Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Mol Med Rep ; 30(6)2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39364756

RESUMEN

Following the publication of this article, an interested reader drew to the authors' attention that the forward and reverse primer sequences written for GAPDH in Table I on p. 3 were incorrect. Upon requesting an explanation of these errors from the authors, they realized that these sequences had been written incorrectly in the paper: The sequence of the forward primer in Table I should have been written as 5'­CAG GAGGCATTGCTGATGAT­3', and the reverse primer should have been written as 5'­GAAGGCTGGGGCTCATTT­3'. The Editorial Office also requested seeing proof of purchase of the primers used in this study from the authors. The authors are grateful to the Editor of Molecular Medicine Reports for allowing them the opportunity to publish this corrigendum, and all the authors agree with its publication. The authors also regret the inconvenience that these mistakes have caused. [Molecular Medicine Reports 23: 245, 2021; DOI: 10.3892/mmr.2021.11884].

2.
Oral Dis ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38887830

RESUMEN

OBJECTIVE: Downregulation of N-myc downstream-regulated gene 2 (NDRG2), a tumor suppressor gene, has been associated with poor clinical outcomes in various cancers. However, the prognostic significance of NDRG2 in oral squamous cell carcinoma (OSCC) remains unknown. This study aimed to evaluate the prognostic value of NDRG2 downregulation in OSCC and to elucidate the mechanism by which NDRG2 is downregulated and the biological role of NDRG2 in tumor progression. METHODS: Immunohistochemical and in silico analyses of NDRG2 expression were performed, and the correlation between NDRG2 expression and clinicopathological data was analyzed. The effect of NDRG2 knockdown on the biological behavior of OSCC cells was investigated and the effect of 5-aza-2'-deoxycytidine (5-aza-dC) on NDRG2 expression was determined. RESULTS: NDRG2 expression was significantly downregulated and DNA hypermethylation of NDRG2 was frequently found in head and neck SCC, including OSCC. Low NDRG2 expression was significantly correlated with adverse clinicopathological features and worse survival in OSCC. NDRG2 knockdown could enhance the oncogenic properties of OSCC cells. NDRG2 mRNA levels in OSCC cells could be restored by 5-aza-dC. CONCLUSION: Downregulation of NDRG2 promotes tumor progression and predicts poor prognosis in OSCC. Therefore, restoration of NDRG2 expression may be a potential therapeutic strategy in OSCC.

3.
Med Rev (2021) ; 4(3): 235-238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38919399

RESUMEN

The protein, N-myc downstream-regulated gene 2 (NDRG2), a tumor suppressor, is significantly decreased or absent in many types of cancer. There is a significant negative correlation between the levels of NDRG2 and the development and progression of cancer tumor recurrence and tumor invasion, in different cancers. In contrast, the in vitro and in vivo overexpression of the NDRG2 protein decreases the proliferation, growth, adhesion and migration of many types of cancer cells. The in vitro overexpression of NDRG2 increases the efficacy of certain anticancer drugs in specific types of cancer cells. We hypothesize that the delivery of the mRNA of the NDRG2 protein, encapsulated by lipid nanoparticles, could represent a potential treatment of metastatic and drug-resistant cancers. This would be accomplished using a self-amplifying mRNA that encodes the NDRG2 protein and an RNA-dependent-RNA polymerase, obtained from an in vitrotranscribed (IVT) mRNA. The IVT mRNA would be encapsulated in a lipid nanoformulation. The efficacy of the nanoformulation would be determined in cultured cancer cells and if the results are positive, nude mice transplanted with either drug-resistant or metastatic drug-resistant cancer cells, would be treated with the nano- formulation and monitored for efficacy and adverse effects. If the appropriate preclinical studies indicate this formulation is efficacious and safe, it is possible it could be evaluated in clinical trials.

4.
PeerJ ; 12: e17485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854800

RESUMEN

Background: Cisplatin is a commonly used nephrotoxic drug and can cause acute kidney injury (AKI). In the present study, isobaric tags for relative and absolute quantification (iTRAQ) and parallel reaction monitoring (PRM)-based comparative proteomics were used to analyze differentially expressed proteins (DEPs) to determine the key molecular mechanism in mice with cisplatin-induced AKI in the presence or absence of SIS3, a specific p-smad3 inhibitor, intervention. Methods: The cisplatin-induced AKI mouse model was established and treated with SIS3. We used iTRAQ to search for DEPs, PRM to verify key DEPs and combined Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for bioinformatics analysis. We then assessed lipid deposition, malondialdehyde (MDA) and reactive oxygen species (ROS) and detected the expression of SREBF1, SCD1, CPT1A, PPARα and NDRG1 in vitro. Results: Proteomic analysis showed that the identified DEPs were mainly enriched in energy metabolism pathways, especially in lipid metabolism. When SIS3 was applied to inhibit the phosphorylation of Smad3, the expression of NDRG1 and fatty acid oxidation key proteins CPT1A and PPARα increased, the expression of lipid synthesis related proteins SREBF1 and SCD1 decreased and the production of lipid droplets, MDA and ROS decreased. Conclusion: SIS3 alleviates oxidative stress, reduces lipid accumulation and promotes fatty acid oxidation through NDRG1 in cisplatin-induced AKI. Our study provides a new candidate protein for elucidating the molecular mechanisms of fatty acid metabolism disorders in cisplatin-induced acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Proteómica , Cisplatino/efectos adversos , Cisplatino/toxicidad , Animales , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Proteómica/métodos , Ratones , Modelos Animales de Enfermedad , Masculino , Proteína smad3/metabolismo , Proteína smad3/genética , Metabolismo de los Lípidos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/efectos adversos , Antineoplásicos/toxicidad
5.
Cancers (Basel) ; 16(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38730731

RESUMEN

Neuroblastoma (NB), the most common cancer in infants and the most common solid tumor outside the brain in children, grows aggressively and responds poorly to current therapies. We have identified a new drug (opaganib, also known as ABC294640) that modulates sphingolipid metabolism by inhibiting the synthesis of sphingosine 1-phosphate (S1P) by sphingosine kinase-2 and elevating dihydroceramides by inhibition of dihydroceramide desaturase. The present studies sought to determine the potential therapeutic activity of opaganib in cell culture and xenograft models of NB. Cytotoxicity assays demonstrated that NB cells, including cells with amplified MYCN, are effectively killed by opaganib concentrations well below those that accumulate in tumors in vivo. Opaganib was shown to cause dose-dependent decreases in S1P and hexosylceramide levels in Neuro-2a cells, while concurrently elevating levels of dihydroceramides. As with other tumor cells, opaganib reduced c-Myc and Mcl-1 protein levels in Neuro-2a cells, and also reduced the expression of the N-Myc protein. The in vivo growth of xenografts of human SK-N-(BE)2 cells with amplified MYCN was suppressed by oral administration of opaganib at doses that are well tolerated in mice. Combining opaganib with temozolomide plus irinotecan, considered the backbone for therapy of relapsed or refractory NB, resulted in increased antitumor activity in vivo compared with temozolomide plus irinotecan or opaganib alone. Mice did not lose additional weight when opaganib was combined with temozolomide plus irinotecan, indicating that the combination is well tolerated. Opaganib has additive antitumor activity toward Neuro-2a tumors when combined with the checkpoint inhibitor anti-CTLA-4 antibody; however, the combination of opaganib with anti-PD-1 or anti-PD-L1 antibodies did not provide increased antitumor activity over that seen with opaganib alone. Overall, the data demonstrate that opaganib modulates sphingolipid metabolism and intracellular signaling in NB cells and inhibits NB tumor growth alone and in combination with other anticancer drugs. Amplified MYCN does not confer resistance to opaganib, and, in fact, the drug attenuates the expression of both c-Myc and N-Myc. The safety of opaganib has been established in clinical trials with adults with advanced cancer or severe COVID-19, and so opaganib has excellent potential for treating patients with NB, particularly in combination with temozolomide and irinotecan or anti-CTLA-4 antibody.

6.
J Biol Chem ; 300(7): 107417, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815861

RESUMEN

The metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), inhibits pro-oncogenic signaling in pancreatic cancer (PC). This investigation dissected a novel mechanism induced by NDRG1 on WNT/ß-catenin signaling in multiple PC cell types. NDRG1 overexpression decreased ß-catenin and downregulated glycogen synthase kinase-3ß (GSK-3ß) protein levels and its activation. However, ß-catenin phosphorylation at Ser33, Ser37, and Thr41 are classically induced by GSK-3ß was significantly increased after NDRG1 overexpression, suggesting a GSK-3ß-independent mechanism. Intriguingly, NDRG1 overexpression upregulated protein kinase Cα (PKCα), with PKCα silencing preventing ß-catenin phosphorylation at Ser33, Ser37, and Thr41, and decreasing ß-catenin expression. Further, NDRG1 and PKCα were demonstrated to associate, with PKCα stabilization occurring after NDRG1 overexpression. PKCα half-life increased from 1.5 ± 0.8 h (3) in control cells to 11.0 ± 2.5 h (3) after NDRG1 overexpression. Thus, NDRG1 overexpression leads to the association of NDRG1 with PKCα and PKCα stabilization, resulting in ß-catenin phosphorylation at Ser33, Ser37, and Thr41. The association between PKCα, NDRG1, and ß-catenin was identified, with the formation of a potential metabolon that promotes the latter ß-catenin phosphorylation. This anti-oncogenic activity of NDRG1 was multi-modal, with the above mechanism accompanied by the downregulation of the nucleo-cytoplasmic shuttling protein, p21-activated kinase 4 (PAK4), which is involved in ß-catenin nuclear translocation, inhibition of AKT phosphorylation (Ser473), and decreased ß-catenin phosphorylation at Ser552 that suppresses its transcriptional activity. These mechanisms of NDRG1 activity are important to dissect to understand the marked anti-cancer efficacy of NDRG1-inducing thiosemicarbazones that upregulate PKCα and inhibit WNT signaling.


Asunto(s)
Proteínas de Ciclo Celular , Péptidos y Proteínas de Señalización Intracelular , Proteína Quinasa C-alfa , Vía de Señalización Wnt , beta Catenina , Humanos , beta Catenina/metabolismo , beta Catenina/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Fosforilación , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-alfa/genética , Estabilidad Proteica
7.
BMC Genomics ; 25(1): 360, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605297

RESUMEN

BACKGROUND: During mitosis the cell depends on proper attachment and segregation of replicated chromosomes to generate two identical progeny. In cancers defined by overexpression or dysregulation of the MYC oncogene this process becomes impaired, leading to genomic instability and tumor evolution. Recently it was discovered that the chromatin regulator WDR5-a critical MYC cofactor-regulates expression of genes needed in mitosis through a direct interaction with the master kinase PDPK1. However, whether PDPK1 and WDR5 contribute to similar mitotic gene regulation in MYC-overexpressing cancers remains unclear. Therefore, to characterize the influence of WDR5 and PDPK1 on mitotic gene expression in cells with high MYC levels, we performed a comparative transcriptomic analysis in neuroblastoma cell lines defined by MYCN-amplification, which results in high cellular levels of the N-MYC protein. RESULTS: Using RNA-seq analysis, we identify the genes regulated by N-MYC and PDPK1 in multiple engineered CHP-134 neuroblastoma cell lines and compare them to previously published gene expression data collected in CHP-134 cells following inhibition of WDR5. We find that as expected N-MYC regulates a multitude of genes, including those related to mitosis, but that PDPK1 regulates specific sets of genes involved in development, signaling, and mitosis. Analysis of N-MYC- and PDPK1-regulated genes reveals a small group of commonly controlled genes associated with spindle pole formation and chromosome segregation, which overlap with genes that are also regulated by WDR5. We also find that N-MYC physically interacts with PDPK1 through the WDR5-PDPK1 interaction suggesting regulation of mitotic gene expression may be achieved through a N-MYC-WDR5-PDPK1 nexus. CONCLUSIONS: Overall, we identify a small group of genes highly enriched within functional gene categories related to mitotic processes that are commonly regulated by N-MYC, WDR5, and PDPK1 and suggest that a tripartite interaction between the three regulators may be responsible for setting the level of mitotic gene regulation in N-MYC amplified cell lines. This study provides a foundation for future studies to determine the exact mechanism by which N-MYC, WDR5, and PDPK1 converge on cell cycle related processes.


Asunto(s)
Genes myc , Neuroblastoma , Humanos , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Línea Celular Tumoral , Segregación Cromosómica , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Neuroblastoma/metabolismo
8.
Neurochem Res ; 49(7): 1665-1676, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38411782

RESUMEN

Cerebral ischemic preconditioning (CIP) has been shown to improve brain ischemic tolerance against subsequent lethal ischemia. Reactive astrocytes play important roles in cerebral ischemia-reperfusion. Recent studies have shown that reactive astrocytes can be polarized into neurotoxic A1 phenotype (C3d) and neuroprotective A2 phenotype (S100A10). However, their role in CIP remains unclear. Here, we focused on the role of N-myc downstream-regulated gene 2 (NDRG2) in regulating the transformation of A1/A2 astrocytes and promoting to brain ischemic tolerance induced by CIP. A Sprague Dawley rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) was used. Rats were divided into the following six groups: (1) sham group; (2) CIP group: left middle cerebral artery was blocked for 10 min; (3) MCAO/R group: left middle cerebral artery was blocked for 90 min; (4) CIP + MCAO/R group: CIP was performed 72 h before MCAO/R; (5) AAV-NDRG2 + CIP + MCAO/R group: adeno-associated virus (AAV) carrying NDRG2 was administered 14 days before CIP + MCAO/R; (6) AAV-Ctrl + CIP + MCAO/R group: empty control group. The rats were subjected to neurological evaluation 24 h after the above treatments, and then were sacrificed for 2, 3, 5-triphenyltetraolium chloride staining, thionin staining, immunofluorescence and western blot analysis. In CIP + MCAO/R group, the neurological deficit scores decreased, infarct volume reduced, and neuronal density increased compared with MCAO/R group. Notably, CIP significantly increased S100A10 expression and the number of S100A10+/GFAP+ cells, and also increased NDRG2 expression. MCAO/R significantly decreased S100A10 expression and the number of S100A10+/GFAP+ cells yet increased C3d expression and the number of C3d+/GFAP+ cells and NDRG2 expression, and these trends were reversed by CIP + MCAO/R. Furthermore, over-expression of NDRG2 before CIP + MCAO/R, the C3d expression and the number of C3d+/GFAP+ cells increased, while S100A10 expression and the number of S100A10+/GFAP+ cells decreased. Meanwhile, over-expression of NDRG2 blocked the CIP-induced brain ischemic tolerance. Taken together, these results suggest that CIP exerts neuroprotective effects against ischemic injury by suppressing A1 astrocyte polarization and promoting A2 astrocyte polarization via inhibiting NDRG2 expression.


Asunto(s)
Astrocitos , Isquemia Encefálica , Infarto de la Arteria Cerebral Media , Precondicionamiento Isquémico , Ratas Sprague-Dawley , Animales , Precondicionamiento Isquémico/métodos , Masculino , Astrocitos/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Isquemia Encefálica/metabolismo , Ratas , Proteínas del Tejido Nervioso
9.
Drug Resist Updat ; 73: 101040, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228036

RESUMEN

AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is resistant to immune checkpoint blockade (ICB) therapies. Emerging evidence suggests that NDRG1 may be an important target for the development of new therapies for PDAC. Herein, we investigated the novel roles of NDRG1 and Combretastatin A-4 (CA-4) in the treatment of PDAC ICB resistance. METHODS: Enrichment of MHC class I was detected by RNA sequence and verified by RT-qPCR and immunoblotting in NDRG1-knockdown human pancreatic cancer cell lines. The protein degradation mode was found by stimulation with various inhibitors, and the autophagy degradation pathway was found by immunoprecipitation and immunolocalization. The roles of NDRG1 and MHC-I in immunotherapy were investigated by orthotopic solid tumors, histology, immunohistochemistry, multiplex immunofluorescence staining and flow cytometry. RESULTS: Here, we identified a previously undescribed role of NDRG1 in activating major histocompatibility complex class 1 (MHC-1) expression in pancreatic ductal adenocarcinoma (PDAC) cells through lysosomal-autophagy-dependent degradation. In mouse models of PDAC, either tumor cell overexpression or pharmacologic activation of NDRG1 leads to MHC-1 upregulation in tumor cells, which in turn promotes the infiltration and activity of CD8 + T cells, enhances anti-tumor immunity, and overcomes resistance to ICB therapy. Moreover, combination therapy of CA-4 and ICB overcomes the drug resistance of pancreatic cancer to ICB therapy. In PDAC patients, NDRG1 expression correlates with high MHC-1 expression and better survival. CONCLUSION: Our results reveal NDRG1 in PDAC cancer cells as a tumor suppressor and suggest that pharmaceutically targeting NDRG1 is a promising way to overcome pancreatic cancer resistance to immunotherapy and provides a potential therapeutic strategy for the treatment of pancreatic cancer patients.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Antígenos de Histocompatibilidad Clase I/genética , Inmunoterapia , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Microambiente Tumoral
10.
Chembiochem ; 25(2): e202300649, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37907395

RESUMEN

Using N-Myc61-89 as a starting template we showcase the systematic use of truncation and maleimide constraining to develop peptidomimetic inhibitors of the N-Myc/Aurora-A protein-protein interaction (PPI); a potential anticancer drug discovery target. The most promising of these - N-Myc73-94-N85C/G89C-mal - is shown to favour a more Aurora-A compliant binding ensemble in comparison to the linear wild-type sequence as observed through fluorescence anisotropy competition assays, circular dichroism (CD) and nuclear magnetic resonance (NMR) experiments. Further in silico investigation of this peptide in its Aurora-A bound state, by molecular dynamics (MD) simulations, imply (i) the bound conformation is more stable as a consequence of the constraint, which likely suppresses dissociation and (ii) the constraint may make further stabilizing interactions with the Aurora-A surface. Taken together this work unveils the first orthosteric N-Myc/Aurora-A inhibitor and provides useful insights on the biophysical properties and thus design of constrained peptides, an attractive therapeutic modality.


Asunto(s)
Peptidomiméticos , Peptidomiméticos/farmacología , Proteína Proto-Oncogénica N-Myc , Ciclización , Péptidos/química , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA