Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Small ; 19(38): e2302302, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37211700

RESUMEN

In this paper, Au@Ag nanopencil is designed as a multimodality plasmonic nanoprobe based on asymmetric etching for the detection of SCN- and ClO- . Au@Ag nanopencil with Au tip and Au@Ag rod is prepared by asymmetric tailoring of uniformly grown silver-covered gold nanopyramids under the combined effect of partial galvanic replacement and redox reaction. By asymmetric etching in different systems, Au@Ag nanopencil exhibits diversified changes in the plasmonic absorption band: O2 •- facilitated by SCN- etches Au@Ag rod from the end to the tip, causing a blue shift of the localized surface plasmon resonance (LSPR) peak as the aspect ratio decreases; while the ClO- can retain Au@Ag shell and etch Ag within rod from the tip to the end, causing a redshift of the LSPR peak as the coupling resonance weakens. Based on peak shifts in different directions, a multimodality detection of SCN- and ClO- has been established. The results demonstrate the detection limits of SCN- and ClO- are 160 and 6.7 nm, and the linear ranges are 1-600 µm and 0.05-13 µm, respectively. The finely designed Au@Ag nanopencil not only broadens the horizon of designing heterogeneous structures, but also enriches the strategy of constructing multimodality sensing platform.

2.
Environ Sci Pollut Res Int ; 30(11): 31895-31904, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36459322

RESUMEN

With the rapid development of transportation and vehicles, the elimination of NOx and CO has highly attracted public attention. In this work, vacancy-rich CeO2 nanopencil supported CuO catalysts (CuO/CeO2-NPC) were successfully prepared for NO reduction by CO. Importantly, CeO2 with nanopencil-like shape (CeO2-NPC) have been synthesis by solvothermal method for the first time. The physicochemical properties of all samples were studied in detail by combining the means of X-ray diffraction (XRD), Raman spectroscopy, electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), H2-temperature-programmed reduction (H2-TPR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 physisorption (Brunauer-Emmett-Teller), and NO and CO temperature-programmed desorption (NO-TPD and CO-TPD) techniques. Compared with CeO2 nanorods and nanoparticles supported CuO catalysts (CuO/CeO2-NR and CuO/CeO2-NP), the CuO/CeO2-NPC catalysts showed the highest catalytic activity, affording more than 90% NO conversion at 69 °C as well as excellent H2O tolerance at 150 °C, which is superior to catalysts previously reported. Characterization results indicated that the synergistic effect between the well-dispersed CuO and the CeO2 nanopencil support enables a favorable electron transfer between these components and enhances the density of surface oxygen vacancies and Cu+ species, which consequently accelerating the redox cycle. The results indicated that the morphology control of CeO2 support could be an efficient way to evidently enhance the catalytic performance for NO + CO reaction.


Asunto(s)
Cerio , Temperatura , Cerio/química , Frío , Cobre/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA