Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
bioRxiv ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38948711

RESUMEN

Background: Uveal coloboma, a developmental eye defect, is caused by failed development of the optic fissure, a ventral structure in the optic stalk and cup where axons exit the eye and vasculature enters. The Hedgehog (Hh) signaling pathway regulates optic fissure development: loss-of-function mutations in the Hh receptor ptch2 produce overactive Hh signaling and can result in coloboma. We previously proposed a model where overactive Hh signaling disrupts optic fissure formation by upregulating transcriptional targets acting both cell- and non-cell-autonomously. Here, we examine the Netrin family of secreted ligands as candidate Hh target genes. Results: We find multiple Netrin ligands upregulated in the zebrafish ptch2 mutant during optic fissure development. Using a gain-of-function approach to overexpress Netrin in a spatiotemporally specific manner, we find that netrin1a or netrin1b overexpression is sufficient to cause coloboma and disrupt wild-type optic fissure formation. We used loss-of-function alleles, CRISPR/Cas9 mutagenesis, and morpholino knockdown to test if loss of Netrin can rescue coloboma in the ptch2 mutant: loss of netrin genes does not rescue the ptch2 mutant phenotype. Conclusion: These results suggest that Netrin is sufficient but not required to disrupt optic fissure formation downstream of overactive Hh signaling in the ptch2 mutant.

2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000184

RESUMEN

Microglia migrate to the cerebral cortex during early embryonic stages. However, the precise mechanisms underlying microglia migration remain incompletely understood. As an extracellular matrix protein, Netrin-1 is involved in modulating the motility of diverse cells. In this paper, we found that Netrin-1 promoted microglial BV2 cell migration in vitro. Mechanism studies indicated that the activation of GSK3ß activity contributed to Netrin-1-mediated microglia migration. Furthermore, Integrin α6/ß1 might be the relevant receptor. Single-cell data analysis revealed the higher expression of Integrin α6 subunit and ß1 subunit in microglia in comparison with classical receptors, including Dcc, Neo1, Unc5a, Unc5b, Unc5c, Unc5d, and Dscam. Microscale thermophoresis (MST) measurement confirmed the high binding affinity between Integrin α6/ß1 and Netrin-1. Importantly, activation of Integrin α6/ß1 with IKVAV peptides mirrored the microglia migration and GSK3 activation induced by Netrin-1. Finally, conditional knockout (CKO) of Netrin-1 in radial glial cells and their progeny led to a reduction in microglia population in the cerebral cortex at early developmental stages. Together, our findings highlight the role of Netrin-1 in microglia migration and underscore its therapeutic potential in microglia-related brain diseases.


Asunto(s)
Movimiento Celular , Microglía , Netrina-1 , Netrina-1/metabolismo , Netrina-1/genética , Microglía/metabolismo , Animales , Ratones , Ratones Noqueados , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Línea Celular , Integrina beta1/metabolismo , Integrina beta1/genética
3.
Bioact Mater ; 39: 302-316, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38827174

RESUMEN

Diabetic wounds, characterized by prolonged inflammation and impaired vascularization, are a serious complication of diabetes. This study aimed to design a gelatin methacrylate (GelMA) hydrogel for the sustained release of netrin-1 and evaluate its potential as a scaffold to promote diabetic wound healing. The results showed that netrin-1 was highly expressed during the inflammation and proliferation phases of normal wounds, whereas it synchronously exhibited aberrantly low expression in diabetic wounds. Neutralization of netrin-1 inhibited normal wound healing, and the topical application of netrin-1 accelerated diabetic wound healing. Mechanistic studies demonstrated that netrin-1 regulated macrophage heterogeneity via the A2bR/STAT/PPARγ signaling pathway and promoted the function of endothelial cells, thus accelerating diabetic wound healing. These data suggest that netrin-1 is a potential therapeutic target for diabetic wounds.

4.
Breastfeed Med ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853683

RESUMEN

Objective: Wound healing is a complex and dynamic process essential for restoring tissue integrity and homeostasis. It is thought that breast milk contributes positively to the wound healing process, thanks to the components it contains. The aim of this study is to compare the effects of breast milk on the wound healing process at different lactation stages and to evaluate the underlying mechanism(s). Materials and Methods: The effects of breast milk from different lactation stages (colostrum, transitional, and mature milk) on wound healing were determined by in vitro scratch assay in L929 fibroblast cells. 2,2-Diphenyl-1-picrylhydrazyl (DPPH), total oxidant, and antioxidant capacity were used to confirm antioxidant effects. The effect of breast milk on netrin-1 levels in L929 cells was elucidated by ELISA. Results: Breast milk at different lactation stages promoted wound healing. While the wound closure percentage was determined as 48.7% in the control group, this rate was determined to be the highest at 81.6% in the mature milk group (p:0.0002). The free radical scavenging capacity of colostrum, transitional, and mature milk with DPPH was determined as 49.69%, 60.64%, and 80.85%, respectively, depending on the lactation stages. Netrin-1 levels detected by ELISA were determined as 490.1 ± 6.5 pg/mL in the control group, while the lowest level was determined as 376.6 ± 4.5 pg/mL in mature milk (p:0.0003). Conclusions: Breast milk, especially mature milk, promoted wound healing on L929 cells by suppressing netrin-1 levels and scavenging free radicals.

5.
Biomater Adv ; 161: 213881, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749213

RESUMEN

Nanoparticle's success as drug delivery systems for cancer treatment has been achieved through passive targeting mechanisms. However, tumor heterogeneity and rapid drug clearance limit the treatment efficacy. Improved outcomes and selective drug release can be achieved by grafting ligands at the surface of nanocarriers that bind molecules overexpressed in the tumor microenvironment (TME). In this work, we developed a docetaxel-loaded nanoemulsions (NEs) binding an anti-netrin-1 monoclonal antibody (NP137) to selectively target the netrin-1 protein overexpressed in many different tumors. The goal is to refine a combined approach utilizing NP137 and docetaxel as an improved tumor-targeting chemotherapeutic agent for addressing triple-negative breast cancer (TNBC). Several factors have been considered for the optimization of the active targeted drug delivery system via the click-chemistry conjugation, as the impact of PEGylated surfactant that stabilize the NEs shell on conjugation efficiency, cytocompatibility with EMT6 cell line and colloidal stability over time of NEs. Results showed that a 660 Da PEG chain length contributed to NEs colloidal stability and had no impact on cell viability or on the antibody binding ability for its ligand after surface conjugation. Moreover, docetaxel was encapsulated into the oily core of NEs, with an encapsulation efficiency of 70 %. To validate our treatment strategy in vivo, the 4T1 murine breast cancer model was used. As a result, the comparison of active-targeted and non-targeted NEs revealed that only active-targeted NE could decrease the tumor growth rate.


Asunto(s)
Docetaxel , Nanopartículas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Femenino , Nanopartículas/química , Línea Celular Tumoral , Ratones , Docetaxel/farmacología , Docetaxel/uso terapéutico , Docetaxel/administración & dosificación , Humanos , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/uso terapéutico
6.
J Diabetes Investig ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725153

RESUMEN

AIMS/INTRODUCTION: Deficiency of neurotropic factors is implicated in diabetic neuropathy (DN). Netrin-1 is a neurotropic factor, but its association with DN has not been explored. We have assessed the association between serum netrin-1 levels and early diabetic neuropathy assessed by quantifying corneal nerve fiber loss using corneal confocal microscopy. MATERIALS AND METHODS: A total of 72 participants with type 2 diabetes, without and with corneal nerve fiber loss (DN- n = 42, DN+ n = 30), and 45 healthy controls were studied. Serum netrin-1 levels were measured by enzyme-linked immunosorbent assay, and corneal nerve morphology was assessed using corneal confocal microscopy. RESULTS: Corneal nerve fiber density, branch density, fiber length and serum netrin-1 levels were significantly lower in the DN- and DN+ groups compared with controls (P < 0.001). Netrin-1 levels correlated with corneal nerve fiber length in the DN+ group (r = 0.51; P < 0.01). A receiver operating characteristic curve analysis showed that a netrin-1 cut-off value of 599.6 (pg/mL) had an area under the curve of 0.85, with a sensitivity of 76% and specificity of 74% (P < 0.001; 95% confidence interval 0.76-0.94) for differentiating patients with and without corneal nerve loss. CONCLUSIONS: Serum netrin-1 levels show a progressive decline with increasing severity of small nerve fiber damage in patients with diabetes. Netrin-1 could act as a biomarker for small nerve fiber damage in DN.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38588254

RESUMEN

BACKGROUND/OBJECTIVES: At present, there are few biomarkers used to predict the prognosis of uterine serous carcinoma (USC). Netrin-1 may be a promising biomarker candidate. We investigated netrin-1 expression in USC tissues and healthy endometrial tissues to determine its relevance to disease prognosis. MATERIALS AND METHODS: Netrin-1 expression was examined in the tissues of 48 patients with USC and 30 patients with healthy benign endometrial tissues via immunohistochemistry. RESULTS: None of the healthy tissues were stained with netrin-1. In tumor tissues, the overall positivity rate of netrin-1 was 75%, detected as high expression in 17 patients (35%) and low in 19 (40%). Patients who had tumors with no netrin-1 expression (n = 12) had a median overall survival (OS) of 60.0 months (95% confidence interval [CI], 47-98), whereas patients who had tumors with low to strong netrin-1 expression (n = 33) had a lower median OS of 50 months, but the difference was not statistically significant (95% CI, 58-108; P = 0.531). Disease-free survival (DFS) was not statistically significant between the groups (95% CI, 67.7-115.9; P = 0.566). Patients with a tumor diameter ≥2 cm had higher netrin-1 expression than those with a tumor diameter of 2 cm (P = 0.027). We did not find any difference in overall and DFS when age, tumor stage, histology, tumor diameter, p53 status, lymphovascular space invasion, myometrial invasion, and lymph node metastasis were compared according to netrin-1 expression (P > 0.05). CONCLUSION: Netrin-1 was expressed in USC but not in healthy tissues. Its expression was not associated with OS or DFS.

8.
Front Mol Neurosci ; 17: 1379726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638604

RESUMEN

Netrin-1 was initially discovered as a neuronal growth cue for axonal guidance, and its functions have later been identified in inflammation, tumorigenesis, neurodegeneration, and other disorders. We have recently found its alterations in the brains with Alzheimer's disease, which might provide important clues to the mechanisms of some unique pathologies. To provide better understanding of this promising molecule, we here summarize research progresses in genetics, pathology, biochemistry, cell biology and other studies of Netrin-1 about its mechanistic roles and biomarker potentials with an emphasis on clinical neurodegenerative disorders in order to expand understanding of this promising molecular player in human diseases.

9.
Front Pharmacol ; 15: 1367806, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628640

RESUMEN

Background: Cinnamaldehyde (CMD) is a major functional component of Cinnamomum verum and has shown treatment effects against diverse bone diseases. This study aimed to assess the anti-diabetic osteoporosis (DOP) potential of diabetes mellitus (DM) and to explore the underlying mechanism driving the activity of CMD. Methods: A DOP model was induced via an intraperitoneal injection of streptozocin (STZ) into Sprague-Dawley rats, and then two different doses of CMD were administered to the rats. The effects of CMD on the strength, remodeling activity, and histological structure of the bones were assessed. Changes in the netrin-1 related pathways also were detected to elucidate the mechanism of the anti-DOP activity by CMD. Results: CMD had no significant effect on the body weight or blood glucose level of the model rats. However, the data showed that CMD improved the bone strength and bone remodeling activity as well as attenuating the bone structure destruction in the DOP rats in a dose-dependent manner. The expression of netrin-1, DCC, UNC5B, RANKL, and OPG was suppressed, while the expression of TGF-ß1, cathepsin K, TRAP, and RANK was induced by the STZ injection. CMD administration restored the expression of all of these indicators at both the mRNA and protein levels, indicating that the osteoclast activity was inhibited by CMD. Conclusion: The current study demonstrated that CMD effectively attenuated bone impairments associated with DM in a STZ-induced DOP rat model, and the anti-DOP effects of CMD were associated with the modulation of netrin-1/DCC/UNC5B signal transduction.

10.
Ann Anat ; 254: 152247, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38458575

RESUMEN

Neural guidance proteins participate in motor neuron migration, axonal projection, and muscle fiber innervation during development. One of the guidance proteins that participates in axonal pathfinding is Netrin-1. Despite the well-known role of Netrin-1 in embryogenesis of central nervous tissue, it is still unclear how the expression of this guidance protein contributes to primary innervation of the periphery, as well as reinnervation. This is especially true in the larynx where Netrin-1 is upregulated within the intrinsic laryngeal muscles after nerve injury and where blocking of Netrin-1 alters the pattern of reinnervation of the intrinsic laryngeal muscles. Despite this consistent finding, it is unknown how Netrin-1 expression contributes to guidance of the axons towards the larynx. Improved knowledge of Netrin-1's role in nerve regeneration and reinnervation post-injury in comparison to its role in primary innervation during embryological development, may provide insights in the search for therapeutics to treat nerve injury. This paper reviews the known functions of Netrin-1 during the formation of the central nervous system and during cranial nerve primary innervation. It also describes the role of Netrin-1 in the formation of the larynx and during recurrent laryngeal reinnervation following nerve injury in the adult.


Asunto(s)
Laringe , Regeneración Nerviosa , Netrina-1 , Netrina-1/metabolismo , Animales , Humanos , Regeneración Nerviosa/fisiología , Laringe/fisiología , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/fisiología , Proteínas Supresoras de Tumor/metabolismo , Orientación del Axón/fisiología
11.
Genes (Basel) ; 15(3)2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38540364

RESUMEN

The UNC-5 family of netrin receptor genes, predominantly expressed in brain tissues, plays a pivotal role in various neuronal processes. Mutations in genes involved in axon development contribute to a wide spectrum of human diseases, including developmental, neuropsychiatric, and neurodegenerative disorders. The NTN1/DCC signaling pathway, interacting with UNC5C, plays a crucial role in central nervous system axon guidance and has been associated with psychiatric disorders during adolescence in humans. Whole-exome sequencing analysis unveiled two compound heterozygous causative mutations within the UNC5C gene in a patient diagnosed with psychiatric disorders. In silico analysis demonstrated that neither of the observed variants affected the allosteric linkage between UNC5C and NTN1. In fact, these mutations are located within crucial cytoplasmic domains, specifically ZU5 and the region required for the netrin-mediated axon repulsion of neuronal growth cones. These domains play a critical role in forming the supramodular protein structure and directly interact with microtubules, thereby ensuring the functionality of the axon repulsion process. We emphasize that these mutations disrupt the aforementioned processes, thereby associating the UNC5C gene with psychiatric disorders for the first time and expanding the number of genes related to psychiatric disorders. Further research is required to validate the correlation of the UNC5C gene with psychiatric disorders, but we suggest including it in the genetic analysis of patients with psychiatric disorders.


Asunto(s)
Orientación del Axón , Trastornos Mentales , Humanos , Orientación del Axón/genética , Netrina-1/genética , Netrina-1/metabolismo , Receptores de Netrina/genética , Receptores de Netrina/metabolismo , Axones/metabolismo , Trastornos Mentales/metabolismo
12.
J Integr Neurosci ; 23(3): 47, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538215

RESUMEN

BACKGROUND: Bone cancer pain (BCP) is a common primary or metastatic bone cancer complication. Netrin-1 plays an essential role in neurite elongation and pain sensitization. This study aimed to determine the role of netrin-1 from the metastatic bone microenvironment in BCP development and identify the associated signaling pathway for the strategy of BCP management. METHODS: The rat BCP model was established by intratibial implantation of Walker 256 cells. Von Frey filaments measured the mechanical pain threshold. Movement-induced pain was assessed using limb use scores. Expressions of associated molecules in the affected tibias or dorsal root ganglia (DRG) were measured by immunofluorescence, immunohistochemistry, real-time quantitative polymerase chain reaction, or western blotting. Transduction of deleted in colorectal cancer (DCC) signaling was inhibited by intrathecal injection of DCC-siRNA. RESULTS: In BCP rats, the presence of calcitonin gene-related peptide (CGRP)-positive nerve fibers increased in the metastatic bone lesions. The metastatic site showed enrichment of well-differentiated osteoclasts and expressions of netrin-1 and its attractive receptor DCC. Upregulation of DCC and increased phosphorylation levels of focal adhesion kinase (FAK) and Rac family small GTPase 1/Cell division cycle 42 (Rac1/Cdc42) were found in the DRG. Intrathecal administration of DCC-siRNA led to a significant reduction in FAK and Rac1/Cdc42 phosphorylation levels in the DRG, decreased nociceptive nerve innervation, and improved pain behaviors. CONCLUSIONS: Netrin-1 may contribute to the activation of the BCP by inducing nociceptive nerve innervation and improving pain behaviors.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Netrina-1 , Animales , Ratas , Neoplasias Óseas/complicaciones , Dolor en Cáncer/etiología , Receptor DCC/metabolismo , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Netrina-1/genética , Nociceptores/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , ARN Interferente Pequeño , Transducción de Señal , Microambiente Tumoral , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
13.
Biomedicines ; 12(3)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38540283

RESUMEN

BACKGROUND: Ischemic stroke may trigger neuroplastic changes via proliferation, migration towards the lesion, and differentiation of neuroprogenitor cells into mature neurons. Repetitive Transcranial Magnetic Stimulation (rTMS) may promote brain plasticity. This study aimed to assess rTMS's effect on post-stroke endogenous neuroplasticity by dosing plasma miRs 17~92, Netrin-1, Sema3A, and BDNF. METHODS: In this case-controlled study, we randomized 19 ischemic stroke patients within five days from symptoms onset (T0) to neuronavigated-rTMS or sham stimulation. Stimulation was applied on the stroke hemisphere daily between the 7th and 14th day from stroke onset. Blood samples were collected at T0, before the first rTMS section (T7), and at the end of the last rTMS session (T14). Five healthy controls were also enrolled in this study. RESULTS: Of 19 patients, 10 received rTMS and 9 sham stimulation. Compared with the sham group, in the rTMS group, plasma levels of miRs17~92 and Ntn-1 significantly increased whereas Sema3A levels tended to decrease. In multivariate linear regression analyses, rTMS was independently related to Ntn-1 and miR-25 levels at T14. CONCLUSIONS: We found an association between rTMS and neurogenesis/axonogenesis biomarker enhancement. Our preliminary data suggest that rTMS may positively interfere with natural endogenous plasticity phenomena of the post-ischemic human brain.

14.
Clin Biochem ; 127-128: 110760, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556035

RESUMEN

BACKGROUND: Recent data show that netrin-1 has a role in development of pulmonary fibrosis. This study was aimed to investigate serum netrin-1 level and its relation to interstitial lung disease(ILD) in patients with rheumatoid arthritis (RA). METHOD: 42 RA patients with RA-ILD, 58 RA patients without RA-ILD (RA non-ILD group), and 61 healthy volunteers were included in this study. The modified DAS28-ESR score was used to calculate disease activity in RA patients. Using the quantitative immunoassay method, Serum netrin-1 levels were measured with an ELISA kit (Catalog number: E-EL-H2328; lab science, lot number: GZWTKZ5SWK, Texas, USA). RESULTS: The median value of netrin-1 was found to be significantly higher in the RA-ILD group (82.9 [59.9-124]) compared to both the RA non-ILD group(52.9 [49.5-73.1])(B = -0.006, OR = 0.994, CI 95 %=0.989-0.999, P = 0.018) and the control group(53.5 [49.5-87.5]) (B: -0.005, OR: 0.994, CI 95 %: 0.990-0.999, p: 0.022). A cut-off value of 61.78 for netrin-1 was found to have a sensitivity of 73.8 % and a specificity of 69 % for the diagnosis of RA-ILD (AUC [95 %Cl] = 0.771 [0.679-0.862], p < 0.0001).It was found that high serum netrin-1 level was strongly associated with the RA-usual interstitial pneumonia(UIP) pattern and poorly related to the RA-nonspecific interstitial pneumonia(NSIP) pattern compared to the RA non-ILD group. CONCLUSIONS: Netrin-1 is elevated in the serum of patients with RA-ILD, especially in the UIP pattern. Netrin-1 may be a potential candidate for predicting the development of RA-ILD that should be investigated in the pathophysiological and therapeutic fields..


Asunto(s)
Artritis Reumatoide , Enfermedades Pulmonares Intersticiales , Netrina-1 , Humanos , Netrina-1/sangre , Artritis Reumatoide/sangre , Artritis Reumatoide/complicaciones , Enfermedades Pulmonares Intersticiales/sangre , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Pulmonares Intersticiales/complicaciones , Femenino , Masculino , Persona de Mediana Edad , Anciano , Biomarcadores/sangre , Adulto , Estudios de Casos y Controles
15.
Aging (Albany NY) ; 16(3): 2978-2988, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38345562

RESUMEN

Acute lung injury (ALI) is one of the most common high-risk diseases associated with a high mortality rate and is still a challenge to treat effectively. Netrin-1 (NT-1) is a novel peptide with a wide range of biological functions, however, its effects on ALI have not been reported before. In this study, an ALI model was constructed using lipopolysaccharide (LPS) and treated with NT-1. Pulmonary function and lung wet to dry weight ratio (W/D) were detected. The expressions of pro-inflammatory cytokines and chemokines interleukin-8 (IL-8), interleukin-1ß (IL-1ß), and chemokine (C-X-C motif) ligand 2 (CXCL2) were measured using real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). We found that the levels of NT-1 were reduced in the LPS-induced ALI mice model. Administration of NT-1 improved histopathological changes of lung tissues and lung function in LPS-challenged ALI mice. We also report that NT-1 decreased Myeloperoxidase (MPO) activity and ameliorated pulmonary edema. Additionally, treatment with NT-1 reduced the levels of pro-inflammatory cytokines and chemokines such as IL-8, IL-1ß, and CXCL2 in lung tissues of LPS-challenged ALI mice. Importantly, NT-1 reduced cell count in BALF and mitigated oxidative stress (OS) by reducing the levels of MDA and increasing the levels of GSH. Mechanistically, it is shown that NT-1 reduced the levels of Toll-like receptor 4 (TLR4) and prevented nuclear translocation of nuclear factor-κB (NF-κB) p65. Our findings indicate that NT-1 is a promising agent for the treatment of ALI through inhibiting TLR4/NF-κB signaling.


Asunto(s)
Lesión Pulmonar Aguda , FN-kappa B , Animales , Ratones , Lesión Pulmonar Aguda/metabolismo , Citocinas/metabolismo , Interleucina-8 , Lipopolisacáridos/toxicidad , Pulmón/patología , Netrina-1 , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo
16.
Front Mol Neurosci ; 17: 1307755, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375502

RESUMEN

The growth cone, a motile structure located at the tip of growing axons, senses extracellular guidance cues and translates them into directional forces that drive axon outgrowth and guidance. Axon guidance directed by chemical cues on the extracellular adhesive substrate is termed haptotaxis. Recent studies reported that netrin-1 on the substrate functions as a haptotactic axon guidance cue. However, the mechanism mediating netrin-1-induced axonal haptotaxis remains unclear. Here, we demonstrate that substrate-bound netrin-1 induces axonal haptotaxis by facilitating physical interactions between the netrin-1 receptor, DCC, and the adhesive substrates. DCC serves as an adhesion receptor for netrin-1. The clutch-linker molecule shootin1a interacted with DCC, linking it to actin filament retrograde flow at the growth cone. Speckle imaging analyses showed that DCC underwent either grip (stop) or retrograde slip on the adhesive substrate. The grip state was more prevalent on netrin-1-coated substrate compared to the control substrate polylysine, thereby transmitting larger traction force on the netrin-1-coated substrate. Furthermore, disruption of the linkage between actin filament retrograde flow and DCC by shootin1 knockout impaired netrin-1-induced axonal haptotaxis. These results suggest that the directional force for netrin-1-induced haptotaxis is exerted on the substrates through the adhesion-clutch between DCC and netrin-1 which occurs asymmetrically within the growth cone.

17.
J Biochem Mol Toxicol ; 38(1): e23623, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38229322

RESUMEN

Ischemia/reperfusion (I/R)-induced neural damage and neuroinflammation have been associated with pathological progression during stroke. Netrin-1 is an important member of the family of laminin-related secreted proteins, which plays an important role in governing axon elongation. However, it is unknown whether Netrin-1 possesses a beneficial role in stroke. Here, we employed the middle cerebral artery occlusion (MCAO) model to study the function of Netrin-1 in alleviating brain injuries. Our results demonstrate that Netrin-1 rescued poststroke neurological deficits and inhibited production of the inflammatory cytokines such as interleukin 6 (IL-6) and endothelial chemokine (C-X-C motif) ligand 1 (Cxcl1). Importantly, Netrin-1 protected against MCAO-induced dysfunction of the blood-brain barrier (BBB) in mice and a reduction in the expression of the tight junction (TJ) protein occludin. Additionally, we report that Netrin-1 could ameliorate oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury and prevent aggravation in endothelial monolayer permeability in bEnd.3 human brain microvascular endothelial cells (HBMVECs). Mechanistically, Netrin-1 ameliorated OGD/R-induced decrease in occludin and Kruppel-like factor 2 (KLF2) in HBMVECs. Notably, silencing of KLF2 abolished the beneficial effects of Netrin-1 in protecting endothelial permeability and occludin expression, suggesting that these effects are mediated by KLF2. In conclusion, our findings suggest that Netrin-1 could constitute a novel therapeutic strategy for ischemic stroke.


Asunto(s)
Barrera Hematoencefálica , Isquemia Encefálica , Netrina-1 , Daño por Reperfusión , Accidente Cerebrovascular , Animales , Humanos , Ratones , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Netrina-1/metabolismo , Ocludina/metabolismo , Reperfusión , Daño por Reperfusión/metabolismo , Factores de Transcripción/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-37561046

RESUMEN

Senescent cells that accumulate are regarded as promising therapeutic targets. However, senolytic therapy failed to achieve satisfactory results. We previously discovered that young human plasma improved vascular endothelial cell senescence, and UNC5B might be a novel intervention target. Netrin-1, as a natural ligand of UNC5B, plays roles in multiple age-related vascular disorders, but its involvement in aging is still unclear. Here, we observed a significant decrease in plasma Netrin-1 levels in old healthy subjects compared to the young. In vivo, adeno-associated-virus-mediated delivery of Netrin-1 into aged mice significantly improved functional recovery in a model of hindlimb ischemia, promoted angiogenesis in ischemic tissues, and activated the endothelial nitric oxide synthase. Furthermore, we revealed that low-dose Netrin-1 recombinant protein significantly reduced senescence-associated-ß-galactosidase-positive cells, inhibited the P53 pathway, promoted cell migration, increased tubule formation, and elevated nitric oxide production in senescent endothelial cells. However, UNC5B inhibition blocked the pro-angiogenesis effect of low-dose Netrin-1 on senescent cells or aortic rings. In summary, this study depicts that modulating Netrin-1 signaling can result in improved vascular health and Netrin-1 may have therapeutic potential for age-related ischemic diseases.


Asunto(s)
Envejecimiento , Células Endoteliales , Netrina-1 , Animales , Humanos , Ratones , Angiogénesis , Senescencia Celular , Células Endoteliales/metabolismo , Receptores de Netrina/metabolismo , Netrina-1/metabolismo , Receptores de Superficie Celular/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Transducción de Señal
19.
Transl Stroke Res ; 15(1): 219-237, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-36631632

RESUMEN

Subarachnoid hemorrhage (SAH) is a type of stroke with high morbidity and mortality. Netrin-1 (NTN-1) can alleviate early brain injury (EBI) following SAH by enhancing peroxisome proliferator-activated receptor gamma (PPARγ), which is an important transcriptional factor modulating lipid metabolism. Ferroptosis is a newly discovered type of cell death related to lipid metabolism. However, the specific function of ferroptosis in NTN-1-mediated neuroprotection following SAH is still unclear. This study aimed to evaluate the neuroprotective effects and the possible molecular basis of NTN-1 in SAH-induced EBI by modulating neuronal ferroptosis using the filament perforations model of SAH in mice and the hemin-stimulated neuron injury model in HT22 cells. NTN-1 or a vehicle was administered 2 h following SAH. We examined neuronal death, brain water content, neurological score, and mortality. NTN-1 treatment led to elevated survival probability, greater survival of neurons, and increased neurological score, indicating that NTN-1-inhibited ferroptosis ameliorated neuron death in vivo/in vitro in response to SAH. Furthermore, NTN-1 treatment enhanced the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and glutathione peroxidase 4 (GPX4), which are essential regulators of ferroptosis in EBI after SAH. The findings show that NTN-1 improves neurological outcomes in mice and protects neurons from death caused by neuronal ferroptosis. Furthermore, the mechanism underlying NTN-1 neuroprotection is correlated with the inhibition of ferroptosis, attenuating cell death via the PPARγ/Nrf2/GPX4 pathway and coenzyme Q10-ferroptosis suppressor protein 1 (CoQ10-FSP1) pathway.


Asunto(s)
Lesiones Encefálicas , Ferroptosis , Hemorragia Subaracnoidea , Ratas , Ratones , Animales , Factor 2 Relacionado con NF-E2/metabolismo , PPAR gamma , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/complicaciones , Netrina-1/farmacología , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Transducción de Señal
20.
Cell Rep ; 42(11): 113369, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37922311

RESUMEN

The biology of metastatic pancreatic ductal adenocarcinoma (PDAC) is distinct from that of the primary tumor due to changes in cell plasticity governed by a distinct transcriptome. Therapeutic strategies that target this distinct biology are needed. We detect an upregulation of the neuronal axon guidance molecule Netrin-1 in PDAC liver metastases that signals through its dependence receptor (DR), uncoordinated-5b (Unc5b), to facilitate metastasis in vitro and in vivo. The mechanism of Netrin-1 induction involves a feedforward loop whereby Netrin-1 on the surface of PDAC-secreted extracellular vesicles prepares the metastatic niche by inducing hepatic stellate cell activation and retinoic acid secretion that in turn upregulates Netrin-1 in disseminated tumor cells via RAR/RXR and Elf3 signaling. While this mechanism promotes PDAC liver metastasis, it also identifies a therapeutic vulnerability, as it can be targeted using anti-Netrin-1 therapy to inhibit metastasis using the Unc5b DR cell death mechanism.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Netrina-1 , Retinoides , Células Estrelladas Hepáticas/metabolismo , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Neoplasias Hepáticas/metabolismo , Receptores de Netrina , Proteínas de Unión al ADN , Factores de Transcripción , Proteínas Proto-Oncogénicas c-ets
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...