Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124890, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39098295

RESUMEN

Porphyrins are widely used as potential nonlinear optical (NLO) materials because of their highly delocalized π electrons and feasible synthesis and functionalization with broad biological applications. A variety of linear and cyclic porphyrin derivatives have been synthesized, and the correlation between their structures and NLO properties awaits being disclosed. In this work, the electronic structures and third-order NLO properties of linear and cyclic butadiyne-linked zinc porphyrin oligomers have been studied by quantum chemical methods and sum-over-states model. The static second hyperpolarizability (<γ0>) increases exponentially with the number of zinc porphyrin units ([<γ0>n] = 0.67[<γ0>1]n2.63, n = 2 âˆ¼ 6) in linear π-conjugated oligomers, and the <γ0> of the linear hexamer is about 74 times that of the monomer. Such enhancement of <γ0> in linear oligomers originates from closely-lying frontier molecular orbitals available for low energy electron excitations and strong charge transfer-based excitations across porphyrins. The <γ0>s of cyclic porphyrins are lower than that of the linear hexamer, though the interaction between the ring and the ligand enhances the <γ0> of some cyclic zinc porphyrin complexes. The large two-photon absorption cross sections confer on these zinc porphyrin derivatives excellent candidates for two-photon absorption applications.

2.
Heliyon ; 10(14): e34499, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39130455

RESUMEN

The sulfonamide Schiff base (C16H14N4O3S) was successfully synthesized and experimentally ascertained. The main purpose of this research is to investigate the geometry of the aforesaid molecule using both experimental and density functional theory (DFT) techniques and determine its drug likeness characteristics, docking ability as an insulysin inhibitor, and its NLO property. For the computational investigations the DFT approaches were utilized at the B3LYP level with the 6-311G+(d,p) basic set. The experimental results of the compound (such as FT-IR, UV-Vis, and 1H NMR) were compared with simulated data. The both results were well and consistent with previously related published data. The obtained spectral results confirm the formation of the Schiff base compound. Both π-π* and n-π* interactions were found in experimental and computational UV-Vis spectra, as well as in the natural bond orbital (NBO) study. The molecular, electronic, covalent, and non-covalent interactions were analyzed using DFT studies. Both experimental and simulation results revealed that the compound is successfully formed and relatively stable. The compound with a lower band gap showed high chemical reactivity. The medicinal characteristics of the compound were evaluated using in silico medicinal methods. The investigated compound was also followed Pfizer, Golden Triangle, GSK as well as Lipinski's rules. Therefore, the compound has more favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile and it can be used as non-toxic oral drug candidate. The compound was exhibited good insulysin inhibitory activity and it has almost eighteen times higher non-linear optical properties than urea and three times higher than potassium dihydrogen phosphate (KDP).

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124952, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137708

RESUMEN

Novel styryl colorants based on anchoring methoxy with anthracene as a donor linked with various active methylene acceptor groups to derive a conjugated π-system along with push-pull geometry were synthesized and well characterized. Photophysical properties were studied in different polarity solvents. The impact of solvent polarizability is delivered in redshifts in absorption and emission spectra, in addition to enhancing the quantum yield. The benzoxazole and benzimidazole moieties in 4c and 4d demonstrated heat stability of more than 300 °C. Fluorescent intensity is directly proportional to the viscosity and 4a demonstrates a notable viscosity sensor through 1.36 fold increase in intensity. In comparison to other styryl dyes, 4c and 4d were shown to have higher values in DMSO for polarizability (53.3496 × 10-24 esu and 53.7459 × 10-24 esu) and first-order hyperpolarizability (86.3467 × 10-30 esu and 89.1941 × 10-30 esu) as well as second-order hyperpolarizability (1768.9121 × 10-36 esu and 1740.6940 × 10-36 esu) due to presence of heterocyclic character. NLO properties of all the styryl dyes 4a-4e are within the fundamental boundary limits. The 4d (benzoxazole) dye exhibited a small HOMO-LUMO energy gap of 2.8825 eV, whereas the 4b and 4e dyes had a larger band gap due to the presence of a carbonyl group.

4.
Luminescence ; 39(7): e4825, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961763

RESUMEN

Herein, we have reported a red-emitting 4-methyl coumarin fused barbituric acid azo dye (4-MCBA) synthesized by conventional method. Density functional theory (DFT) studies of tautomer compounds were done using (B3LYP) with a basis set of 6-31G(d,p). NLO analysis has shown that tautomer has mean first-order hyperpolarisabilities (ß) value of 1.8188 × 10-30 esu and 1.0470 × 10-30 esu for azo and hydrazone forms, respectively, which is approximately nine and five times greater than the magnitude of urea. 4-MCBA exhibited two absorption peaks in the range of 290-317 and 379-394 nm, and emission spectra were observed at 536 nm. CV study demonstrated that the modified 4-MCBA/MGC electrode exhibited excellent electrochemical sensitivity towards the detection of catechol and the detection limit is 9.39 µM under optimum conditions. The 4-MCBA employed as a fluorescent probe for the visualisation of LFPs on various surfaces exhibited Level-I to level-II LFPs, with low background interference.


Asunto(s)
Barbitúricos , Catecoles , Cumarinas , Técnicas Electroquímicas , Barbitúricos/química , Catecoles/química , Catecoles/análisis , Técnicas Electroquímicas/instrumentación , Cumarinas/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Estructura Molecular , Teoría Funcional de la Densidad , Electrodos
5.
J Fluoresc ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954083

RESUMEN

Quantum chemical calculations of 3-aminosalicylic acid (3ASA) (monomer and dimer forms) have been performed using DFT and TD-DFT theories with B3LYP/6-311 G(d,p) functional level in the ground and excited states. Using TD-DFT with IEF-PCM model, the electronic spectra of 3ASA in solvents were computed and correlated with the experimental data. The theoretically calculated absorption and emission maxima of 3ASA (monomer) are observed in the range of 343 - 347 nm (S0 → S1 transition) and 429 - 448 nm (S1 → S0 transition), respectively. The natural bond orbital (NBO) analysis shows that charge transfer interaction contributes significantly to stabilize the molecular system. In the case of dimer, hydrogen bonding plays a dominant role in stabilizing the molecular framework. Additionally, the obtained nonlinear optical (NLO) properties: polarizability (13.86 × 10-24 e.s.u for monomer and 29.46 × 10-24 e.s.u. for dimer), first-order hyperpolarizability (4.21 × 10-30 e.s.u for monomer and 0.18 × 10-30 e.s.u for dimer) and second-order hyperpolarizability (7.44 × 10-36 e.s.u. for monomer and 14.32 × 10-36 e.s.u. for dimer) were found to be larger than those of standard organic compounds suggesting that 3ASA has a significant NLO character for optoelectronic applications. The NLO properties of dimer may differ from monomer due to dimerization. Further, the radiative lifetime, light harvesting efficiency and band gap energy were calculated, and proposed that 3ASA may be useful in photovoltaics and wide bandgap power devices. HIGHLIGHTS: • DFT and TD-DFT theories were employed to calculate structural and molecular properties of 3ASA (monomer and dimer) in ground and excited states. • HOMO-LUMO study shows monomer and dimer of 3ASA are good reactive. • NBO analysis reflects that charge transfer interactions stabilized the 3ASA molecule. • Electronic absorption/emission spectra in solvents calculated by IEF-PCM/TD-DFT method correlate with experimental results. • Calculated NLO parameters suggested that 3ASA is a potential candidate for NLO material.

6.
J Mol Model ; 30(8): 280, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046583

RESUMEN

CONTEXT: In this study, we detail the synthesis and crystallographic characterization of an unprecedented structure, specifically hypoxanthinium chloride monohydrate ((I) hereafter), which crystallizes in the monoclinic P21/c space group. A comparative analysis was conducted with four related hypoxanthinium salts: hypoxanthinium bromide monohydrate (II), 9-methylhypoxanthinium chloride monohydrate (III), hypoxanthinium nitrate monohydrate (IV), and hypoxanthinium perchlorate monohydrate (V). This analysis has focused mainly on their crystal packing, hydrogen-bonding networks, and non-classical intermolecular interactions, as elucidated by comprehensive Hirshfeld surface and topological analyses. Theoretical investigation of the nonlinear optical (NLO) properties of the hypoxanthinium derivatives (I-V) was performed using the Density Functional Theory (DFT). METHODS: The crystalline environment was simulated using the iterative Supermolecule method (SM), and the static and dynamics linear refractive index, linear polarizability, second-order hyperpolarizability, and the third-order nonlinear susceptibility at the DFT/CAM-B3LYP/6-311++G(d,p) level were computed. The results for the macroscopic third-order nonlinear susceptibility of (II) was found to equal χ 3 = 0.81 × 10 - 20 m 2 / V 2 . By replacing the bromine atom in (II) with a chlorine atom as in (III), the χ 3 value will be multiplied by 2.16, and therefore these results are large enough to suggest the potential application of these crystals as NLO materials.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124600, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38852303

RESUMEN

Psilocin, or 4-HO-DMT (or 3-(2-dimethylaminoethyl)-1H-indol-4-ol), is a psychoactive alkaloid substance from the tryptamine family, isolated from Psilocybe mushrooms. This substance is being studied by various research groups because it has a clear therapeutic effect in certain dosages. In this work, the study of the structure and properties of psilocin was carried using theoretical methods: the effects of polar solvents (acetonitrile, dimethylsulfoxide, water, and tetrahydrofuran) on the structural parameters, spectroscopic properties (Raman, IR, and UV-Vis), frontier molecular orbital (FMO), molecular electrostatic potential (MEP) surface, and nonlinear optical parameters (NLO). Theoretical calculations were performed at the B3LYP/6-311++G(d,p) level by the density functional theory (DFT) method. IEFPCM was used to account for solvent effects. The types and nature of non-covalent interactions (NCI) between psilocin and solvent molecules were determined using Atoms in Molecules (AIM), the reduced density gradient method (RDG), the electron localization function (ELF), and the localization orbital locator (LOL). Experimental and calculated FT-IR, FT-Raman, and UV-Vis spectra were compared and found to be in good agreement.

8.
Sci Rep ; 14(1): 13971, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886473

RESUMEN

In the current work, organic cyclopenta-thiophene (CPT) based derivatives (FICR and FICD1-FICD5) were designed by the modulation of end-capped acceptor group of the reference molecule i.e., FICR, to explore their nonlinear optical (NLO) response. The effect of terminal acceptor and donor groups in the tailored compounds was explored by using DFT based quantum calculations. The UV-Vis analysis, frontier molecular orbitals (FMOs), transition density matrix (TDM), natural bond orbitals (NBOs), density of states (DOS), nonlinear optical (NLO) analyses were performed at M06/6-311G(d,p) functional. The LUMO-HOMO band gaps of FICD1-FICD5 were found to be smaller (1.75-1.92 eV) comparative to FICR (1.98 eV). Moreover, the global reactivity parameters (GRPs) were correlated with the results of other analyses. FICD2 and FICD5 with lowest band gap 1.73 and 1.75 eV showed less hardness (0.86 and 0.87 eV, respectively), high softness (0.58 and 0.57 eV-1), and larger absorption spectrum (815 and 813 nm) in gaseous phase and (889 and 880 nm) in solvent phase among all entitled compounds. All the designed chromophores (FICD1-FICD5) demonstrated a significant NLO response as compared to FICR. Particularly, FICD2 and FICD5 exhibited the highest average linear polarizability (<α>) [2.86 × 10-22 and 2.88 × 10-22 esu], first hyperpolarizability (ßtot) (8.43 × 10-27 and 8.35 × 10-27 esu) and second hyperpolarizability (γtot) (13.20 × 10-32 and 13.0 × 10-32 esu) values as compared to the other derivatives. In nutshell, structural modeling of CPT based chromophores with extended acceptors, can be significantly utilized to achieve potential NLO materials.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124698, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38936213

RESUMEN

In this article, the structural and nonlinear optical behaviour of a chalcone derivative, (2E)-1-(4-ethoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one have been studied. FT-IR, FT-Raman, and NMR spectroscopy were analyzed to validate the molecular structure. To predict the nonlinear optical characteristics of the chalcone, the DFT approach was used and the experimental results were corroborated by the computations. The bathochromic shift is obtained in linear absorbance spectra and is validated using TD-DFT. Also, the broad emission in the blue region demonstrates the blue light emission property of the sample. Using the finite-field method, the dipole moments, polarizability, first-order and second-order hyperpolarizability parameters have been computed. Ground and excited state dipole moments were quantified by solvatochromism. The third-order nonlinear optical characteristics of chalcone in polar and non-polar solvent media were examined using the open/closed-aperture z-scan technique. The chalcone displayed considerable two-photon absorption with a positive nonlinear absorption coefficient and a positive index of refraction due to the self-focussing effect. Furthermore, the optical limiting study manifests that the investigated chalcone might well be favourable for NLO applications.

10.
Angew Chem Int Ed Engl ; : e202408551, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858167

RESUMEN

Heat-activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)- (4-hydroxypyridinium methylsulfonate, 4HPMS), is a near-room-temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat-stimulated NLO switches. It offers excellent contrast of 13 and a high laser-induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)- due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)-. Additionally, 4HPMS-RTP also exhibits mechanochromism upon grinding as well as an aggregation-enhanced emission in a mixture of acetone and water.

11.
J Mol Model ; 30(5): 151, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668860

RESUMEN

CONTEXT: The controlled slow evaporation process conducted at room temperature has produced a novel hybrid material denoted as (2-hydroxyethyl) trimethylammonium dihydrogen phosphate [2-HDETDHP] (C5H14NO+, H2PO4-), synthesized through the solution growth method. X-ray crystallography analysis reveals a triclinic structure with a filling rate of P and a Z value of 2. This hybrid material displays noteworthy absorption characteristics in the middle and far ultraviolet regions. UV-visible spectroscopy further establishes its transparency in the visible and near-visible ultraviolet domains. FT-IR spectroscopy examines various vibration modes, elucidating their relationships with the functional groups within the structure. Two- and three-dimensional fingerprint maps, coupled with three-dimensional crystal structures through Hirshfeld Surface Analysis, unveil the dominance of O•••H and H•••H interactions in the structure, comprising 49.40% and 50.40%, respectively. Fingerprint plots derived from the Hirshfeld surface assess the percentages of hydrogen bonding interactions, with 80.6% attributed to a fragment patch. The experiment of antimicrobial efficacy of a synthesized product, conducted in triplicate, demonstrated the synthesized product's potential antimicrobial activity. METHODS: Hirshfeld surfaces are employed to investigate intermolecular hydrogen bonding, specifically within single phosphate groups. The molecular structure of 2-HDETDHP was refined using single-crystal X-ray analysis, while its optical characteristics were examined through UV-visible spectroscopy. FT-IR spectroscopy is employed for the assignment of molecular vibrations of functional groups in the affined structure. Quantum calculations were executed with the GAUSSIAN 09 software package at B3LYP/6-311G level of theory, to optimize the molecular geometries. The antimicrobial efficacy of a synthesized product was evaluated using the disc diffusion method against antibiotic-resistant Candida albicans, Candida tropicalis, Aspergillus niger, Staphylococcus aureus, and Escherichia coli. Microorganisms were cultured on nutrient agar, and inhibition zones were measured after incubation, with streptomycin and amphotericin as positive controls.


Asunto(s)
Fosfatos , Fosfatos/química , Enlace de Hidrógeno , Modelos Moleculares , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana , Cristalografía por Rayos X , Antiinfecciosos/química , Antiinfecciosos/farmacología , Candida albicans/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/síntesis química
12.
J Mol Model ; 30(5): 126, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581440

RESUMEN

CONTEXT: Due to their unique photophysical properties, organic charge transfer crystals are becoming promising materials for next-generation optoelectronic devices. This research paper explores the impact of s-block metals on a charge transfer crystal of indol-2-one for enhanced nonlinear optical (NLO) responses with efficient energetic offsets. The study reveals that alkali metals can enhance NLO performance due to their free electrons. METHOD: The Perdew-Burke-Ernzerhof functional of DFT with dispersion correction (D3) was used, and the λmax values ranged between 596 and 669 nm, with the highest value for dichloromethane (DCM). Leveraging the unique properties of metals allowed for the development of nonlinear optical materials with improved performance and versatility. Softness (σ) values provide insight into electron density changes, with higher values indicating a greater tendency for changes and lower values indicating the opposite. The NLO results for the chromophores MMI1-MMI6 show varying linear polarizability (< α0 >) along with their first (ß0) and second (γ0) hyperpolarizabilities. Chromophore MMI4 stands out with the highest NLO performance, having two potassium (K) atoms. Its < α0 > , ß0, and γ0 values of 4.19, 7.09, and 17.43 (× 10-24 e.s.u), respectively, indicate a significant enhancement in NLO response compared to the other chromophores. The transitions involving (O20)LP → (C3-N5)π* and (O19)LP → (N12-C13)π* exhibit the highest level of stabilization, followed by (O23)π → (C10-C11)π*, while (C6-N12)π → (C6-C7)π* shows the lowest level of stabilization for chromophore MMI4. The present research work is facile in its nature, and it can be helpful for synthetic scientist to design the new materials for uniting crystal properties with metal doping for efficient NLO devices.

13.
ACS Nano ; 18(17): 10955-10978, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38625032

RESUMEN

2D semiconductors have interesting physical and chemical attributes that have led them to become one of the most intensely investigated semiconductor families in recent history. They may play a crucial role in the next technological revolution in electronics as well as optoelectronics or photonics. In this Perspective, we explore the fundamental principles and significant advancements in electronic and photonic devices comprising 2D semiconductors. We focus on strategies aimed at enhancing the performance of conventional devices and exploiting important properties of 2D semiconductors that allow fundamentally interesting device functionalities for future applications. Approaches for the realization of emerging logic transistors and memory devices as well as photovoltaics, photodetectors, electro-optical modulators, and nonlinear optics based on 2D semiconductors are discussed. We also provide a forward-looking perspective on critical remaining challenges and opportunities for basic science and technology level applications of 2D semiconductors.

14.
Angew Chem Int Ed Engl ; 63(20): e202402086, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477869

RESUMEN

Combining a strong second-order nonlinear optical (NLO) effect (>1×KH2PO4 (KDP)), a large band gap (>4.2 eV), and a moderate birefringence in ultraviolet (UV) NLO crystals remains a formidable challenge. Herein, Cd(SCN)2(C4H6N2)2, the first example of a thiocyanate capable of realizing a phase-matched UV NLO crystal material, is obtained by reducing the sulfur (S) content in the centrosymmetric (CS) structure of Cd(SCN)2(CH4N2S)2. Compared to the "shoulder-to-shoulder" one-dimensional (1D) chain of Cd(SCN)2(CH4N2S)2, Cd(SCN)2(C4H6N2)2 has a different sawtooth 1D chain structure. Cd(SCN)2(CH4N2S)2 has second harmonic generation (SHG) inertia with a band gap of 3.90 eV and a UV cutoff edge of 342 nm, however, it possesses a large birefringence (0.35@546 nm). In contrast, the symmetry center breaking of Cd(SCN)2(C4H6N2)2 leads to remarkably strong SHG intensity (10 times that of KDP). Furthermore, it has a wide band gap (4.74 eV), short UV cutoff edge (234 nm), and moderate birefringence capable of phase matching (0.17@546 nm). This research indicates that thiocyanates are a promising class of UV NLO crystal materials, and that modulation of the sulfur content of CS thiocyanates is an effective strategy for the development of UV NLO crystals with excellent overall performances.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124161, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493513

RESUMEN

The optical characteristics of folic acid (ABP) and metal clusters of copper (Cu3) at various locations were investigated by means of density functional theory (DFT) computations. Mulliken charge analysis and molecular electrostatic potential (MEP) surface show how charge moves from Cu3 to ABP through the various groups. The peak in the UV-Vis spectra of ABP-Cu3 is caused by bonding and anti-bonding orbitals. In both vacuum and aqueous conditions, the polarizability values of ABP-Cu3 cluster are significantly higher than those of pure ABP, indicating a possible enhancement of the nonlinear optical (NLO) effect. Our research investigates the possibility of using ABP adsorbed metal clusters for NLO materials. Surface enhanced Raman scattering (SERS) in the ABP adsorbed metal clusters enhances the vibrational modes of ABP. Adsorption energies are found to be in the range -17.08 to -58.52 kcal/mol in vacuum and -53.34 to -93.44 kcal/mol in aqueous medium for the different configurations for ABP-Cu3. It indicates that metal clusters adsorbed by ABP are stable in the aqueous media. Experimental IR and UV-Vis of ABP is in agreement with theoretically predicted ones.

16.
Heliyon ; 10(5): e24475, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38444468

RESUMEN

The use of nanostructures in targeted drug delivery is effective in decreasing anticancer drug toxicity. Here, we discuss the theoretically predicted adsorption and interaction behavior of hydroxyurea [HU] with nano metal cages (nmC). HU interact the nmC through the N4 in primary amine with energies of -29.776, -30.684 and -22.105 kcal/mol for Au, Ag and Cu cage, respectively. As a result of reactivity studies, HU complexes with nmC (Au/Ag/Cu) are becoming more electrophilic and this gives the nmC system their bioactivity. It is suggested that nanocage is going to change the FMO's energy levels by means of absorption, so that it is used in drug administration. DOS and MEP were accomplished to gain additional understandings into the reactivity of proposed complexes. Method for improving the Raman signal of biomolecules is surface enhanced Raman scattering (SERS), which uses nanosized metal substrates. Chemical enhancement is evidenced by Mulliken charge distributions of all systems for detection and chemical compositions and exerts a significant role in determining them. In HU complexes containing nmC (Au/Ag/Cu), electron density was detected via ELF and LOL calculations. Based on the results of a non-covalent interaction (NCI) analysis, Van der Waals/hydrogen bonds/repulsive steric - interactions have been found. The title compound will also be analyzed in order to determine its bioactivity and drug likeness parameters, as a result, we will able to create a molecule with a highly favorable pharmacological profile and use the docking method to determine the values of the interaction energies for drug delivery. This study suggests that adsorption of drugs on nanocage surface occurs physically and functionalizing the nanocage has increased adsorption energy.

17.
J Fluoresc ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457074

RESUMEN

This study emphasis the solvent effect on third-order nonlinear optical (NLO) features of methyl red (MR) dye dissolved in polar solvents including ethanol, methanol, acetone, 1-propanol, DMF and DMSO using low power diode laser. Z-scan technique operating at 405 nm wavelength, is used to estimate the third-order NLO features of MR dye in various solvents. The dye discloses self-defocusing nonlinear index of refraction (n2), which is determined to be the order of 10-7 cm2/W. The nonlinear coefficient of absorption (ß) of MR dye displays both negative and positive value owing to saturable absorption (SA) and reverse saturable absorption (RSA), respectively. The real and imaginary components of the third-order NLO susceptibility of MR dye in polar solvents are measured to be the order of 10-6 esu and 10-7 esu, respectively. The dye exhibits a large NLO susceptibility in DMSO, which is estimated to be 1.21 × 10-6 esu. The effect of solvent spectral features on MR dye is determined by applying a multi-parameter scale called Kamlet-Abboud-Taft. The experiment results indicate that MR dye is a promising NLO material that may find applications in photonics and optoelectronics.

18.
J Fluoresc ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460094

RESUMEN

Herein, we report the nonlinear optical (NLO) refraction and absorption features of azo dye namely, methyl orange (MO) dissolved in ethanol, methanol, acetone, 1-propanol, DMF and DMSO. The UV-Visible absorption study reveals that the maximum absorption spectrum of MO dye appeared towards longer wavelength by increasing the solvent polarizability is the result of red shift or bathochromic shift. The Z-scan method is utilized to measure the third-order NLO features of MO dye in different polar solvents. A continuous wave laser with 5-mW power and an excitation wavelength of 405 nm is employed in the Z-scan technique. The NLO features including nonlinear index of refraction (n2), nonlinear coefficient of absorption (ß) and third-order NLO susceptibility (χ3) are calculated to be the order of 10-7 cm2/W, 10-2 cm/W and 10-7 esu, respectively. The NLO index of refraction shows peak-valley transmittance is the result of self-defocusing and NLO absorption coefficient exhibits both positive and negative nonlinearity owing to saturable absorption (SA) and reverse saturable absorption (RSA). The effect of solvent polarizability and dipole moment on third-order NLO susceptibility of MO dye is discussed. Based on the experimental results, an azo dye MO appears to be a promising option for NLO applications in the future.

19.
J Mol Model ; 30(2): 57, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300376

RESUMEN

CONTEXT: Organic semiconductors (OSCs) have attracted a great deal of interest in recent days. There are various types of OSCs, among which small molecules have various inherent benefits. Further research is needed to advance this new kind of material because the field is still developing, and the current focus is on creating small molecules that exist naturally for OSCs. OSCs with nonlinear optical (NLO) characteristics offer a significant advantage over others. Thus, this study theoretically investigates naturally occurring anthraquinones such as chrysophanol and rhein as potential OSCs, as well as their NLO properties. The calculated properties include the ionization potential (IP), electron affinity (EA), and bandgap (Eg). The FMO energy levels together with the Eg, IP (8.17-8.53 eV), and EA (1.87-2.44 eV) suggest the semiconductor nature of the studied compounds. The calculated values of reorganization energy (λ) and transfer integrals (V) suggest the p-type character of both molecules. Rhein has the lowest λh (0.19 eV) and Eg (3.28 eV) and the highest Vh, predominantly because of its better p-type character. The polarizability increases due to the presence of an electron-withdrawing substituent, leading to better NLO performance for Rhein, which is supported by its lower LUMO and Eg values. METHODS: The studied molecules were optimized with the DFT/B3LYP-GD3/6-31+G(d,p) method using Gaussian 16 software. The crystal structure was simulated with Materials Studio 7.0, and the V values were calculated with the ADF package. The CDD and DOS plots were obtained with the Multiwfn 3.8 program.

20.
Heliyon ; 10(4): e25624, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38380028

RESUMEN

This study highlights the recent advancements in organic electronic materials and their potential for cost-effective optoelectronic devices. The investigation focuses on the molecular design, synthesis, and comprehensive analysis of two organic dyes, aiming to explore their suitability for optoelectronic applications. The dyes are strategically constructed with carbazole as the foundational structure, connecting two electron-withdrawing groups: barbituric acid (Cz-BA) and thiobarbituric acid (Cz-TBA). These dyes, featuring carbazole as the core and electron-withdrawing groups, demonstrate promising spectral, optical, electrochemical, thermal, and theoretical properties. They show strong potential for diverse optoelectronic applications, promising efficient light absorption and robust stability. The results endorse their suitability for practical optoelectronic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA