Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119719, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574822

RESUMEN

The cardiac Na+/Ca2+ Exchanger (NCX1) controls transmembrane calcium flux in numerous tissues. The only reversible post-translational modification established to regulate NCX1 is palmitoylation, which alters the ability of the exchanger to inactivate. Palmitoylation creates a binding site for the endogenous XIP domain, a region of the NCX1 intracellular loop established to inactivate NCX1. The binding site created by NCX1 palmitoylation sensitizes the transporter to XIP. Herein we summarize our recent knowledge on NCX1 palmitoylation and its association with cardiac pathologies, and discuss these findings in the light of the recent cryo-EM structures of human NCX1.


Asunto(s)
Lipoilación , Procesamiento Proteico-Postraduccional , Intercambiador de Sodio-Calcio , Intercambiador de Sodio-Calcio/metabolismo , Intercambiador de Sodio-Calcio/genética , Intercambiador de Sodio-Calcio/química , Humanos , Animales , Sitios de Unión , Calcio/metabolismo , Miocardio/metabolismo
2.
J Am Heart Assoc ; 13(6): e030460, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456444

RESUMEN

BACKGROUND: REST (Repressor-Element 1 [RE1]-silencing transcription factor) inhibits Na+/Ca2+exchanger-1 (Ncx1) transcription in neurons through the binding of RE1 site on brain promoter (Br) after stroke. We identified a new putative RE1 site in Ncx1 heart promoter (Ht) sequence (Ht-RE1) that participates in neuronal Ncx1 transcription. Because REST recruits DNA-methyltransferase-1 (DNMT1) and MeCP2 (methyl-CpG binding protein 2) on different neuronal genes, we investigated the role of this complex in Ncx1 transcriptional regulation after stroke. METHODS AND RESULTS: Luciferase experiments performed in SH-SY5Y cells demonstrated that Br activity was selectively decreased by REST, whereas Ht activity was reduced by DNMT1, MeCP2, and REST. Notably, site-direct mutagenesis of Ht-RE1 prevented REST-dependent downregulation of Ncx1. Furthermore, in temporoparietal cortex of 8-week-old male wild-type mice (C57BL/6) subjected to transient middle cerebral artery occlusion, DNMT1, MeCP2, and REST binding to Ht promoter was increased, with a consequent DNA promoter hypermethylation. Intracerebroventricular injection of siREST prevented DNMT1/MeCP2 binding to Ht and Ncx1 downregulation, thus causing a reduction in stroke-induced damage. Consistently, in cortical neurons subjected to oxygen and glucose deprivation plus reoxygenation Ncx1 knockdown counteracted neuronal protection induced by the demethylating agent 5-azacytidine. For comparisons between 2 experimental groups, Student's t test was used, whereas for more than 2 experimental groups, 1-way ANOVA was used, followed by Tukey or Newman Keuls. Statistical significance was set at P<0.05. CONCLUSIONS: If the results of this study are confirmed in humans, it could be asserted that DNMT1/MeCP2/REST complex disruption could be a new pharmacological strategy to reduce DNA methylation of Ht in the brain, ameliorating stroke damage.


Asunto(s)
Neuroblastoma , Accidente Cerebrovascular , Humanos , Ratones , Masculino , Animales , Metilación de ADN , Ratones Endogámicos C57BL , Neuroblastoma/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Encéfalo/metabolismo , Epigénesis Genética , ADN
4.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240252

RESUMEN

Previous studies demonstrated that hamster sperm hyperactivation is suppressed by extracellular Na+ by lowering intracellular Ca2+ levels, and Na+/Ca2+-exchanger (NCX) specific inhibitors canceled the suppressive effects of extracellular Na+. These results suggest the involvement of NCX in the regulation of hyperactivation. However, direct evidence of the presence and functionality of NCX in hamster spermatozoa is still lacking. This study aimed to reveal that NCX is present and is functional in hamster spermatozoa. First, NCX1 and NCX2 transcripts were detected via RNA-seq analyses of hamster testis mRNAs, but only the NCX1 protein was detected. Next, NCX activity was determined by measuring the Na+-dependent Ca2+ influx using the Ca2+ indicator Fura-2. The Na+-dependent Ca2+ influx was detected in hamster spermatozoa, notably in the tail region. The Na+-dependent Ca2+ influx was inhibited by the NCX inhibitor SEA0400 at NCX1-specific concentrations. NCX1 activity was reduced after 3 h of incubation in capacitating conditions. These results, together with authors' previous study, showed that hamster spermatozoa possesses functional NCX1 and that its activity was downregulated upon capacitation to trigger hyperactivation. This is the first study to successfully reveal the presence of NCX1 and its physiological function as a hyperactivation brake.


Asunto(s)
Semen , Espermatozoides , Animales , Cricetinae , Masculino , Semen/metabolismo , ARN Mensajero , Espermatozoides/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Calcio/metabolismo
5.
Gerontology ; 69(5): 603-614, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36882028

RESUMEN

BACKGROUND: Hypertension is the most common cardiovascular disease, and its main harmful effect is chronic damage to target organs. In some patients with well-controlled blood pressure, target organ damage still occurs. GLP-1 agonists have significant cardiovascular benefits, but their antihypertensive effect is limited. The cardiovascular protective effect of GLP-1 is worth studying. METHODS: The ambulatory blood pressure of spontaneously hypertensive rats (SHRs) was detected by ambulatory blood pressure monitoring, and the characteristics of blood pressure and the effect of subcutaneous intervention with a GLP-1R agonist on blood pressure were observed. To explore the mechanism of the cardiovascular benefit of GLP-1R agonists in SHRs, we evaluated the effects of GLP-1R agonists on vasomotor function and calcium homeostasis in vascular smooth muscle cells (VSMCs) in vitro. RESULTS: Although the blood pressure of SHRs was significantly higher than that of WKY rats, the blood pressure variability of SHRs was also significantly higher than that of the control group. The GLP-1R agonist significantly reduced blood pressure variability in SHRs, but the antihypertensive effect was not obvious. GLP-1R agonists can significantly improve the cytoplasmic calcium overload of VSMCs in SHRs by upregulating the expression of NCX1, improving the systolic and diastolic functions of arterioles, and reducing blood pressure variability. CONCLUSIONS: Taken together, these results provide evidence that GLP-1R agonists improved VSMC cytoplasmic Ca2+ homeostasis through upregulated NCX1 expression in SHRs, which plays a key role in blood pressure stability and broad cardiovascular benefits.


Asunto(s)
Hipertensión , Hipotensión , Ratas , Animales , Presión Sanguínea , Músculo Liso Vascular/metabolismo , Calcio/metabolismo , Calcio/farmacología , Antihipertensivos/metabolismo , Antihipertensivos/farmacología , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Ratas Endogámicas WKY , Monitoreo Ambulatorio de la Presión Arterial , Hipertensión/tratamiento farmacológico , Ratas Endogámicas SHR , Homeostasis
6.
JACC Basic Transl Sci ; 8(1): 1-15, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36777175

RESUMEN

Analysis of the spatio-temporal distribution of calcium sparks showed a preferential increase in sparks near the sarcolemma in atrial myocytes from patients with atrial fibrillation (AF), linked to higher ryanodine receptor (RyR2) phosphorylation at s2808 and lower calsequestrin-2 levels. Mathematical modeling, incorporating modulation of RyR2 gating, showed that only the observed combinations of RyR2 phosphorylation and calsequestrin-2 levels can account for the spatio-temporal distribution of sparks in patients with and without AF. Furthermore, we demonstrate that preferential calcium release near the sarcolemma is key to a higher incidence and amplitude of afterdepolarizations in atrial myocytes from patients with AF.

7.
Clin Exp Med ; 23(5): 1581-1596, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36251145

RESUMEN

Although several types of calcium channels abnormalities have been shown to promote myeloma bone disease (MBD), the relationship between Na+/Ca2+ exchanger 1 (NCX1) and MBD remains unexplored. Here, we examined the role of NCX1 in the development of multiple myeloma (MM), with a special focus on the underlying effects involved osteoclast differentiation. Firstly, we detected NCX1 protein highly expressed in BM tissues of MM patients, and its expression was positively correlated with serum calcium and the percentage of BM CD138+ cells. In vitro, NCX1 suppression with the inhibitor KB-R7943 reduced cell viability of MM cells and caused apoptosis. Extracellular high Ca2+ environment increased the level of intracellular Ca2+ in MM cells through gating the calcium influx, with subsequently promoting the expression of NCX1 and osteoclastogenesis-related genes (receptor activator of nuclear factor-κB (RANKL), nuclear factor of activated T cell cytoplasmic 1 (NFATc1), and proto-oncogene Fos (c-Fos). This phenomenon could be reversed by KB-R7943 or calcium chelation. Furthermore, NCX1 overexpression in MM cells accelerated osteoclastogenesis, while NCX1 knockdown or suppression resulted in the opposite effect. Mechanistically, we further investigated the related mechanisms of NCX1 regulating osteoclast differentiation using RNA sequencing, western blotting and Enzyme linked immunosorbent assay, and found that NCX1 modulated osteoclast differentiation in MM though JNK/c-Fos/NFATc1 signaling pathway. In conclusion, the Ca2+/NCX1-mediated signaling participates in the osteoclasts-myeloma cell interactions, which represents a promising target for future therapeutic intervention in MBD.


Asunto(s)
Mieloma Múltiple , Osteoclastos , Humanos , Calcio/metabolismo , Diferenciación Celular/fisiología , Homeostasis , Mieloma Múltiple/metabolismo , Factores de Transcripción NFI/metabolismo , Factores de Transcripción NFI/farmacología , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Transducción de Señal , Linfocitos T/metabolismo
8.
Kaohsiung J Med Sci ; 38(10): 992-1000, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35894157

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease, which is characterized by the degeneration of articular cartilage, thickening of subchondral bone, and inflammation of the synovial membrane. In this study, we aimed to investigate the effects and underlying mechanisms of circ-NCX1 in lipopolysaccharide (LPS)-induced injury in SW1353 chondrocytes, an in vitro model of OA. The levels of circ-NCX1, miR-133a, and related apoptotic proteins were determined by RT-qPCR. MTT assay was used to evaluate the cell viability. The apoptosis was determined by flow cytometry, whereas the expression of apoptosis proteins was detected by Western blot. Immunofluorescence was used to detect cleaved caspase-3 expression in cells. Luciferase reporter assay was used to verify the interaction between circ-NCX1 and miR-133a, and between miR-133a and Silent information regulator 2 homolog 1 (Sirt1). The results showed that the overexpression of circ-NCX1 significantly upregulated the chondrocyte viability and proliferation, and alleviated apoptosis in LPS-induced SW1353 cells. Immunofluorescence results showed that the overexpression of circ-NCX1 significantly reduced expression of LPS-stimulated cleaved Caspase-3. The RT-qPCR results showed that the overexpression of circ-NCX1 inhibited mRNA levels of cleaved Caspase-3 and Bax, and promoted mRNA levels of Bcl-2. Luciferase reporter assay showed that circ-NCX1 targeted miR-133a, and miR-133a directly targeted the Sirt1. In addition, overexpression of circ-NCX1 inhibited chondrocyte apoptosis and promoted Akt phosphorylation via the miR-133a/Sirt1 axis in LPS-induced chondrocytes. In conclusion, circ-NCX1 may serve as an important regulator of LPS-induced chondrocyte apoptosis through the miR-133a/Sirt1 axis, and may be involved in the development of OA.


Asunto(s)
Apoptosis , Condrocitos , MicroARNs , Osteoartritis , ARN Circular , Apoptosis/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Condrocitos/metabolismo , Humanos , Lipopolisacáridos/farmacología , MicroARNs/genética , Osteoartritis/genética , Osteoartritis/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Circular/genética , ARN Mensajero/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Intercambiador de Sodio-Calcio , Proteína X Asociada a bcl-2/metabolismo
9.
J Am Heart Assoc ; 11(15): e025328, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35904193

RESUMEN

Background Salt-sensitive hypertension is highly prevalent and associated with cardiorenal damage. Large clinical trials have demonstrated that SGLT2 (sodium-glucose cotransporter 2) inhibitors exert hypotensive effect and cardiorenal protective benefits in patients with hypertension with and without diabetes. However, the underlying mechanism remains elusive. Methods and Results Dahl salt-sensitive rats and salt-insensitive controls were fed with 8% high-salt diet and some of them were treated with canagliflozin. The blood pressure, urinary sodium excretion, and vascular function were detected. Transient receptor potential channel 3 (TRPC3) knockout mice were used to explain the mechanism. Canagliflozin treatment significantly reduced high-salt-induced hypertension and this effect was not totally dependent on urinary sodium excretion in salt-sensitive hypertensive rats. Assay of vascular function and proteomics showed that canagliflozin significantly inhibited vascular cytoplasmic calcium increase and vasoconstriction in response to high-salt diet. High salt intake increased vascular expression of TRPC3 in salt-sensitive rats, which could be alleviated by canagliflozin treatment. Overexpression of TRPC3 mimicked salt-induced vascular cytosolic calcium increase in vitro and knockout of TRPC3 erased the antihypertensive effect of canagliflozin. Mechanistically, high-salt-induced activation of NCX1 (sodium-calcium exchanger 1) reverse mode increased cytoplasmic calcium level and vasoconstriction, which required TRPC3, and this process could be blocked by canagliflozin. Conclusions We define a previously unrecognized role of TRPC3/NCX1 mediated vascular calcium dysfunction in the development of high-salt-induced hypertension, which can be improved by canagliflozin treatment. This pathway is potentially a novel therapeutic target to antagonize salt-sensitive hypertension.


Asunto(s)
Canagliflozina , Hipertensión , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Presión Sanguínea , Calcio/metabolismo , Canagliflozina/farmacología , Canagliflozina/uso terapéutico , Glucosa/farmacología , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Ratones , Ratas , Ratas Endogámicas Dahl , Sodio/metabolismo , Cloruro de Sodio Dietético/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Canales Catiónicos TRPC/genética
10.
J Poult Sci ; 59(2): 129-136, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35528382

RESUMEN

1,25-Dihydroxycholecalciferol (1,25-(OH)2-D3) is the final active product of vitamin D. This study aimed to investigate the effects of 1,25-(OH)2-D3 on growth performance, bone development, and calcium (Ca) transporter gene expression levels in the small intestine of broiler chickens. On the day of hatching, 140 female Ross 308 broilers were randomly allotted into two treatments with five replicates (14 birds per replicate). Two levels of 1,25-(OH)2-D3 (0 and 1.25 µg/kg) were added to the basal diet without vitamin D. Results showed that the addition of 1.25 µg/kg 1,25-(OH)2-D3 increased the average daily feed intake and the average daily gain and decreased the feed conversion ratio and mortality in 1- to 19-day-old broiler chickens compared with the basal diet without vitamin D (P<0.05). 1,25-(OH)2-D3 also enhanced the length, weight, ash weight, and the percentage contents of ash, Ca, and P in the tibia and femur of broilers (P<0.05). The mRNA expression levels of the Ca-binding protein (CaBP-D28k) in the duodenum, jejunum, and ileum of 19-day-old broilers increased to 88.1-, 109.1-, and 2.7-fold, respectively, after adding 1,25-(OH)2-D3 (P<0.05). The mRNA expression levels of the plasma membrane Ca ATPase 1b (PMCAlb) in the duodenum and the sodium (Na)/ Ca exchanger 1 (NCX1) in the duodenum and the jejunum were also enhanced to 1.57-2.86 times with the addition of 1,25-(OH)2-D3 (P<0.05). In contrast, the mRNA expression levels of PMCA1b and NCX1 in the ileum and that of vitamin D receptor (VDR) in the small intestine were not affected by 1,25-(OH)2-D3 (P>0.05). These data indicate that 1,25-(OH)2-D3 upregulated Ca transporter gene transcription and promoted Ca2+ absorption in the small intestine, especially in the proximal intestine (duodenum and jejunum), thereby improving growth performance and bone mineralization in broiler chickens.

11.
Cell Commun Signal ; 20(1): 8, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022040

RESUMEN

BACKGROUND: The cycad neurotoxin beta-methylamino-L-alanine (L-BMAA), one of the environmental trigger factor for amyotrophic lateral sclerosis/Parkinson-dementia complex (ALS/PDC), may cause neurodegeneration by disrupting organellar Ca2+ homeostasis. Through the activation of Akt/ERK1/2 pathway, the Cu,Zn-superoxide dismutase (SOD1) and its non-metallated form, ApoSOD1, prevent endoplasmic reticulum (ER) stress-induced cell death in motor neurons exposed to L-BMAA. This occurs through the rapid increase of intracellular Ca2+ concentration ([Ca2+]i) in part flowing from the extracellular compartment and in part released from ER. However, the molecular components of this mechanism remain uncharacterized. METHODS: By an integrated approach consisting on the use of siRNA strategy, Western blotting, confocal double- labeling immunofluorescence, patch-clamp electrophysiology, and Fura 2-/SBFI-single-cell imaging, we explored in rat motor neuron-enriched cultures the involvement of the plasma membrane proteins Na+/Ca2+ exchanger (NCX) and purinergic P2X7 receptor as well as that of the intracellular cADP-ribose (cADPR) pathway, in the neuroprotective mechanism of SOD1. RESULTS: We showed that SOD1-induced [Ca2+]i rise was prevented neither by A430879, a P2X7 receptor specific antagonist or 8-bromo-cADPR, a cell permeant antagonist of cADP-ribose, but only by the pan inhibitor of NCX, CB-DMB. The same occurred for the ApoSOD1. Confocal double labeling immunofluorescence showed a huge expression of plasmalemmal NCX1 and intracellular NCX3 isoforms. Furthermore, we identified NCX1 reverse mode as the main mechanism responsible for the neuroprotective ER Ca2+ refilling elicited by SOD1 and ApoSOD1 through which they promoted translocation of active Akt in the nuclei of a subset of primary motor neurons. Finally, the activation of NCX1 by the specific agonist CN-PYB2 protected motor neurons from L-BMAA-induced cell death, mimicking the effect of SOD1. CONCLUSION: Collectively, our data indicate that SOD1 and ApoSOD1 exert their neuroprotective effect by modulating ER Ca2+ content through the activation of NCX1 reverse mode and Akt nuclear translocation in a subset of primary motor neurons. Video Abstract.


Asunto(s)
Calcio , Intercambiador de Sodio-Calcio , Aminoácidos Diaminos , Animales , Calcio/metabolismo , Toxinas de Cianobacterias , Neuronas Motoras/metabolismo , Isoformas de Proteínas/metabolismo , Ratas , Intercambiador de Sodio-Calcio/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo
12.
Br Poult Sci ; 63(2): 202-210, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34190665

RESUMEN

1. This study investigated the effect of dietary calcium (Ca) levels on growth performance, bone development and Ca transporter gene expression levels in the small intestine of broiler chickens.2. On the day of hatch, 350, Ross 308 male broilers were randomly allotted to one of five treatments with five replicate pens each and 14 birds per pen. Dietary Ca levels in feed were 5.0, 7.0, 9.0, 11.0 and 13.0 g/kg, in which 9.0 g/kg was in the control diet. All diets contained 4.5 g/kg non-phytate phosphorus (NPP).3. The increase in dietary Ca levels from 5.0 to 13.0 g/kg did not affect the growth performance of 1- to 18-day-old broilers (P > 0.05).4. Increasing the Ca levels linearly increased the ash weight and the contents of ash, Ca and phosphorus (P) in the tibia of broilers at 18 days of age (P < 0.05). The contents of ash, Ca and P in broilers fed with 9.0 g/kg Ca were higher than those in birds fed with 5.0 g/kg Ca (P < 0.05).5. Increasing the Ca levels linearly decreased mRNA expression levels of the Ca-binding protein 28-kDa (CaBP-D28k), plasma membrane Ca-transporting ATPase 1b (PMCAlb), sodium (Na)/Ca exchanger 1 (NCX1), nuclear vitamin D receptor (nVDR) and membrane vitamin D receptor (mVDR) in the duodenum of broilers at 18 d of age (P < 0.05). Similar results were seen in the jejunum and ileum. Broilers fed 9.0-13.0 g/kg Ca in feed had lower mRNA expression levels of CaBP-D28k and PMCAlb in the small intestine than birds fed 5.0 g/kg Ca in feed (P < 0.05).6. The data indicated that low levels of dietary Ca stimulated its transporter gene transcription and promoted absorption, but high levels of Ca inhibited transporter gene expression and prevented excessive absorption in the small intestine of broiler chickens.


Asunto(s)
Pollos , Fósforo Dietético , Alimentación Animal/análisis , Animales , Calcio/metabolismo , Calcio de la Dieta/metabolismo , Pollos/fisiología , Dieta/veterinaria , Suplementos Dietéticos , Expresión Génica , Intestino Delgado , Masculino , Fósforo Dietético/metabolismo
13.
Front Pharmacol ; 12: 788046, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744755

RESUMEN

[This corrects the article DOI: 10.3389/fphar.2021.638646.].

14.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34638717

RESUMEN

MicroRNAs (miRNAs) participate in atrial remodeling and atrial fibrillation (AF) promotion. We determined the circulating miRNA profile in patients with AF and heart failure with reduced ejection fraction (HFrEF), and its potential role in promoting the arrhythmia. In plasma of 98 patients with HFrEF (49 with AF and 49 in sinus rhythm, SR), differential miRNA expression was determined by high-throughput microarray analysis followed by replication of selected candidates. Validated miRNAs were determined in human atrial samples, and potential arrhythmogenic mechanisms studied in HL-1 cells. Circulating miR-199a-5p and miR-22-5p were significantly increased in HFrEF patients with AF versus those with HFrEF in SR. Both miRNAs, but particularly miR-199a-5p, were increased in atrial samples of patients with AF. Overexpression of both miRNAs in HL-1 cells resulted in decreased protein levels of L-type Ca2+ channel, NCX and connexin-40, leading to lower basal intracellular Ca2+ levels, fewer inward currents, a moderate reduction in Ca2+ buffering post-caffeine exposure, and a deficient cell-to-cell communication. In conclusion, circulating miR-199a-5p and miR-22-5p are higher in HFrEF patients with AF, with similar findings in human atrial samples of AF patients. Cells exposed to both miRNAs exhibited altered Ca2+ handling and defective cell-to-cell communication, both findings being potential arrhythmogenic mechanisms.


Asunto(s)
Fibrilación Atrial/sangre , Señalización del Calcio , Comunicación Celular , MicroARN Circulante/sangre , Insuficiencia Cardíaca/sangre , MicroARNs/sangre , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/etiología , Línea Celular , Femenino , Insuficiencia Cardíaca/complicaciones , Humanos , Masculino
15.
Front Pharmacol ; 12: 638646, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163352

RESUMEN

The cardiac sodium-calcium exchanger (NCX1) is important for normal Na+- and Ca2+-homeostasis and cardiomyocyte relaxation and contraction. It has been suggested that NCX1 activity is reduced by phosphorylated phospholemman (pSer68-PLM); however its direct interaction with PLM is debated. Disruption of the potentially inhibitory pSer68-PLM-NCX1 interaction might be a therapeutic strategy to increase NCX1 activity in cardiac disease. In the present study, we aimed to analyze the binding affinities and kinetics of the PLM-NCX1 and pSer68-PLM-NCX1 interactions by surface plasmon resonance (SPR) and to develop a proteolytically stable NCX1 activator peptide for future in vivo studies. The cytoplasmic parts of PLM (PLMcyt) and pSer68-PLM (pSer68-PLMcyt) were found to bind strongly to the intracellular loop of NCX1 (NCX1cyt) with similar K D values of 4.1 ± 1.0 nM and 4.3 ± 1.9 nM, but the PLMcyt-NCX1cyt interaction showed higher on/off rates. To develop a proteolytically stable NCX1 activator, we took advantage of a previously designed, high-affinity PLM binding peptide (OPT) that was derived from the PLM binding region in NCX1 and that reverses the inhibitory PLM (S68D)-NCX1 interaction in HEK293. We performed N- and C-terminal truncations of OPT and identified PYKEIEQLIELANYQV as the minimum sequence required for pSer68-PLM binding. To increase peptide stability in human serum, we replaced the proline with an N-methyl-proline (NOPT) after identification of N-terminus as substitution tolerant by two-dimensional peptide array analysis. Mass spectrometry analysis revealed that the half-life of NOPT was increased 17-fold from that of OPT. NOPT pulled down endogenous PLM from rat left ventricle lysate and exhibited direct pSer68-PLM binding in an ELISA-based assay and bound to pSer68-PLMcyt with a K D of 129 nM. Excess NOPT also reduced the PLMcyt-NCX1cyt interaction in an ELISA-based competition assay, but in line with that NCX1 and PLM form oligomers, NOPT was not able to outcompete the physical interaction between endogenous full length proteins. Importantly, cell-permeable NOPT-TAT increased NCX1 activity in cardiomyocytes isolated from both SHAM-operated and aorta banded heart failure (HF) mice, indicating that NOPT disrupted the inhibitory pSer68-PLM-NCX1 interaction. In conclusion, we have developed a proteolytically stable NCX1-derived PLM binding peptide that upregulates NCX1 activity in SHAM and HF cardiomyocytes.

16.
Cell Calcium ; 97: 102408, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33873072

RESUMEN

Catalyzed by zDHHC-PAT enzymes and reversed by thioesterases, protein palmitoylation is the only post-translational modification recognized to regulate the sodium/calcium exchanger NCX1. NCX1 palmitoylation occurs at a single site at position 739 in its large regulatory intracellular loop. An amphipathic ɑ-helix between residues 740-756 is a critical for NCX1 palmitoylation. Given the rich background of the structural elements involving in NCX1 palmitoylation, the molecular basis of NCX1 palmitoylation is still relatively poorly understood. Here we found that (1) the identity of palmitoylation machinery of NCX1 controls its spatial organization within the cell, (2) the NCX1 amphipathic ɑ-helix directly interacts with zDHHC-PATs, (3) NCX1 is still palmitoylated when it is arrested in either Golgi or ER, indicating that NCX1 is a substrate for multiple zDHHC-PATs, (4) the thioesterase APT1 but not APT2 as a part of NCX1-depalmitoylation machinery governs subcellular organization of NCX1, (5) APT1 catalyzes NCX1 depalmitoylation in the Golgi but not in the ER. We also report that NCX2 and NCX3 are dually palmitoylated, with important implications for substrate recognition and enzyme catalysis by zDHHC-PATs. Our results could support new molecular or pharmacological strategies targeting the NCX1 palmitoylation and depalmitoylation machinery.

17.
Sci China Life Sci ; 64(2): 255-268, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32648190

RESUMEN

Ca2+ signaling is critical for heart development; however, the precise roles and regulatory pathways of Ca2+ transport proteins in cardiogenesis remain largely unknown. Sodium-calcium exchanger 1 (Ncx1) is responsible for Ca2+ efflux in cardiomyocytes. It is involved in cardiogenesis, while the mechanism is unclear. Here, using the forward genetic screening in zebrafish, we identified a novel mutation at a highly-conserved leucine residue in ncx1 gene (mutantLDD353/ncx1hL154P) that led to smaller hearts with reduced heart rate and weak contraction. Mechanistically, the number of ventricular but not atrial cardiomyocytes was reduced in ncx1hL154P zebrafish. These defects were mimicked by knockdown or knockout of ncx1h. Moreover, ncx1hL154P had cytosolic and mitochondrial Ca2+ overloading and Ca2+ transient suppression in cardiomyocytes. Furthermore, ncx1hL154P and ncx1h morphants downregulated cardiac transcription factors hand2 and gata4 in the cardiac regions, while overexpression of hand2 and gata4 partially rescued cardiac defects including the number of ventricular myocytes. These findings demonstrate an essential role of the novel 154th leucine residue in the maintenance of Ncx1 function in zebrafish, and reveal previous unrecognized critical roles of the 154th leucine residue and Ncx1 in the formation of ventricular cardiomyocytes by at least partially regulating the expression levels of gata4 and hand2.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción GATA/genética , Regulación del Desarrollo de la Expresión Génica , Miocitos Cardíacos/metabolismo , Intercambiador de Sodio-Calcio/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Calcio/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Factores de Transcripción GATA/metabolismo , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Hibridación in Situ , Microscopía Confocal , Mutación , Miocitos Cardíacos/citología , Organogénesis/genética , Intercambiador de Sodio-Calcio/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
18.
Front Immunol ; 11: 2124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013896

RESUMEN

The importance of the intracellular Ca2+ concentration ([Ca2+]i) in neutrophil function has been intensely studied. However, the role of the intracellular Na+ concentration ([Na+]i) which is closely linked to the intracellular Ca2+ regulation has been largely overlooked. The [Na+]i is regulated by Na+ transport proteins such as the Na+/Ca2+-exchanger (NCX1), Na+/K+-ATPase, and Na+-permeable, transient receptor potential melastatin 2 (TRPM2) channel. Stimulating with either N-formylmethionine-leucyl-phenylalanine (fMLF) or complement protein C5a causes distinct changes of the [Na+]i. fMLF induces a sustained increase of [Na+]i, surprisingly, reaching higher values in TRPM2-/- neutrophils. This outcome is unexpected and remains unexplained. In both genotypes, C5a elicits only a transient rise of the [Na+]i. The difference in [Na+]i measured at t = 10 min after stimulation is inversely related to neutrophil chemotaxis. Neutrophil chemotaxis is more efficient in C5a than in an fMLF gradient. Moreover, lowering the extracellular Na+ concentration from 140 to 72 mM improves chemotaxis of WT but not of TRPM2-/- neutrophils. Increasing the [Na+]i by inhibiting the Na+/K+-ATPase results in disrupted chemotaxis. This is most likely due to the impact of the altered Na+ homeostasis and presumably NCX1 function whose expression was shown by means of qPCR and which critically relies on proper extra- to intracellular Na+ concentration gradients. Increasing the [Na+]i by a few mmol/l may suffice to switch its transport mode from forward (Ca2+-efflux) to reverse (Ca2+-influx) mode. The role of NCX1 in neutrophil chemotaxis is corroborated by its blocker, which also causes a complete inhibition of chemotaxis.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Homeostasis/inmunología , Sodio/fisiología , Canales Catiónicos TRPM/fisiología , Animales , Calcio/fisiología , Línea Celular Tumoral , Células Cultivadas , Quimiotaxis de Leucocito/efectos de los fármacos , Complemento C5a/inmunología , Complemento C5a/farmacología , Líquido Intracelular/inmunología , Leucemia Mieloide , Ratones , Ratones Endogámicos C57BL , N-Formilmetionina Leucil-Fenilalanina/farmacología , Activación Neutrófila/efectos de los fármacos , Intercambiador de Sodio-Calcio/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Canales Catiónicos TRPM/deficiencia
19.
Cells ; 9(9)2020 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-32899900

RESUMEN

Increasing evidence suggests that metabolic alterations may be etiologically linked to neurodegenerative disorders such as Parkinson's disease (PD) and in particular empathizes the possibility of targeting mitochondrial dysfunctions to improve PD progression. Under different pathological conditions (i.e., cardiac and neuronal ischemia/reperfusion injury), we showed that supplementation of energetic substrates like glutamate exerts a protective role by preserving mitochondrial functions and enhancing ATP synthesis through a mechanism involving the Na+-dependent excitatory amino acid transporters (EAATs) and the Na+/Ca2+ exchanger (NCX). In this study, we investigated whether a similar approach aimed at promoting glutamate metabolism would be also beneficial against cell damage in an in vitro PD-like model. In retinoic acid (RA)-differentiated SH-SY5Y cells challenged with α-synuclein (α-syn) plus rotenone (Rot), glutamate significantly improved cell viability by increasing ATP levels, reducing oxidative damage and cytosolic and mitochondrial Ca2+ overload. Glutamate benefits were strikingly lost when either EAAT3 or NCX1 expression was knocked down by RNA silencing. Overall, our results open the possibility of targeting EAAT3/NCX1 functions to limit PD pathology by simultaneously favoring glutamate uptake and metabolic use in dopaminergic neurons.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Enfermedad de Parkinson/genética , Intercambiador de Sodio-Calcio/metabolismo , Línea Celular Tumoral , Humanos , Neuroprotección , Enfermedad de Parkinson/metabolismo , Transfección
20.
Cell Calcium ; 91: 102268, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32827867

RESUMEN

Increasing evidence suggests that metabolic dysfunctions are at the roots of neurodegenerative disorders such as Alzheimer's disease (AD). In particular, defects in cerebral glucose metabolism, which have been often noted even before the occurrence of clinical symptoms and histopathological lesions, are now regarded as critical contributors to the pathogenesis of AD. Hence, the stimulation of energy metabolism, by enhancing the availability of specific metabolites, might be an alternative way to improve ATP synthesis and to positively affect AD progression. For instance, glutamate may serve as an intermediary metabolite for ATP synthesis through the tricarboxylic acid (TCA) cycle and the oxidative phosphorylation. We have recently shown that two transporters are critical for the anaplerotic use of glutamate: the Na+-dependent Excitatory Amino Acids Carrier 1 (EAAC1) and the Na+-Ca2+ exchanger 1 (NCX1). Therefore, in the present study, we established an AD-like phenotype by perturbing glucose metabolism in both primary rat cortical neurons and retinoic acid (RA)-differentiated SH-SY5Y cells, and we explored the potential of glutamate to halt cell damage by monitoring neurotoxicity, AD markers, ATP synthesis, cytosolic Ca2+ levels and EAAC1/NCX1 functional activities. We found that glutamate significantly increased ATP production and cell survival, reduced the increase of AD biomarkers (amyloid ß protein and the hyperphosphorylated form of tau protein), and recovered the increase of NCX reverse-mode activity. The RNA silencing of either EAAC1 or NCX1 caused the loss of the beneficial effects of glutamate, suggesting the requirement of a functional interplay between these transporters for glutamate-induced protection. Remarkably, our results indicate, as proof-of-principle, that facilitating the use of alternative fuels, like glutamate, may be an effective approach to overcome deficits in glucose utilization and significantly slow down neuronal degenerative process in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Transportador 3 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Sustancias Protectoras/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Corteza Cerebral/patología , Gliceraldehído , Humanos , Modelos Biológicos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Tretinoina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA