Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Crit Care ; 28(1): 17, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191420

RESUMEN

Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor and plays a critical role in the immune response. TREM-1 activation leads to the production and release of proinflammatory cytokines, chemokines, as well as its own expression and circulating levels of the cleaved soluble extracellular portion of TREM-1 (sTREM-1). Because patients with sepsis and septic shock show elevated sTREM-1 levels, TREM-1 has attracted attention as an important contributor to the inadequate immune response in this often-deadly condition. Since 2001, when the first blockade of TREM-1 in sepsis was performed, many potential TREM-1 inhibitors have been established in animal models. However, only one of them, nangibotide, has entered clinical trials, which have yielded promising data for future treatment of sepsis, septic shock, and other inflammatory disease such as COVID-19. This review discusses the TREM-1 pathway and important ligands, and highlights the development of novel inhibitors as well as their clinical potential for targeted treatment of various inflammatory conditions.


Asunto(s)
Sepsis , Choque Séptico , Receptor Activador Expresado en Células Mieloides 1 , Animales , Humanos , Citocinas , Sepsis/tratamiento farmacológico , Receptor Activador Expresado en Células Mieloides 1/metabolismo
2.
Inflammopharmacology ; 30(3): 1107-1117, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35391646

RESUMEN

Osteoarthritis (OA) is a chronic joint disorder that causes cartilage degradation and subchondral bone abnormalities. Nangibotide, also known as LR12, is a dodecapeptide with considerable anti-inflammatory properties, but its significance in OA is uncertain. The aim of the study was to determine whether nangibotide could attenuate the progression of OA, and elucidate the underlying mechanism. In vitro experiments showed that nangibotide strongly inhibited TNF-α-induced osteogenic reduction, significantly enhanced osteoblast proliferation and prevented apoptosis in MC3T3-E1 cells. Male C57BL/6 J mice aged 2 months were randomly allocated to three groups: sham, ACLT, and ACLT with nangibotide therapy. Nangibotide suppressed ACLT-induced cartilage degradation and MMP-13 expression. MicroCT analysis revealed that nangibotide attenuated in vivo subchondral bone loss induced by ACLT. Histomorphometry results showed that nangibotide attenuated ACLT-induced osteoblast inhibition; TUNEL assays and immunohistochemical staining of cleaved-caspase3 further confirmed the in vivo anti-apoptotic effect of nangibotide on osteoblasts. Furthermore, we found that nangibotide exerted protective effects by suppressing TGF-ß signaling mediated by Smad2/3 to restore coupled bone remodeling in the subchondral bone. In conclusion, the findings suggest that nangibotide might exert a protective effect on the bone-cartilage unit and maybe an alternative treatment option for OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Apoptosis , Modelos Animales de Enfermedad , Ácidos Láuricos , Masculino , Ratones , Ratones Endogámicos C57BL , Oligopéptidos , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoblastos/metabolismo , Rodaminas , Factor de Crecimiento Transformador beta/metabolismo
3.
Intensive Care Med ; 46(7): 1425-1437, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32468087

RESUMEN

PURPOSE: Nangibotide is a specific TREM-1 inhibitor that tempered deleterious host-pathogens interactions, restored vascular function, and improved survival, in animal septic shock models. This study evaluated the safety and pharmacokinetics of nangibotide and its effects on clinical and pharmacodynamic parameters in septic shock patients. METHODS: This was a multicenter randomized, double-blind, two-stage study. Patients received either continuous infusion of nangibotide (0.3, 1.0, or 3.0 mg/kg/h) or placebo. Treatment began < 24 h after shock onset and continued for up to 5 days. Safety primary outcomes were adverse events (AEs), whether serious or not, and death. Exploratory endpoints evaluated nangibotide effects on pharmacodynamics, organ function, and mortality, and were analyzed according to baseline sTREM-1 concentrations. RESULTS: Forty-nine patients were randomized. All treatment emergent AEs (TEAEs) were collected until Day 28. No significant differences were observed in TEAEs between treatment groups. No drug withdrawal linked to TEAE nor appearance of anti-drug antibodies were reported. Nangibotide pharmacokinetics appeared to be dose-proportional and clearance was dose-independent. Nangibotide did not significantly affect pharmacodynamic markers. Decrease in SOFA score LS mean change (± SE) from baseline to Day 5 in pooled nangibotide groups versus placebo was - 0.7 (± 0.85) in the randomized population and - 1.5 (± 1.12) in patients with high baseline plasma sTREM-1 concentrations (non-significant). This pattern was similar to organ support end points. CONCLUSION: No significant increases in TEAEs were detected in nangibotide-treated patients versus placebo. These results encourage further evaluation of nangibotide and further exploration of plasma sTREM-1 concentrations as a predictive efficacy biomarker.


Asunto(s)
Choque Séptico , Animales , Método Doble Ciego , Humanos , Factores Inmunológicos , Choque Séptico/tratamiento farmacológico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA