Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
Cureus ; 16(9): e68359, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39355471

RESUMEN

Objective This study investigates the antimicrobial properties of silver (1%) and chitosan (1%) nanoparticles against Streptococcus mutans (S. mutans) when added to an orthodontic primer used for aligner attachments. While aligner treatments are becoming increasingly popular for their aesthetics and convenience, their attachments can create retention sites for bacteria, potentially leading to white spot lesions (WSLs). This in vitro study aims to address this issue by enhancing the antimicrobial efficacy of aligner primers. Methodology Thirty freshly extracted teeth were classified into the following three groups: Group A with the standard primer, Group B with chitosan nanoparticles mixed in the primer, and Group C with silver nanoparticles mixed in the primer. The samples were incubated with S. mutans and bacterial colonies were counted at 12, 24, 48, and 72 hours. Results The results showed a significant reduction in colony-forming units (CFUs) in the groups with nanoparticles compared to the control group, with silver nanoparticles exhibiting a higher antimicrobial effect than chitosan. Conclusions This study suggests that incorporating silver nanoparticles into orthodontic primers can effectively reduce bacterial growth, potentially improving oral hygiene and reducing the risk of WSLs in patients undergoing aligner treatment.

2.
BMC Biotechnol ; 24(1): 52, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095760

RESUMEN

BACKGROUND: Colorectal cancer is a common disease worldwide with non-specific symptoms such as blood in the stool, bowel movements, weight loss and fatigue. Chemotherapy drugs can cause side effects such as nausea, vomiting and a weakened immune system. The use of antioxidants such as hesperidin could reduce the side effects, but its low bioavailability is a major problem. In this research, we aimed to explore the drug delivery and efficiency of this antioxidant on the HCT116 colorectal cancer cell line by loading hesperidin into PLGA nanoparticles. MATERIALS AND METHODS: Hesperidin loaded PLGA nanoparticles were produced by single emulsion evaporation method. The physicochemical properties of the synthesized hesperidin-loaded nanoparticles were determined using SEM, AFM, FT-IR, DLS and UV-Vis. Subsequently, the effect of the PLGA loaded hesperidin nanoparticles on the HCT116 cell line after 48 h was investigated by MTT assay at three different concentrations of the nanoparticles. RESULT: The study showed that 90% of hesperidin were loaded in PLGA nanoparticles by UV-Vis spectrophotometry and FT-IR spectrum. The nanoparticles were found to be spherical and uniform with a hydrodynamic diameter of 76.2 nm in water. The release rate of the drug was about 93% after 144 h. The lowest percentage of cell viability of cancer cells was observed at a concentration of 10 µg/ml of PLGA nanoparticles loaded with hesperidin. CONCLUSION: The results indicate that PLGA nanoparticles loaded with hesperidin effectively reduce the survival rate of HCT116 colorectal cancer cells. However, further studies are needed to determine the appropriate therapeutic dosage and to conduct animal and clinical studies.


Asunto(s)
Neoplasias Colorrectales , Hesperidina , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Humanos , Hesperidina/química , Hesperidina/farmacología , Hesperidina/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Neoplasias Colorrectales/tratamiento farmacológico , Células HCT116 , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos , Ácido Láctico/química , Ácido Poliglicólico/química , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula , Portadores de Fármacos/química , Espectroscopía Infrarroja por Transformada de Fourier , Antineoplásicos/farmacología , Antineoplásicos/química , Sistema de Administración de Fármacos con Nanopartículas/química
3.
Front Plant Sci ; 15: 1420408, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100088

RESUMEN

Heavy metal pollution has become a serious concern across the globe due to their persistent nature, higher toxicity, and recalcitrance. These toxic metals threaten the stability of the environment and the health of all living beings. Heavy metals also enter the human food chain by eating contaminated foods and cause toxic effects on human health. Thus, remediation of HMs polluted soils is mandatory and it needs to be addressed at higher priority. The use of microbes is considered as a promising approach to combat the adverse impacts of HMs. Microbes aided in the restoration of deteriorated environments to their natural condition, with long-term environmental effects. Microbial remediation prevents the leaching and mobilization of HMs and they also make the extraction of HMs simple. Therefore, in this context recent technological advancement allowed to use of bioremediation as an imperative approach to remediate polluted soils. Microbes use different mechanisms including bio-sorption, bioaccumulation, bioleaching, bio-transformation, bio-volatilization and bio-mineralization to mitigate toxic the effects of HMs. Thus, keeping in the view toxic HMs here in this review explores the role of bacteria, fungi and algae in bioremediation of polluted soils. This review also discusses the various approaches that can be used to improve the efficiency of microbes to remediate HMs polluted soils. It also highlights different research gaps that must be solved in future study programs to improve bioremediation efficency.

4.
Anal Chim Acta ; 1323: 343058, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39182969

RESUMEN

BACKGROUND: The determination of (nano)particulate content from food additives has been a long-standing concern for authorities since it is of vital importance for ensuring food safety, regulatory adherence, and transparent consumer information. Nonetheless, a critical step in these determinations is the refinement of a careful and quantitative extraction process for particles that may be found within complex matrices such as confectionery products. The development of new technologies and analysis methods for nanoparticles is ongoing. Whereas new technologies and analysis methods for nanoparticles are being developed, the extraction of (nano)particles of different nature has not been adequately addressed in the literature. RESULTS: A simple aqueous extraction procedure was found to be suitable for the simultaneous extraction of TiO2 and SiO2 (nano)particles from five confectionery products. Neither the extraction agents (water, lipase, pancreatin and Tris-HCl solutions) nor the methods (manual shaking, ultrasonic bath, ultrasonic probe and ultrafiltration) altered the size, morphology, or aggregation state of either type of particle, as revealed by the micrographs obtained by Transmission Electron Microscopy (TEM). Single-particle ICP-MS (spICP-MS) determined that the optimal conditions for extracting both types of particles involve manual shaking using water as the solvent. Furthermore, the use of enzymes seemed to hinder the determination of both types of particles by spICP-MS. (Nano)particles of TiO2 and SiO2 were detected in all the confectionaries, even though the E171 additive was only labeled in one of them. The average percentage of nanoparticulate TiO2 material in the evaluated products was 30 %, while no nanometer-sized particles of SiO2 were detected. SIGNIFICANCE: Ensuring food safety, regulatory compliance and transparent consumer information relies on getting reliable results that connect with the application of sample treatment procedures for detecting unaltered nanoparticles in food products. The presented research introduces an economical, swift, user-friendly, environmentally responsible, and harmonious extraction method for the concurrent analysis of TiO2 and SiO2 particles in confectionery samples. Furthermore, particles from additives not included in the labeling have been detected, characterized, and quantified in the confectionary products.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Titanio , Titanio/química , Dióxido de Silicio/química , Nanopartículas/química , Agua/química , Tamaño de la Partícula
5.
Adv Sci (Weinh) ; 11(34): e2402935, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38976560

RESUMEN

This review describes the formation of a protein corona (or its absence) on different classes of nanoparticles, its basic principles, and its consequences for nanomedicine. For this purpose, it describes general concepts to control (guide/minimize) the interaction between artificial nanoparticles and plasma proteins to reduce protein corona formation. Thereafter, methods for the qualitative or quantitative determination of protein corona formation are presented, as well as the properties of nanoparticle surfaces, which are relevant for protein corona prevention (or formation). Thereby especially the role of grafting density of hydrophilic polymers on the surface of the nanoparticle is discussed to prevent the formation of a protein corona. In this context also the potential of detergents (surfactants) for a temporary modification as well as grafting-to and grafting-from approaches for a permanent modification of the surface are discussed. The review concludes by highlighting several promising avenues. This includes (i) the use of nanoparticles without protein corona for active targeting, (ii) the use of synthetic nanoparticles without protein corona formation to address the immune system, (iii) the recollection of nanoparticles with a defined protein corona after in vivo application to sample the blood proteome and (iv) further concepts to reduce protein corona formation.


Asunto(s)
Nanopartículas , Corona de Proteínas , Corona de Proteínas/química , Nanopartículas/química , Humanos , Nanomedicina/métodos , Proteínas Sanguíneas/química
6.
Heliyon ; 10(12): e32837, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022059

RESUMEN

This work aimed to produce silver nanoparticles (AgNPs) by efficient green synthesis techniques, namely rapid green synthesis and modified microwave-assisted green synthesis methods. The study used fish scale collagen (FsCol) as a stabilizer to assess its impact on the dimensions and configurations of AgNPs. Four samples were prepared with varying concentrations of FsCol. The synthesized AgNPs were characterized using Ultraviolet-visible (UV-vis) spectroscopy, scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray diffraction analysis (XRD), Dynamic Light Scattering (DLS), and Transmission electron microscopy (TEM) techniques. The obtained sizes are as follows: 85 ± 15 nm, 70 ± 10 nm, 50 ± 10 nm, and 28-40 nm. The UV-vis spectroscopy revealed a shift in the absorbance peaks from 400 to 446 nm. The SEM method showed a spherical form in all of the samples. The element silver was detected in the EDX examination, along with the presence of oxygen (O) and carbon (C). The FTIR analysis revealed that the peaks seen at 3307 cm-1 were attributed to the stretching of O-H bonds, while the mountain at 1638 cm-1 belonged to the extension of N-H bonds (amide A). Additionally, the band observed at 1638 cm-1 indicated the presence of CO bonds (amide I).The 2140 cm-1 and 1302 cm-1 peaks may be attributed to the C2H2 group present in the plant components and the N-H bending (Amide III), respectively. The XRD pattern indicates that the synthesis process resulted in the formation of crystalline AgNPs. The particle sizes measured using DLS were 121 nm, 96.36 nm, 82.3 nm, and 48.50 nm. The TEM approach revealed that all samples had a spherical morphology with varying sizes: 80-100 nm, 50-80 nm, 40-60 nm, and 28-42 nm. The synthesized AgNPs were tested for their antibacterial properties against the pathogenic pathogens Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus). The influence of AgNPs on bacteria was amplified as the particle size decreased, resulting in a larger inhibitory zone for the smaller particles.

7.
Acta Pharm Sin B ; 14(7): 2942-2958, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027255

RESUMEN

Breast phyllodes tumor (PT) is a rare fibroepithelial neoplasm with potential malignant behavior. Long non-coding RNAs (lncRNAs) play multifaceted roles in various cancers, but their involvement in breast PT remains largely unexplored. In this study, microarray was leveraged for the first time to investigate the role of lncRNA in PT. We identified lncRNA ZFPM2-AS1 was significantly upregulated in malignant PT, and its overexpression endowed PT with high tumor grade and adverse prognosis. Furthermore, we elucidated that ZFPM2-AS1 promotes the proliferation, migration, and invasion of malignant PT in vitro. Targeting ZFPM2-AS1 through nanomaterial-mediated siRNA delivery in patient-derived xenograft (PDX) model could effectively inhibit tumor progression in vivo. Mechanistically, our findings showed that ZFPM2-AS1 is competitively bound to CDC42, inhibiting ACK1 and STAT1 activation, thereby launching the transcription of TNFRSF19. In conclusion, our study provides evidence that ZFPM2-AS1 plays a pivotal role in the pathogenesis of breast PT, and suggests that ZFPM2-AS1 could serve as a prognostic indicator for patients with PT as well as a promising novel therapeutic target.

8.
J Parasit Dis ; 48(2): 257-268, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38840874

RESUMEN

The aim of this study was to evaluate the in vitro anthelmintic effect of crude aqueous, methanol, ethanol, hydro alcohol and acetone extracts of Vitex negundo leaves against Haemonchus contortus eggs and larvae. Phytochemical analysis to identify the number of compounds in extracts was done by chemical tests and gas chromatography coupled to a mass spectrophotometer detector (GC-MS). First off all the effectiveness of dried plant materials was evaluated on larval development by mixing powdered material (no nano particles) to faecal cultures from donor sheep. Adding powder to the faecal culture resulted into 100% inhibition in larval development at 200 and 300 mg/g of faeces. The anthelmintic activity was assessed using the egg hatch assay (EHA) and the larval mortality assay (LMA). Comparison of mean inhibition percentage of egg embryonation, mean inhibition percentage of egg hatching and mean percentage of larval mortality at different concentrations with control was performed by one-way ANOVA. The means were compared for statistical significance using DMRT at P < 0.05. For both the assays, 50% inhibitory concentration (IC50) and lethal concentration (LC50) were calculated by probit analysis. Chemical test revealed presence of high concentration of saponin and flavoinoids and moderate concentration of total phenols in leaves. The antioxidant activity (radical scavenging activity, RSA %) measured was 35.47%. On GC-MS, the methanolic leaves extract revealed 30 phyto-compounds. On EHA, there was marked effect on inhibition of egg hatching by aqueous, hydro alcohol and acetone extracts. On LMA all the five extracts showed excellent larvicidal activity. V. negundo leaves methanol extract mediated silver nanoparticles were found very effective at much lower concentrations as compared to crude methanol extract. The results indicated that the V. negundo leaves crude extracts possessed excellent in vitro ovicidal and larvicidal properties against H. contortus which needs more investigation, especially in vivo trials for the control of parasite.

9.
Sci Total Environ ; 940: 173588, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38823693

RESUMEN

Currently, risk assessment and pollution management in mines primarily focus on toxic metals, with the flotation agents being overlooked. However, the combined effects of metals and flotation agents in mines remain largely unknown. Therefore, this study aimed to evaluate the combined effects of Cd and two organic flotation agents (ethyl xanthate (EX) and diethyldithiocarbamate (DDTC)), and the associated mechanisms. The results showed that Cd + EX and Cd + DDTC exhibited synergistic toxicity. The EC50 values for luminescent bacteria were 1.6 mg/L and 1.0 mg/L at toxicity unit ratios of 0.3 and 1, respectively. The synergistic effects were closely related with the formation of Cd(EX)2 and Cd(DDTC)2 micro/nano particles, with nano-particles exhibiting higher toxicity. We observed severe cell membrane damage and cell shrinkage of the luminescent bacteria, which were probably caused by secondary harm to cells through the released CS2 during their decomposition inside cells. In addition, these particles induced toxicity by altering cellular levels of biochemical markers and the transcriptional levels of transport proteins and lipoproteins, leading to cell membrane impairment and DNA damage. This study has demonstrated that particulates formed by Cd and flotation agents contribute to the majority of the toxicity of the binary mixture. This study helps to better understand the complex ecological risk of inorganic metals and organic flotation agents in realistic mining environments.


Asunto(s)
Cadmio , Cadmio/toxicidad , Nanopartículas/toxicidad , Ditiocarba/toxicidad , Luminiscencia , Bacterias/efectos de los fármacos
10.
Microb Cell Fact ; 23(1): 156, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802818

RESUMEN

BACKGROUND: Biosynthesis of metallic nanoparticles using microorganisms are a fabulous and emerging eco-friendly science with well-defined sizes, shapes and controlled monodispersity. Copper nanoparticles, among other metal particles, have sparked increased attention due to their applications in electronics, optics, catalysis, and antimicrobial agents. RESULTS: This investigation explains the biosynthesis and characterization of copper nanoparticles from soil strains, Niallia circulans G9 and Paenibacillus sp. S4c by an eco-friendly method. The maximum reduction of copper ions and maximum synthesis CuNPs was provided by these strains. Biogenic formation of CuNPs have been characterized by UV-visible absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray analysis and transmission electron microscopy analysis. Using UV-visible spectrum scanning, the synthesised CuNPs' SPR spectra showed maximum absorption peaks at λ304&308 nm. TEM investigation of the produced CuNPs revealed the development of spherical/hexagonal nanoparticles with a size range of 13-100 nm by the G9 strain and spherical nanoparticles with a size range of 5-40 nm by the S4c strain. Functional groups and chemical composition of CuONPs were also confirmed. The antimicrobial activity of the biosynthesized CuNPs were investigated against some human pathogens. CuNPs produced from the G9 strain had the highest activity against Candida albicans ATCC 10,231 and the lowest against Pseudomonas aeruginosa ATCC 9027. CuNPs from the S4c strain demonstrated the highest activity against Escherichia coli ATCC 10,231 and the lowest activity against Klebsiella pneumonia ATCC 13,883. CONCLUSION: The present work focused on increasing the CuNPs production by two isolates, Niallia circulans G9 and Paenibacillus sp. S4c, which were then characterized alongside. The used analytics and chemical composition techniques validated the existence of CuONPs in the G9 and S4c biosynthesized nano cupper. CuNPs of S4c are smaller and have a more varied shape than those of G9 strain, according to TEM images. In terms of antibacterial activity, the biosynthesized CuNPs from G9 and S4c were found to be more effective against Candida albicans ATCC 10,231 and E. coli ATCC 10,231, respectively.


Asunto(s)
Cobre , Nanopartículas del Metal , Paenibacillus , Paenibacillus/metabolismo , Nanopartículas del Metal/química , Cobre/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/metabolismo , Pruebas de Sensibilidad Microbiana , Antibacterianos/biosíntesis , Antibacterianos/farmacología , Antibacterianos/química , Ascomicetos/efectos de los fármacos , Ascomicetos/metabolismo
11.
Discov Nano ; 19(1): 82, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714578

RESUMEN

Using water as a renewable and safe energy source for hydrogen generation has reduced the need to use toxic fossil fuels. Photocatalytic approaches provide a worthy solution to avoid the high expenditure on complicated electrochemical pathways to promote Hydrogen Evolution Reactions. However, several types of photocatalysts including noble metal-based catalysts have already been in use for this purpose, which are generally considered high-cost as well. The present study aims to use the benefits of metal-organic frameworks (MOFs) with semiconductor-like characteristics, highly porous structures and high design flexibility. These properties of MOFs allow more efficient and effective mass transport as well as exposure to light.in this paper, using MOF technology and benefiting from the characteristics of Fe3O4 nanoparticles as catalyst support for more efficient separation of catalyst, we have synthesized a novel composite. Our proposed photocatalyst demonstrates efficient harvest of light in all wavelengths from UV to visible to generate electron/hole pairs suitable for water splitting with a turnover frequency of 0.222 h-1 at ambient conditions without requiring any additives.

12.
Bull Environ Contam Toxicol ; 112(4): 52, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565801

RESUMEN

The increasing use of copper oxide nano particles (nCuO) as nano-fertilizers and pesticides have raised concerns over their impact on soil environment and agricultural products. In this study, two nCuO with different shapes, namely spherical nCuO (CuO NPs) and tubular nCuO (CuO NTs), were selected to investigate their bioavailability and toxicity to pakchoi in two soils with different properties. At the meantime, CuO bulk particles (CuO BPs) and Cu(NO3)2 were used for comparison. Results showed that all the Cu treatments increased the DTPA extractable (DTPA-Cu) concentrations in GD soil (acidic) more than in HN soil (alkaline). The DTPA-Cu concentrations increased in the order of Cu(NO3)2 ≈ CuO NPs > CuO BPs ≈ CuO NTs in GD soil and Cu(NO3)2 > CuO NPs > CuO BPs ≈ CuO NTs in HN soil. While for the contents of Cu in the aerial parts of pakchoi, the order is CuO NPs > Cu(NO3)2 > CuO NTs ≈ CuO BPs in GD soil and CuO NPs ≈ Cu(NO3)2 > CuO BPs ≈ CuO NTs in HN soil. Only CuO NPs reduced pakchoi biomass in GD soil. There are no significant difference among CuO NPs, CuO BPs, and Cu(NO3)2 in reducing the chlorophyll contents in pakchoi in HN soil, whereas in GD soil, CuO NPs and CuO BPs led to significantly lower chlorophyll contents in pakchoi compared to Cu(NO3)2. Additionally, CuO NPs and Cu(NO3)2 increased Mn and Mo in pakchoi leaf in HN soil, while increased Zn in pakchoi leaf in GD soil. These results indicated that CuO NPs showed higher or comparable toxicity and bioavailability to pakchoi compared with Cu(NO3)2 depending on soil properties, and nCuO are more easily to be transferred from roots to the aerial parts than CuO BPs and Cu(NO3)2.


Asunto(s)
Brassica , Nanopartículas del Metal , Nanopartículas , Cobre/toxicidad , Disponibilidad Biológica , Suelo , Óxidos , Clorofila , Ácido Pentético , Nanopartículas del Metal/toxicidad
13.
Saudi Pharm J ; 32(5): 102052, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38590610

RESUMEN

The objective of this study was to explore a novel methodology for the synthesis of nanocoated probiotics following their collection and cultivation under optimized conditions, in light of their significant contribution to human health. Probiotics are instrumental in sustaining immune health by modulating the gastrointestinal microbiota and facilitating digestion. However, the equilibrium they maintain can be adversely affected by antibiotic treatments. It is critical to investigate the vulnerability of probiotics to antibiotics, considering the potential implications. This research aimed to assess whether nanoparticle coating could augment the probiotics' resistance to antibiotic influence. A strain of Lactococcus lactis (L. lactis) was isolated, cultured, and comprehensively characterized utilizing state-of-the-art methodologies, including the VITEK® 2 compact system, VITEK® MS, and 16S rRNA gene sequencing. The nanoparticle coating was performed using iron (III) chloride hexahydrate and tannic acid, followed by an evaluation of the probiotics' resistance to a range of antibiotics. The analysis through scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrated a partial nanoparticle coating of the probiotics, which was further supported by UV/Vis spectroscopy findings, suggesting enhanced resistance to standard antibiotics. The results revealed that this strain possesses a unique protein profile and is genetically similar to strains identified in various other countries. Moreover, nano-encapsulation notably increased the strain's resistance to a spectrum of standard antibiotics, including Benzylpenicillin, Teicoplanin, Oxacillin, Vancomycin, Tetracycline, Rifampicin, Erythromycin, and Clindamycin. These findings imply that nanoparticle-coated probiotics may effectively counteract the detrimental effects of extended antibiotic therapy, thus preserving their viability and beneficial influence on gastrointestinal health.

14.
J Infect Public Health ; 17(5): 906-917, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569270

RESUMEN

BACKGROUND: With the global increase in antibacterial resistance, the challenge faced by developing countries is to utilize the available antibiotics, alone or in combination, against resistant bacterial strains. We aimed to encapsulate the levofloxacin (LVX) into polymeric nanoparticles using biodegradable polymers i.e. Chitosan and PLGA, estimating their physicochemical characteristics followed by functional assessment as nanocarriers of levofloxacin against the different resistant strains of bacteria isolated from biological samples collected from tertiary care hospital in Lahore, Pakistan. METHODS: LVX-NPs were synthesized using ion gelation and double emulsion solvent-evaporation method employing chitosan (CS) and poly-lactic-co-glycolic acid (PLGA), characterized via FTIR, XRD, SEM, and invitro drug release studies, while antibacterial activity was assessed using Kirby-Bauer disc-diffusion method. RESULTS: Data revealed that the levofloxacin-loaded chitosan nanoparticles showed entrapment efficiency of 57.14% ± 0.03 (CS-I), 77.30% ± 0.08(CS-II) and 87.47% ± 0.08 (CS-III). The drug content, particle size, and polydispersity index of CS-I were 52.22% ± 0.2, 559 nm ± 31 nm, and 0.030, respectively, whereas it was 66.86% ± 0.17, 595 nm ± 52.3 nm and 0.057, respectively for CS-II and 82.65% ± 0.36, 758 nm ± 24 nm and 0.1, respectively for CS-III. The PLGA-levofloxacin nanoparticles showed an entrapment efficiency of 42.80% ± 0.4 (PLGA I) and 23.80% ± 0.4 (PLGA II). The drug content, particle size and polydispersity index of PLGA-I were 86% ± 0.21, 92 nm ± 10 nm, and 0.058, respectively, whereas it was 52.41% ± 0.45, 313 nm ± 32 nm and 0.076, respectively for PLGA-II. The XRD patterns of both polymeric nanoparticles showed an amorphous nature. SEM analysis reflects the circular-shaped agglomerated nanoparticles with PLGA polymer and dense spherical nanoparticles with chitosan polymer. The in-vitro release profile of PLGA-I nanoparticles showed a sustained release of 82% in 120 h and it was 58.40% for CS-III. Both types of polymeric nanoparticles were found to be stable for up to 6 months without losing any major drug content. Among the selected formulations, CS-III and PLGA-I, CS-III had better antibacterial potency against gram+ve and gram-ve bacteria, except for K. pneumonia, yet, PLGA-I demonstrated efficacy against K. pneumonia as per CSLI guidelines. All formulations did not exhibit any signs of hemotoxicity, nonetheless, the CS-NPs tend to bind on the surface of RBCs. CONCLUSION: These data suggested that available antibiotics can effectively be utilized as nano-antibiotics against resistant bacterial strains, causing severe infections, for improved antibiotic sensitivity without compromising patient safety.


Asunto(s)
Quitosano , Glicolatos , Nanopartículas , Neumonía , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Poliglicólico/química , Levofloxacino/farmacología , Quitosano/química , Glicoles , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Ácido Láctico/química , Antibacterianos/farmacología , Bacterias/metabolismo , Nanopartículas/química
15.
Chempluschem ; 89(6): e202400139, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38470161

RESUMEN

Constructing heterojunction photocatalysts are widely applied to boost the photocatalytic activity of materials. Here, a novel covalent organic framework (COF) material with heptazine units was developed and hybridized with TiO2 nano particles (NPs) to fabricate the Heptazine-COF@TiO2 photocatalysts for acetaminophen (AAP) photodegradation. The successfully assembled heptazine unit endows the Heptazine-COF with outstanding semiconductor property (optical bandgap is 2.53 eV). The synthesized Heptazine-COF@TiO2 hybrids is proved to have the heterojunction structure with high visible light activity and fast charge-carrier mobility, and exhibits better performance in photodegradation of AAP under visible light. The excellent photodegradation efficiency (rate constant: 0.758 min-1) and high reusability (rate constant: 0.452 min-1 in the 6th cycles) of the optimized sample outperform the traditional inorganic photocatalysts and other heterojunction photocatalysts. In addition, these photocatalysts present universal degradation activity for other dyes and antibiotics.

16.
Front Chem ; 12: 1385825, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510814

RESUMEN

[This corrects the article DOI: 10.3389/fchem.2023.1211503.].

17.
Phytother Res ; 38(6): 2669-2686, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38500263

RESUMEN

In the context of treating spinal cord injury (SCI), the modulation of inflammatory responses, and the creation of a suitable region for tissue regeneration may present a promising approach. This study aimed to evaluate the effects of curcumin (Cur)-loaded bovine serum albumin nanoparticles (Cur-BSA NPs) cross-linked with an acellular spinal cord scaffold (ASCS) on the functional recovery in a rat model of SCI. We developed an ASCS using chemical and physical methods. Cur-BSA, and blank (B-BSA) NPs were fabricated and cross-linked with ASCS via EDC-NHS, resulting in the production of Cur-ASCS and B-ASCS. We assessed the properties of scaffolds and NPs as well as their cross-links. Finally, using a male rat hemisection model of SCI, we investigated the consequences of the resulting scaffolds. The inflammatory markers, neuroregeneration, and functional recovery were evaluated. Our results showed that Cur was efficiently entrapped at the rate of 42% ± 1.3 in the NPs. Compared to B-ASCS, Cur-ASCS showed greater effectiveness in the promotion of motor recovery. The implantation of both scaffolds could increase the migration of neural stem cells (Nestin- and GFAP-positive cells) following SCI with the superiority of Cur-ASCS. Cur-ASCS was successful to regulate the gene expression and protein levels of NLRP3, ASC, and Casp1in the spinal cord lesion. Our results indicate that using ASCS can lead to the entrance of cells into the scaffold and promote neurogenesis. However, Cur-ASCS had greater effects in terms of inflammation relief and enhanced neurogenesis.


Asunto(s)
Curcumina , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Neurogénesis , Ratas Sprague-Dawley , Recuperación de la Función , Traumatismos de la Médula Espinal , Médula Espinal , Andamios del Tejido , Animales , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/terapia , Curcumina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Neurogénesis/efectos de los fármacos , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Masculino , Recuperación de la Función/efectos de los fármacos , Andamios del Tejido/química , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Nanopartículas/química , Preparaciones de Acción Retardada/farmacología , Modelos Animales de Enfermedad , Albúmina Sérica Bovina/química
18.
Small ; 20(21): e2310876, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38396265

RESUMEN

Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.


Asunto(s)
Nanopartículas , Polímeros , Nanopartículas/química , Polímeros/química , Humanos , Animales , Propiedades de Superficie , Sistemas de Liberación de Medicamentos/métodos
19.
Heliyon ; 10(4): e26054, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38404821

RESUMEN

An effective wave absorbing Nano-Ni/carbon nanotubes (CNTs) composite film was developed by electrodeposition using an anodic aluminum oxide (AAO)/CNTs electrode. Scanning electron microscopy images confirmed the uniform dispersion of Ni nano-particles within the CNTs, and the particle diameter increasing from 20 nm to 100 nm as the deposition time increased. XRD test results revealed that the crystal phase of the Ni nano-particles remained unchanged during different deposition time, exhibiting a Face Center Cubic (fcc) structure. The microwave electromagnetic properties of the film were evaluated using a vector network analyzer, and the return loss curve demonstrated that the Ni nano-particles/CNTs composite exhibited exceptional wave absorption capabilities. The composite film showed an effective absorption width of 13 GHz (4-17 GHz) and achieved a minimum reflection loss (RL) of -17 dB at 14 GHz.

20.
Nanotechnology ; 35(23)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38417171

RESUMEN

The ability to manipulate the dimensions, areal density, and form of substrate-supported Au and Ag nanoparticles (NPs) is highly desirable for utilizing their plasmonic properties in biosensing, photovoltaics, and nanophotonic applications. The transformation of thin films into the substrate-supported nanostructures by solid-state dewetting (SSD), provides an avenue to manipulate the dimensional aspects of nanostructures simply and cost-effectively on a large scale. However, spontaneous agglomeration of the film produces randomly distributed and non-uniform nanostructures that must be controlled. Here, we have systematically studied the effect of annealing temperature, between 200 °C and 750 °C, on the dewetting morphology evolution of Au, Ag, and Au-Ag bilayer ultrathin films sputter deposited on thec-plane (0001) sapphire substrates. Regardless of the film thickness, Ag films dewet faster than Au films and produce spherical NPs, compared to faceted Au NPs, with broader size distribution. Whereas, by the SSD of Au-Ag bilayer ultrathin films, highly spherical and monodisperse AuAg bimetallic NPs can be fabricated. Furthermore, we have shown the possibility of fabricating the AuAg bimetallic NPs of varying compositions by adjusting the thickness of individual layers, thus enabling us to smoothly tune the spectral location of plasmonic resonance within the visible range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA