Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
1.
Biomedicines ; 12(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39062149

RESUMEN

Biomarkers, including proteins, nucleic acids, antibodies, and peptides, are essential for identifying diseases such as cancer and differentiating between healthy and abnormal cells in patients. To date, studies have shown that cancer stem cells have DNA repair mechanisms that deter the effects of medicinal treatment. Experiments with cell cultures and chemotherapy treatments of these cultures have revealed the presence of small cells, with a small amount of cytoplasm that can be intensively stained with azure eosin, called microcells. Microcells develop during sporosis from a damaged tumor macrocell. After anticancer therapy in tumor cells, a defective macrocell may produce one or more microcells. This study aims to characterize microcell morphology in melanoma cell lines. In this investigation, we characterized the population of cancer cell microcells after applying paclitaxel treatment to a Sk-Mel-28 melanoma cell line using immunocytochemical cell marker detection and fluorescent microscopy. Paclitaxel-treated cancer cells show stronger expression of stem-associated ALDH2, SOX2, and Nanog markers than untreated cells. The proliferation of nuclear antigens in cells and the synthesis of RNA in microcells indicate cell self-defense, promoting resistance to applied therapy. These findings improve our understanding of microcell behavior in melanoma, potentially informing future strategies to counteract drug resistance in cancer treatment.

2.
J Vet Med Sci ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972751

RESUMEN

In equine regenerative medicine using bone marrow-derived mesenchymal stem/stromal cells (BM-MSC), the importance of the quality management of BM-MSC has been widely recognized. However, there is little information concerning the relationship between cellular senescence and the stemness in equine BM-MSC. In this study, we showed that stemness markers (NANOG, OCT4, SOX2 and telomerase reverse transcriptase) and colony forming unit-fibroblast apparently decreased accompanied with incidence of senescence-associated ß-galactosidase-positive cells by repeated passage. Additionally, we suggested that down-regulation of cell proliferation in senescent BM-MSC was related to increased expression of cyclin-dependent kinase inhibitor 2B (CDKN2B). On the other hand, forced expression of NANOG into senescent BM-MSC brought upregulation of several stemness markers and downregulation of CKDN2B accompanied with restoration of proliferation potential and osteogenic ability. These results suggested that expression of NANOG was important for the maintenance of the stemness in equine BM-MSC.

3.
Development ; 151(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39069943

RESUMEN

Naïve epiblast cells in the embryo and pluripotent stem cells in vitro undergo developmental progression to a formative state competent for lineage specification. During this transition, transcription factors and chromatin are rewired to encode new functional features. Here, we examine the role of mitogen-activated protein kinase (ERK1/2) signalling in pluripotent state transition. We show that a primary consequence of ERK activation in mouse embryonic stem cells is elimination of Nanog, which precipitates breakdown of the naïve state gene regulatory network. Variability in pERK dynamics results in heterogeneous loss of Nanog and metachronous state transition. Knockdown of Nanog allows exit without ERK activation. However, transition to formative pluripotency does not proceed and cells collapse to an indeterminate identity. This outcome is due to failure to maintain expression of the central pluripotency factor Oct4. Thus, during formative transition ERK signalling both dismantles the naïve state and preserves pluripotency. These results illustrate how a single signalling pathway can both initiate and secure transition between cell states.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros , Células Madre Pluripotentes , Animales , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Diferenciación Celular/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/metabolismo , Estratos Germinativos/citología , Redes Reguladoras de Genes , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1209-1216, 2024 Jun 20.
Artículo en Chino | MEDLINE | ID: mdl-38977352

RESUMEN

OBJECTIVE: To investigate the expression of Nanog and its regulatory relationship with MMP-2/MMP-9 proteins in esophageal squamous cell carcinoma (ESCC). METHODS: We detected Nanog and MMP-2/MMP-9 protein expressions in 127 ESCC tissues and 82 adjacent normal tissues using immunohistochemistry and explored their correlations with the clinicopathological parameters and prognosis of the patients. GEO database was utilized to analyze the pathways enriched with the stemness-related molecules including Nanog, and TIMER online tool was used to analyze the correlations among TßR1, MMP-2, and MMP-9 in esophageal cancer. RESULTS: Nanog and MMP-2/MMP-9 proteins were significantly upregulated in ESCC tissues and positively intercorrelated. Their expression levels were closely correlated with infiltration depth and lymph node metastasis of ESCC but not with age, gender, or tumor differentiation. The patients with high expressions of Nanog and MMP-2/MMP-9 had significantly shorter survival time. Bioinformatics analysis showed enrichment of stemness-associated molecules in the TGF-ß signaling pathway, and the expressions of MMP-2/MMP-9 and TßR1 were positively correlated. In cultured ESCC cells, Nanog knockdown significantly decreased the expression of TßR1, p-Smad2/3, MMP-2, and MMP-9 and strongly inhibited cell migration. CONCLUSION: The high expressions of Nanog, MMP-2, and MMP-9, which are positively correlated, are closely related with invasion depth, lymph node metastasis, and prognosis of ESCC. Nanog regulates the expressions of MMP-2/MMP-9 proteins through the TGF-ß signaling pathway, and its high expression promotes migration of ESCC cells.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Metástasis Linfática , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Proteína Homeótica Nanog , Invasividad Neoplásica , Transducción de Señal , Factor de Crecimiento Transformador beta , Humanos , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/genética , Factor de Crecimiento Transformador beta/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Pronóstico , Masculino , Femenino
5.
Noncoding RNA Res ; 9(4): 1040-1049, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39022686

RESUMEN

Thoracic aortic dissection (TAD) is a life-threatening vascular disease manifested as intramural bleeding in the medial layers of the thoracic aorta. The key histopathologic feature of TAD is medial degeneration, characterized by depletion of vascular smooth muscle cells (VSMCs) and degradation of extracellular matrix (ECM). MicroRNA, as essential epigenetic regulators, can inhibit the protein expression of target genes without modifying the sequences. This study aimed to elucidate the role and underlying mechanism of miR-20a, a member of the miR-17-92 cluster, in regulating ECM degradation during the pathogenesis of TAD. The expression of the miR-17-92 cluster was significantly increased in synthetic VSMCs derived from TAD lesions compared to contractile VSMCs isolated from normal thoracic aortas. Notably, the expression of miR-20a was increased in VSMCs in response to serum exposure and various stimuli. In TAD lesions, the expression of miR-20a was significantly negatively correlated with that of elastin. Elevated expression of miR-20a was also observed in thoracic aortas of TAD mice induced by ß-aminopropionitrile fumarate and angiotensin II. Overexpression of miR-20a via mimic transfection enhanced the growth and invasive capabilities of VSMCs, with no significant impact on their migratory activity or the expression of phenotypic markers (α-SMA, SM22, and OPN). Silencing of miR-20a with inhibitor transfection mitigated the hyperactivation of MMP2 in VSMCs stimulated by PDGF-bb, as evidenced by reduced levels of active-MMP2 and increased levels of pro-MMP2. Subsequently, TIMP2 was identified as a novel target gene of miR-20a. The role of miR-20a in promoting the activation of MMP2 was mediated by the suppression of TIMP2 expression in VSMCs. In addition, the elevated expression of miR-20a was found to be directly driven by Nanog in VSMCs. Collectively, these findings indicate that miR-20a plays a crucial role in maintaining the homeostasis of the thoracic aortic wall during TAD pathogenesis and may represent a potential therapeutic target for TAD.

6.
Mikrochim Acta ; 191(7): 419, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916771

RESUMEN

A method is presented for chemiluminescence resonance energy transfer (CRET) using APTES-Fe3O4 as a highly efficient energy acceptor with strong magnetic effectiveness over extended distances, while an Au@BSA-luminol composite acts as the donor. In order to boost the chemiluminescence reactions, CuO nanoparticles were successfully employed. The distance between the donor and acceptor is a crucial factor in the occurrence of the CRET phenomenon. A sensitive and high-throughput sandwich chemiluminescence immunosensor has been developed accordingly with a linear range of 1.0 × 10-7 g/L to 6.0 × 10-5 g/L and a limit of detection of 0.8 × 10-7 g/L. The CRET-based sandwich immunosensor has the potential to be implemented to early cancer diagnosis because of its high sensitivity in detecting Nanog, fast analysis (30 min), and simplicity. Furthermore, this approach has the potential to be adapted for the recognition of other antigen-antibody immune complexes by utilizing the corresponding antigens and their selective antibodies.


Asunto(s)
Biomarcadores de Tumor , Proteína Homeótica Nanog , Humanos , Inmunoensayo/métodos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/análisis , Proteína Homeótica Nanog/inmunología , Células Madre Neoplásicas/inmunología , Límite de Detección , Mediciones Luminiscentes/métodos , Cobre/química , Anticuerpos Inmovilizados/inmunología , Oro/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química
7.
Cells ; 13(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38891096

RESUMEN

Special AT-rich sequence binding protein-2 (SATB2) is a nuclear matrix protein that binds to nuclear attachment regions and is involved in chromatin remodeling and transcription regulation. In stem cells, it regulates the expression of genes required for maintaining pluripotency and self-renewal and epithelial-mesenchymal transition (EMT). In this study, we examined the oncogenic role of SATB2 in prostate cancer and assessed whether overexpression of SATB2 in human normal prostate epithelial cells (PrECs) induces properties of cancer stem cells (CSCs). The results demonstrate that SATB2 is highly expressed in prostate cancer cell lines and CSCs, but not in PrECs. Overexpression of SATB2 in PrECs induces cellular transformation which was evident by the formation of colonies in soft agar and spheroids in suspension. Overexpression of SATB2 in PrECs also resulted in induction of stem cell markers (CD44 and CD133), pluripotency-maintaining transcription factors (cMYC, OCT4, SOX2, KLF4, and NANOG), CADHERIN switch, and EMT-related transcription factors. Chromatin immunoprecipitation assay demonstrated that SATB2 can directly bind to promoters of BCL-2, BSP, NANOG, MYC, XIAP, KLF4, and HOXA2, suggesting SATB2 is capable of directly regulating pluripotency/self-renewal, cell survival, and proliferation. Since prostate CSCs play a crucial role in cancer initiation, progression, and metastasis, we also examined the effects of SATB2 knockdown on stemness. SATB2 knockdown in prostate CSCs inhibited spheroid formation, cell viability, colony formation, cell motility, migration, and invasion compared to their scrambled control groups. SATB2 knockdown in CSCs also upregulated the expression of E-CADHERIN and inhibited the expression of N-CADHERIN, SNAIL, SLUG, and ZEB1. The expression of SATB2 was significantly higher in prostate adenocarcinoma compared to normal tissues. Overall, our data suggest that SATB2 acts as an oncogenic factor where it is capable of inducing malignant changes in PrECs by inducing CSC characteristics.


Asunto(s)
Transición Epitelial-Mesenquimal , Factor 4 Similar a Kruppel , Proteínas de Unión a la Región de Fijación a la Matriz , Neoplasias de la Próstata , Factores de Transcripción , Humanos , Masculino , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Factor 4 Similar a Kruppel/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Regulación Neoplásica de la Expresión Génica , Autorrenovación de las Células , Proliferación Celular
8.
Front Oncol ; 14: 1377761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846985

RESUMEN

Enforcing a well-differentiated state on cells requires tumor suppressor p53 activation as a key player in apoptosis induction and well differentiation. In addition, recent investigations showed a significant correlation between poorly differentiated status and higher expression of NANOG. Inducing the expression of NANOG and decreasing p53 level switch the status of liver cancer cells from well differentiated to poorly status. In this review, we highlighted p53 and NANOG cross-talk in hepatocellular carcinoma (HCC) which is regulated through mitophagy and makes it a novel molecular target to attenuate cancerous phenotype in the management of this tumor.

9.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892233

RESUMEN

In this immunohistological study on the peripheral retina of 3-year-old beagle dogs, excised retina specimens were immunostained with antibodies against nestin, Oct4, Nanog, Sox2, CDX2, cytokeratin 18 (CK 18), RPE65, and YAP1, as well as hematoxylin and DAPI, two nuclear stains. Our findings revealed solitary cysts of various sizes in the inner retina. Intriguingly, a mass of small round cells with scant cytoplasms was observed in the cavity of small cysts, while many disorganized cells partially occupied the cavity of the large cysts. The small cysts were strongly positive for nestin, Oct4, Nanog, Sox2, CDX2, CK18, and YAP1. RPE65-positive cells were exclusively observed in the tissue surrounding the cysts. Since RPE65 is a specific marker of retinal pigment epithelial (RPE) cells, the surrounding cells of the peripheral cysts were presumably derived from RPE cells that migrated intraretinally. In the small cysts, intense positive staining for nestin, a marker of retinal stem cells, seemed to indicate that they were derived from retinal stem cells. The morphology and positive staining for markers of blastocyst and RPE cells indicated that the small cysts may have formed structures resembling the blastocyst, possibly caused by the interaction between retinal stem cells and migrated RPE cells.


Asunto(s)
Retina , Epitelio Pigmentado de la Retina , Animales , Perros , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Nestina/metabolismo , Blastocisto/metabolismo , Blastocisto/citología , Biomarcadores/metabolismo , Factores de Transcripción SOXB1/metabolismo , Células Madre/metabolismo , Células Madre/citología , Inmunohistoquímica , Enfermedades de los Perros/metabolismo , Enfermedades de los Perros/patología
10.
BMC Cancer ; 24(1): 685, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840106

RESUMEN

BACKGROUND: Gastric cancer is one of the most common tumors worldwide, and most patients are deprived of treatment options when diagnosed at advanced stages. PRDM14 has carcinogenic potential in breast and non-small cell lung cancer. however, its role in gastric cancer has not been elucidated. METHODS: We aimed to elucidate the expression of PRDM14 using pan-cancer analysis. We monitored the expression of PRDM14 in cells and patients using quantitative polymerase chain reaction, western blotting, and immunohistochemistry. We observed that cell phenotypes and regulatory genes were influenced by PRDM14 by silencing PRDM14. We evaluated and validated the value of the PRDM14-derived prognostic model. Finally, we predicted the relationship between PRDM14 and small-molecule drug responses using the Connectivity Map and The Genomics of Drug Sensitivity in Cancer databases. RESULTS: PRDM14 was significantly overexpressed in gastric cancer, which identified in cell lines and patients' tissues. Silencing the expression of PRDM14 resulted in apoptosis promotion, cell cycle arrest, and inhibition of the growth and migration of GC cells. Functional analysis revealed that PRDM14 acts in epigenetic regulation and modulates multiple DNA methyltransferases or transcription factors. The PRDM14-derived differentially expressed gene prognostic model was validated to reliably predict the patient prognosis. Nomograms (age, sex, and PRDM14-risk score) were used to quantify the probability of survival. PRDM14 was positively correlated with sensitivity to small-molecule drugs such as TPCA-1, PF-56,227, mirin, and linsitinib. CONCLUSIONS: Collectively, our findings suggest that PRDM14 is a positive regulator of gastric cancer progression. Therefore, it may be a potential therapeutic target for gastric cancer.


Asunto(s)
Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias Gástricas , Factores de Transcripción , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Pronóstico , Línea Celular Tumoral , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Femenino , Masculino , Nomogramas , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Epigénesis Genética
11.
Cell Rep ; 43(5): 114170, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38700983

RESUMEN

During cell fate transitions, cells remodel their transcriptome, chromatin, and epigenome; however, it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here, we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that, following heterokaryon formation, the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG, conversely, has significant nascent RNA transcription only at 48 h after cell fusion but, strikingly, exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent.


Asunto(s)
Reprogramación Celular , Ensamble y Desensamble de Cromatina , Histonas , Humanos , Reprogramación Celular/genética , Histonas/metabolismo , Análisis de la Célula Individual , Activación Transcripcional , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Cromatina/metabolismo , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología
12.
Stem Cell Res Ther ; 15(1): 128, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693576

RESUMEN

BACKGROUND: Testicular germ cell tumours (TGCTs) represent a clinical challenge; they are most prevalent in young individuals and are triggered by molecular mechanisms that are not fully understood. The origin of TGCTs can be traced back to primordial germ cells that fail to mature during embryonic development. These cells express high levels of pluripotency factors, including the transcription factor NANOG which is highly expressed in TGCTs. Gain or amplification of the NANOG locus is common in advanced tumours, suggesting a key role for this master regulator of pluripotency in TGCT stemness and malignancy. METHODS: In this study, we analysed the expression of microRNAs (miRNAs) that are regulated by NANOG in TGCTs via integrated bioinformatic analyses of data from The Cancer Genome Atlas and NANOG chromatin immunoprecipitation in human embryonic stem cells. Through gain-of-function experiments, MIR9-2 was further investigated as a novel tumour suppressor regulated by NANOG. After transfection with MIR9-2 mimics, TGCT cells were analysed for cell proliferation, invasion, sensitivity to cisplatin, and gene expression signatures by RNA sequencing. RESULTS: For the first time, we identified 86 miRNAs regulated by NANOG in TGCTs. Among these, 37 miRNAs were differentially expressed in NANOG-high tumours, and they clustered TGCTs according to their subtypes. Binding of NANOG within 2 kb upstream of the MIR9-2 locus was associated with a negative regulation. Low expression of MIR9-2 was associated with tumour progression and MIR9-2-5p was found to play a role in the control of tumour stemness. A gain of function of MIR9-2-5p was associated with reduced proliferation, invasion, and sensitivity to cisplatin in both embryonal carcinoma and seminoma tumours. MIR9-2-5p expression in TGCT cells significantly reduced the expression of genes regulating pluripotency and cell division, consistent with its functional effect on reducing cancer stemness. CONCLUSIONS: This study provides new molecular insights into the role of NANOG as a key determinant of pluripotency in TGCTs through the regulation of MIR9-2-5p, a novel epigenetic modulator of cancer stemness. Our data also highlight the potential negative feedback mediated by MIR9-2-5p on NANOG expression, which could be exploited as a therapeutic strategy for the treatment of TGCTs.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs , Proteína Homeótica Nanog , Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Humanos , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/metabolismo , Neoplasias de Células Germinales y Embrionarias/patología , Neoplasias Testiculares/patología , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/genética , Masculino , Línea Celular Tumoral , Proliferación Celular/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Cisplatino/farmacología
13.
Am J Reprod Immunol ; 91(5): e13863, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38796740

RESUMEN

PROBLEM: Hypertensive disorders of pregnancy (HDP) are a common pregnancy disease. NANOG and Cyclin-dependent kinase 1 (CDK1) are essential for regulating the function of cell proliferation and apoptosis. However, the mechanism of action in HDP is yet unclear. METHOD: The microarray dataset GSE6573 was downloaded from the GEO database. Emt-related gene set was downloaded from Epithelial-Mesenchymal Transition gene database 2.0 were screened differentially expressed genes by bioinformatics analysis. Pathway Commons and Scansite 4.0 databases were used to predict the interaction between proteins. Placental tissue samples were collected from HDP patients and patients with uneventful pregnancies. RT-qPCR, Western blot and immunohistochemistry were used to detect the expression of NANOG, CDK1, MMP-2, MMP-9, EMT markers and the JAK/STAT3 pathway proteins. Transfection NANOG overexpression/knockdown, and CDK1 knockdown into the human chorionic trophoblast cells (HTR-8/Svneo). CCK-8, Transwell and Wound-healing assay were used to evaluate cell proliferation, invasion and migration. CO-IP and GST pull-down assays were used to confirm the protein interaction. RESULTS: A total obtained seven EMT-related differentially expressed genes, wherein NANOG, NODAL and LIN28A had protein interaction. In the HDP patients' tissue found that NANOG and CDK1 had lower expression. NANOG overexpression promoted HTR-8/Svneo proliferation, migration and EMT, while NANOG knockdown had the opposite effect. Further a protein interaction between STAT3 and CDK1 with NANOG. NANOG overexpression downregulated the JAK/STAT3 pathway to promote HTR-8/Svneo proliferation, migration and EMT, which was reversed by CDK1 knockdown. CONCLUSIONS: NANOG downregulated the JAK/STAT3 pathway to promote trophoblast cell proliferation, migration and EMT through protein interaction with CDK1.


Asunto(s)
Proteína Quinasa CDC2 , Movimiento Celular , Transición Epitelial-Mesenquimal , Quinasas Janus , Proteína Homeótica Nanog , Factor de Transcripción STAT3 , Transducción de Señal , Trofoblastos , Humanos , Femenino , Factor de Transcripción STAT3/metabolismo , Transición Epitelial-Mesenquimal/genética , Trofoblastos/metabolismo , Embarazo , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/genética , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Quinasas Janus/metabolismo , Hipertensión Inducida en el Embarazo/metabolismo , Hipertensión Inducida en el Embarazo/patología , Hipertensión Inducida en el Embarazo/genética , Adulto , Proliferación Celular , Línea Celular
14.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732061

RESUMEN

Embryonic stem-like cells (ES-like cells) are promising for medical research and clinical applications. Traditional methods involve "Yamanaka" transcription (OSKM) to derive these cells from somatic cells in vitro. Recently, a novel approach has emerged, obtaining ES-like cells from spermatogonia stem cells (SSCs) in a time-related process without adding artificial additives to cell cultures, like transcription factors or small molecules such as pten or p53 inhibitors. This study aims to investigate the role of the Nanog in the conversion of SSCs to pluripotent stem cells through both in silico analysis and in vitro experiments. We used bioinformatic methods and microarray data to find significant genes connected to this derivation path, to construct PPI networks, using enrichment analysis, and to construct miRNA-lncRNA networks, as well as in vitro experiments, immunostaining, and Fluidigm qPCR analysis to connect the dots of Nanog significance. We concluded that Nanog is one of the most crucial differentially expressed genes during SSC conversion, collaborating with critical regulators such as Sox2, Dazl, Pou5f1, Dnmt3, and Cdh1. This intricate protein network positions Nanog as a pivotal factor in pathway enrichment for generating ES-like cells, including Wnt signaling, focal adhesion, and PI3K-Akt-mTOR signaling. Nanog expression is presumed to play a vital role in deriving ES-like cells from SSCs in vitro. Finding its pivotal role in this path illuminates future research and clinical applications.


Asunto(s)
Proteína Homeótica Nanog , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Animales , Masculino , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Diferenciación Celular , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Espermatogonias/citología , Espermatogonias/metabolismo , Simulación por Computador , Redes Reguladoras de Genes , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Perfilación de la Expresión Génica , Biología Computacional/métodos , Humanos
15.
Stem Cell Res Ther ; 15(1): 93, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561834

RESUMEN

BACKGROUND: Spermatogonial stem cells (SSCs) were considered to be stem cells with limited potencies due to their existence in adult organisms. However, the production of spermatogonial stem cell colonies with broader differentiation capabilities in primary germ cell cultures from mice of select genetic backgrounds (C57BL6/Tg14, ddY, FVB and 129/Ola) indicated that SSCs from these strains were pluripotent. METHODS: We established primary cultures of SSCs from neonatal and adult Swiss 3T3 Albino mice. Stemness of SSC colonies were evaluated by performing real-time PCR and immunofluorescence analysis for a panel of chosen stemness markers. Differentiation potentials of SSCs were examined by attempting the generation of embryoid bodies and evaluating the expression of ectodermal, mesodermal and endodermal markers using immunofluorescence and real-time PCR analysis. RESULTS: Spermatogonial stem cells from neonatal and mature mice testes colonised in vitro and formed compact spermatogonial stem cell colonies in culture. The presence of stem cell markers ALPL, ITGA6 and CD9 indicated stemness in these colonies. The differentiation potential of these SSC colonies was demonstrated by their transformation into embryoid bodies upon withdrawal of growth factors from the culture medium. SSC colonies and embryoid bodies formed were evaluated using immunofluorescence and real-time PCR analysis. Embryoid body like structures derived from both neonatal and adult mouse testis were quite similar in terms of the expression of germ layer markers. CONCLUSION: These results strongly suggest that SSC-derived EB-like structures could be used for further differentiation into cells of interest in cell-based therapeutics.


Asunto(s)
Espermatogonias , Testículo , Masculino , Ratones , Animales , Testículo/metabolismo , Transdiferenciación Celular , Células Cultivadas , Células Madre/metabolismo
16.
J Clin Med ; 13(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38610757

RESUMEN

Background: This study sought to assess the effect of statin therapy on myocardial inflammation in a White New Zealand rabbit model of atherogenesis. Methods: The mRNA expression levels of pro-inflammatory, pluripotency, and aging-related markers were quantified following a controlled feeding protocol and statin treatments. Results: Following high-cholesterol diet induction, we observed significant upregulation in the myocardial mRNA levels of MYD88, NF-κB, chemokines (CCL4, CCL20, and CCR2), IFN-γ, interleukins (IL-1ß, IL-2, IL-4, IL-8, IL-10, and IL-18), and novel markers (klotho, KFL4, NANOG, and HIF1α). In contrast, HOXA5 expression was diminished following a hyperlipidemic diet. Both statin treatments significantly influenced the markers studied. Nevertheless, rosuvastatin administration resulted in a greater reduction in MYD88, NF-kB, chemokines (CCL4, CCL20, and CCR2), and interleukins IL-1ß, IL-8, KLF4, NANOG, and HIF1α than fluvastatin. Fluvastatin, on the other hand, led to a stronger decrease in IL-4. Downregulation of IL-2 and IL-18 and upregulation of IFNß and HOXA5 were comparable between the two statins. Notably, rosuvastatin had a stronger effect on the upregulation of klotho and IL-10. Conclusion: Overall, statin therapy significantly attenuated inflammatory, pluripotency, and klotho expression in myocardial tissue under atherogenic conditions. Our findings also highlight the differential efficacy of rosuvastatin over fluvastatin in curtailing proatherogenic inflammation, which could have profound implications for the clinical management of cardiovascular disease.

17.
Exp Ther Med ; 27(5): 236, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38628658

RESUMEN

Despite advances in surgical treatment techniques and chemotherapy-including anti-angiogenic and immune poly (ADP-ribose) polymerase inhibitors, the 5-year survival rate in ovarian cancer (OC) remains low. The reasons for this are the diagnosis of cancer in advanced clinical stages, chemoresistance and cancer recurrence. New therapeutic approaches are being developed, including the search for new biomarkers that are also targets for targeted therapy. The present review describes new molecular markers with relevance to targeted therapy, which to date have been studied only in experimental research. These include the angiogenic protein angiopoietin-2, the transmembrane glycoprotein ectonucleotide pyrophosphatase/phosphodiesterase 1, the adhesion protein E-cadherin, the TIMP metallopeptidase inhibitor 1 and Kruppel-like factor 7. Drugs affecting cancer stem cells (CSCs) in OC, such as metformin and salinomycin, as well as inhibitors of CSCs markers aldehyde dehydrogenase 1 (with the drug ATRA) and the transcription factor Nanog homeobox (microRNA) are also discussed. A new approach to prevention and possible therapies under investigation such as development of vaccines containing a subpopulation of CD117(+) and CD44(+) stem cells with a promising option for use in women with OC was described.

18.
Genes Genomics ; 46(4): 511-518, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38457096

RESUMEN

BACKGROUND: Human endogenous retrovirus (HERV)-K is a type of retrovirus that is present in the human genome, and its expression is usually silenced in healthy tissues. The precise mechanism by which HERV-K env influences cancer stemness is not fully understood, but it has been suggested that HERV-K env may activate various signaling pathways that promote stemness traits in cancer cells. OBJECTIVE: To establish the connection between HERV-K env expression and cancer stemness in ovarian cancer cells, we carried out correlation analyses between HERV-K env and the cancer stem cell (CSC) marker known as the cluster of differentiation 133 (CD133) gene in SKOV3 ovarian cancer cells. METHOD: To perform correlation analysis between HERV-K env and CSCs, ovarian cancer cells were cultured in a medium designed for cancer stem cell induction. The expression of HERV-K env and CD133 genes was verified using quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot analyses. Additionally, the expression of stemness-related markers, such as OCT-4 and Nanog, was also confirmed using RT-qPCR. RESULTS: In the stem cell induction medium, the number of tumorsphere-type SKOV3 cells increased, and the expression of CD133 and HERV-K env genes was up-regulated. Additionally, other stemness-related markers like OCT-4 and Nanog also exhibited increased expression when cultured in the cancer stem cell induction medium. However, when HERV-K env knockout (KO) SKOV3 cells were cultured in the same cancer stem cell induction medium, there was a significant decrease in the number of tumorsphere-type cells compared to mock SKOV3 cells subjected to the same conditions. Furthermore, the expression of CD133, Nanog, and OCT-4 did not show a significant increase in HERV-K env KO SKOV3 cells compared to mock SKOV3 cells cultured in the same cancer stem cell induction medium. CONCLUSION: These findings indicate that the expression of HERV-K env increased in SKOV3 cells when cultured in cancer stem cell induction media, and cancer stem cell induction was inhibited by KO of HERV-K env in SKOV3 cells. These results suggest a strong association between HERV-K env and stemness in SKOV3 ovarian cancer cells.


Asunto(s)
Retrovirus Endógenos , Neoplasias Ováricas , Femenino , Humanos , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias Ováricas/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Antígeno AC133/inmunología , Antígeno AC133/metabolismo
19.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119686, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342310

RESUMEN

BACKGROUND: Understanding the genetic underpinnings of protein networks conferring stemness is of broad interest for basic and translational research. METHODS: We used multi-omics analyses to identify and characterize stemness genes, and focused on the zinc finger protein 982 (Zfp982) that regulates stemness through the expression of Nanog, Zfp42, and Dppa3 in mouse embryonic stem cells (mESC). RESULTS: Zfp982 was expressed in stem cells, and bound to chromatin through a GCAGAGKC motif, for example near the stemness genes Nanog, Zfp42, and Dppa3. Nanog and Zfp42 were direct targets of ZFP982 that decreased in expression upon knockdown and increased upon overexpression of Zfp982. We show that ZFP982 expression strongly correlated with stem cell characteristics, both on the transcriptional and morphological levels. Zfp982 expression decreased with progressive differentiation into ecto-, endo- and mesodermal cell lineages, and knockdown of Zfp982 correlated with morphological and transcriptional features of differentiated cells. Zfp982 showed transcriptional overlap with members of the Hippo signaling pathway, one of which was Yap1, the major co-activator of Hippo signaling. Despite the observation that ZFP982 and YAP1 interacted and localized predominantly to the cytoplasm upon differentiation, the localization of YAP1 was not influenced by ZFP982 localization. CONCLUSIONS: Together, our study identified ZFP982 as a transcriptional regulator of early stemness genes, and since ZFP982 is under the control of the Hippo pathway, underscored the importance of the context-dependent Hippo signals for stem cell characteristics.


Asunto(s)
Células Madre Embrionarias de Ratones , Factores de Transcripción , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo
20.
Anim Biosci ; 37(4): 609-621, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37946416

RESUMEN

OBJECTIVE: Hair follicle stem cells (HFSCs) differentiation is a critical physiological progress in skin hair follicle (HF) formation. Goat HFSCs differentiation is one of the essential processes of superior-quality brush hair (SQBH) synthesis. However, knowledge regarding the functions and roles of miR-133a-3p and miR-145-5p in differentiated goat HFSCs is limited. METHODS: To examine the significance of chi-miR-133a-3p and chi-miR-145-5p in differentiated HFSCs, overexpression and knockdown experiments of miR-133a-3p and miR-145-5p (Mimics and Inhibitors) separately or combined were performed. NANOG, SOX9, and stem cell differentiated markers (ß-catenin, C-myc, Keratin 6 [KRT6]) expression levels were detected and analyzed by using real-time quantitative polymerase chain reaction, western blotting, and immunofluorescence assays in differentiated goat HFSCs. RESULTS: miR-133a-3p and miR-145-5p inhibit NANOG (a gene recognized in keeping and maintaining the totipotency of embryonic stem cells) expression and promote SOX9 (an important stem cell transcription factor) expression in differentiated stem cells. Functional studies showed that miR-133a-3p and miR-145-5p individually or together overexpression can facilitate goat HFSCs differentiation, whereas suppressing miR-133a-3p and miR-145-5p or both inhibiting can inhibit goat HFSCs differentiation. CONCLUSION: These findings could more completely explain the modulatory function of miR-133a-3p and miR-145-5p in goat HFSCs growth, which also provide more understandings for further investigating goat hair follicle development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA