons phénotypiques de myopathies équines induites à l'exercice et suggère que des différences existent dans les patrons de signes cliniques en faveur de multiples sous­types de maladie, incluant EAMS qui représente un nouveau sous­type non décrit jusqu'à maintenant. L'histopathologie musculaire de routine n'a pas permis de sous­catégoriser les phénotypes dans cette population.

20.
Rheumatol Int ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976028

RESUMEN

Currently, standardized magnetic resonance imaging (MRI) scoring systems and protocols for assessment of idiopathic inflammatory myopathies (IIMs) in children and adults are lacking. Therefore, we will perform a scoping review of the literature to collate and evaluate the existing semi-quantitative and quantitative MRI scoring systems and protocols for the assessment and monitoring of skeletal muscle involvement in patients with IIMs. The aim is to compile evidence-based information that will facilitate the future development of a universal standardized MRI scoring system for both research and clinical applications in IIM. A systematic search of electronic databases (PubMed, EMBASE, and Cochrane) will be undertaken to identify relevant articles published between January 2000 and October 2023. Data will be synthesized narratively. This scoping review seeks to comprehensively summarize and evaluate the evidence on the scanning protocols and scoring systems used in the assessment of diagnosis, disease activity, and damage using skeletal muscle MRI in IIMs. The results will allow the development of consensus recommendations for clinical practice and enable the standardization of research methods for the MRI assessment of skeletal muscle changes in patients with IIMs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA