RESUMEN
Bone lesions have the capacity for regeneration under normal conditions of the bone metabolism process. However, due to the increasing incidence of major traumas and diseases that cause bone-mineral deficiency, such as osteoporosis, scaffolds are needed that can assist in the bone regeneration process. Currently, natural polymeric scaffolds and bioactive nanoparticles stand out. Therefore, the objective of the study was to evaluate the osteoregenerative potential in tibiae of healthy and ovariectomized rats using mineralized collagen and nanohydroxyapatite (nHA) scaffolds associated with elastin. The in-vivo experimental study was performed with 60 20-week-old Wistar rats, distributed into non-ovariectomized (NO) and ovariectomized (O) groups, as follows: Controls (G1-NO-C and G4-O-C); Collagen with nHA scaffold (G2-NO-MSH and G5-O-MSH); and Collagen with nHA and elastin scaffold (G3-NO-MSHC and G6-O-MSHC). The animals were euthanized 6 weeks after surgery and the samples were analyzed by macroscopy, radiology, and histomorphometry. ANOVA and Tukey tests were performed with a 95% CI and a significance index of p < 0.05. In the histological analyses, it was possible to observe new bone formed with an organized and compact morphology that was rich in osteocytes and with maturity characteristics. This is compatible with osteoconductivity in both matrices (MSH and MSHC) in rats with normal conditions of bone metabolism and with gonadal deficiency. Furthermore, they demonstrated superior osteogenic potential when compared to control groups. There was no significant difference in the rate of new bone formation between the scaffolds. Ovariectomy did not exacerbate the immune response but negatively influenced the bone-defect repair process.
Asunto(s)
Durapatita , Elastina , Femenino , Ratas , Animales , Humanos , Ratas Wistar , Colágeno , Osteogénesis , Regeneración Ósea , Ovariectomía , Andamios del Tejido , Ingeniería de TejidosRESUMEN
Intravital microscopy (IVM) is an essential experimental approach for evaluating, in real time, cell interactions in the blood and rheological parameters in the microcirculation of the living animals. Different tissues are surgically exposed to the visualization of the microvascular network in optical microscopies connected to video cameras and image software. By evaluating in situ microcirculatory network, IVM allows the visualization and quantification of physiological and pathological processes in the blood or in the adjacent tissues considering the whole system. Therefore, IVM has been used to evaluate the effects and mechanisms of actions in the microvascular network caused by pharmacological or toxic chemical agents. In this chapter, different experimental approaches are described to study the toxic effects and mechanisms of xenobiotics in the microcirculatory network.
Asunto(s)
Microscopía Intravital/métodos , Microvasos/efectos de los fármacos , Nanoconjugados/toxicidad , Pruebas de Toxicidad/métodos , Xenobióticos/toxicidad , Animales , Microscopía Intravital/instrumentación , Microvasos/diagnóstico por imagen , Reología/métodos , Xenobióticos/farmacocinéticaRESUMEN
Kidney cancer rapidly acquires resistance to antiangiogenic agents, such as sunitinib, developing an aggressive migratory phenotype (facilitated by c-Metsignal transduction). The Aryl hydrocarbon receptor (AhR) has recently been postulated as a molecular target for cancer treatment. Currently, there are two antitumor agent AhR ligands, with activity against renal cancer, that have been tested clinically: aminoflavone (AFP 464, NSC710464) and the benzothiazole (5F 203) prodrug Phortress. Our studies investigated the action of AFP 464, the aminoflavone pro-drug currently used in clinical trials, and 5F 203 on renal cancer cells, specifically examining their effects on cell cycle progression, apoptosis and cell migration. Both compounds caused cell cycle arrest and apoptosis but only 5F 203 potently inhibited the migration of TK-10, Caki-1 and SN12C cells as well as the migration signal transduction cascade, involving c-Met signaling, in TK-10 cells. Current investigations are focused on the development of nano-delivery vehicles, apoferritin-encapsulated benzothiazoles 5F 203 and GW610, for the treatment of renal cancer. These compounds have shown improved antitumor effects against TK-10 cells in vitro at lower concentrations compared with a naked agent.
Asunto(s)
Benzotiazoles/uso terapéutico , Flavonoides/uso terapéutico , Neoplasias Renales/tratamiento farmacológico , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/efectos de los fármacos , Benzotiazoles/administración & dosificación , Benzotiazoles/farmacología , Flavonoides/administración & dosificación , Flavonoides/farmacología , Humanos , Neoplasias Renales/metabolismo , LigandosRESUMEN
Nanotechnologies involve the manipulation of matter at a very small scale, generally between 1 and 100 nanometers. They exploit novel properties and functions that occur in matter at this scale. The application of nanotechnology in the areas of food and food packaging is growing rapidly, and in the area of food security, these applications include the detection of microorganisms, environmental protection, water purification, encapsulation of nutrients and food packing. Nanotechnology is opening up a world of new possibilities for the food industry, but the entry of nanoparticles into the food chain can result in a buildup of toxic contaminants in food and harm human health. This review focuses on the nanoencapsulation of bioactive compounds, nanosensor especially to detect foodborne pathogens, applications of nanotechnology in food packing and highlight some of aspects of toxicology.
A nanotecnologia envolve a manipulação da matéria em uma escala muito pequena, geralmente entre 1 e 100 nanômetros. Ela explora novas propriedades e funções que ocorrem na matéria nesta escala nanometrica. A aplicação da nanotecnologia nas áreas de alimentos, embalagens para alimentos e segurança alimentar têm crescido rapidamente. Estas aplicações incluem a detecção de microrganismos, proteção ambiental, purificação de água, encapsulamento de nutrientes e embalagem para alimentos. A nanotecnologia está abrindo novas possibilidades para a indústria de alimentos, mas, a entrada de nanopartículas na cadeia alimentar pode resultar em um acúmulo de contaminantes que podem ser tóxicos e prejudicar a saúde humana. Esta revisão enfoca a nanoencapsulação de compostos bioativos, nanosensores, especialmente para detecção de patógenos em alimentos, aplicação da nanotecnologia na área de embalagens para alimentos e destaca alguns aspectos sobre toxicologia.