Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1421647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171256

RESUMEN

Fertilization significantly influences soil quality and its sustainable use in urban garden maintenance. The widespread application of inorganic fertilizers has raised ecological concerns due to their potential environmental impacts. Organic fertilizers, while beneficial, often have slow effects and are costly. Biofertilizers, with their eco-friendly nature and low carbon footprint, are gaining attention for their multifaceted role in supporting plant growth. Despite the focus on fruit trees, vegetables, and medicinal plants, ornamental plants have been understudied. This study aims to evaluate the efficacy of a novel microbial fertilizer, 'natural soil biotin', on Rhododendron plants, specifically the Azalea hybrid 'Carnation'. The study employed a comparative approach to assess the impact of different fertilization strategies on soil properties, microbial diversity, enzyme activity, plant morphology, and physiological parameters. The application of 'natural soil biotin' was compared with the use of inorganic and organic fertilizers. The combined application of 'natural soil biotin' was found to effectively enhance soil properties and mitigate the impact of other fertilizers on soil pH. It also improved the relative abundance of beneficial microbial groups such as Proteobacteria, Ascomycota, and Basidiomycota. Furthermore, the mixed application significantly increased the activities of urease and sucrase in Rhododendron plants, which promoted their growth, development, and stress resistance. The results indicate that the mixed application of 'natural soil biotin' with inorganic and organic fertilizers not only improved the soil quality but also enhanced the efficiency of fertilizer utilization. This approach led to increased economic and environmental benefits in Rhododendron cultivation. The findings contribute to the foundation for soil improvement and ecological restoration, suggesting that 'natural soil biotin' could be a promising alternative or supplement to traditional fertilization methods in sustainable landscape architecture.

2.
Ecotoxicology ; 32(4): 403-415, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36854854

RESUMEN

Soil sorption properties can influence the bioavailability of substances and consequently the toxicity for soil organisms. Current standardised laboratory testing for the exposure assessment of pesticides to soil organisms uses OECD artificial soil that does not reflect the high variation in chemical-physical soil properties found in natural agroecosystems. According to guideline OECD 222, earthworm reproduction tests with Eisenia fetida and the pesticide carbendazim were performed in four natural soils and OECD artificial soil. By using pF 1.6, which ensures a uniformity in actual soil water availability, the control reproduction performance of E. fetida in all natural soils was at the same level as OECD artificial soil. In a principle component analysis, the variation in toxicity between the tested soils was attributable to a combination of two soil properties, namely total organic carbon content (TOC) and pH. The largest difference of 4.9-fold was found between the typical agricultural Luvisol with 1.03% TOC and pH 6.2 (EC10: 0.17 (0.12-0.21) mg a.i. kg-1 sdw, EC50: 0.36 (0.31-0.40) mg a.i. kg-1 sdw) and OECD artificial soil with 4.11% TOC and pH 5.6 (EC10: 0.84 (0.72-0.92) mg a.i. kg-1 sdw, EC50: 1.07 (0.99-1.15) mg a.i. kg-1 sdw). The use of typical agricultural soils in standardised laboratory earthworm testing was successfully established with using the measure pF for soil moisture adjustment. It provides a more application-oriented approach and could serve as a new tool to refine the environmental risk assessment at lower tier testing or in an intermediate tier based approach.


Asunto(s)
Oligoquetos , Plaguicidas , Contaminantes del Suelo , Animales , Suelo/química , Agua/análisis , Organización para la Cooperación y el Desarrollo Económico , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Reproducción , Plaguicidas/toxicidad
3.
Environ Sci Pollut Res Int ; 30(8): 20159-20167, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36251199

RESUMEN

This study investigated the influence of the sewage sludge (SS) soil amendment on the chronic toxicity of imidacloprid (through the seed dressing formulation MUCH 600 FS®-600 g active ingredient L-1) to collembolans Folsomia candida. Individuals 10-12 days old were exposed to two contrasting tropical soils (Oxisol and Entisol) amended with SS doses (0, 20, 40, 80, 160, and 320 g SS kg-1 soil; the SS doses have low intrinsic toxicity, which was checked before its application) in a full factorial combination with five imidacloprid concentrations (varying from 0.25 to 4 mg kg-1 in Oxisol and 0.03-0.5 mg kg-1 in Entisol) plus a control. None of the SS doses (without imidacloprid) in both soils reduced the number of generated juvenile collembolans. The imidacloprid concentrations reducing the collembolan reproduction in 50% (EC50) in Oxisol and Entisol without SS were 0.49 and 0.08 mg kg-1, respectively. However, the EC50 values generally increased with increasing SS doses in soils, varying from 1.03 to 1.41 in Oxisol and 0.07 to 0.21 in Entisol. The SS-amended soils showed 2.1- to 2.9-fold lower imidacloprid toxicity (EC50-based) in Oxisol and 1.8- to 2.7-fold lower toxicity in Entisol. Our results suggest the most effective SS doses alleviating the imidacloprid toxicity (EC50-based) to collembolans are 20 g kg-1 in Oxisol and 80 g kg-1 in Entisol. These results indicate that the tested SS has the potential to be employed as a soil amendment agent by reducing the toxicity of imidacloprid to the reproduction of F. candida.


Asunto(s)
Artrópodos , Contaminantes del Suelo , Humanos , Animales , Suelo , Aguas del Alcantarillado , Contaminantes del Suelo/análisis
4.
Materials (Basel) ; 15(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36363347

RESUMEN

Natural soil (NS)-based geopolymers (GPs) have shown promise as environmentally friendly construction materials. The production of ordinary Portland cement is known to release significant amounts of greenhouse gas (CO2) into the atmosphere. The main objective of this work is to synthesize a geopolymer (GP) from an uncommon aluminosilicate-based NS and a sodium silicate (SS) activating solution that would not only minimize the emission of harmful gases, but also offer improved mechanical strength. Samples of different compositions were produced by varying the wt.% of NS from 50% to 80% and adding a balancing amount of SS solution. The drying and curing of the samples were carried out in an electric oven at specific temperatures. The degree of geopolymerization in the samples was measured by Fourier transform infrared spectroscopy, and microstructural analysis was performed using a scanning electron microscope. Mechanical tests were conducted to evaluate the range of compressive strength values of the prepared GP samples. A minimum compressive strength of 10.93 MPa at a maximum porosity of 37.56% was observed in a sample with an NS to SS ratio of 1:1; while a ratio of 3:1 led to the maximum compressive strength of 26.39 MPa and the minimum porosity of 24.60%. The maximum strength (26.39 MPa) was found to be more than the reported strength values for similar systems. Moreover, an improvement in strength by a factor of three has been observed relative to previously developed NS-based GPs. It may be inferred from the findings that for the given NS, with almost 90% aluminosilicate content, the extent of geopolymerization increases significantly with its increasing proportions, yielding better mechanical strength.

5.
Environ Pollut ; 315: 120297, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36181937

RESUMEN

Nonylphenol (Noph) has garnered worldwide concern as a typical endocrine disruptor due to its toxicity, estrogenic properties, and widespread contamination. To better elucidate the interaction of Noph with ubiquitously existing microplastics (MPs) and the potential interdependence of their transport behaviors, batch adsorption and column experiments were conducted, paired with mathematical modeling. Compared with sand, MPs and soil colloids show stronger adsorption affinity for Noph due to the formation of hydrogen bonding and the larger numbers of interaction sites that are available on solid surfaces. Limited amount of soil-colloid coating on sand grains significantly influenced transport behaviors and the sensitivity to solution chemistry. These coatings led to a monotonic increase in Noph retention and a nonmonotonic MPs retention in single systems because of the altered physicochemical properties. The mobility of both MPs and Noph was enhanced when they coexisted, resulting from their association, increased electrostatic repulsion, and competition on retention sites. Limited release of MPs and Noph (under reduced ionic strength (IS) and increased pH) indicated strong interactions in irreversible retention. The retention and release of Noph were independent of IS and solution pH. A one-site model with a blocking term and a two-site kinetic model well described the transport of MPs and Noph, respectively. Our findings highlight the essential roles of coexisting MPs and Noph on their transport behaviors, depending on their concentrations, IS, and physicochemical properties of the porous media. The new knowledge from this study refreshes our understanding of the co-transport of MPs and organic contaminants such as Noph in the subsurface.


Asunto(s)
Microplásticos , Plásticos , Porosidad , Arena , Adsorción , Coloides/química , Suelo
6.
Sci Total Environ ; 848: 157631, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35931151

RESUMEN

In order to develop criteria to distinguish polluted from unpolluted materials in areas subjected to artisanal small-scale gold mining, background mercury values were established in 62 natural soil and saprolite profiles on 16 different parent rock types in the greenstone belt of Suriname. Hg values in pristine topsoils often amount to up to 200 µg/kg, about 100 times higher than Hg in common parent rocks. Additional analyses of 40 major and trace elements in two pilot profiles show that Hg values are strongly correlated to Fe, Cr and V values, which suggests that just as those elements Hg is residually enriched in topsoils by laterisation processes. In the deeper pallid zones of the profiles, Hg has often been leached almost completely together with iron by reducing groundwater action. In this way the range of Hg values within a single profile can be greater than between profiles. Maximum and average Hg values of 196 samples from the 16 different parent rock types fall apart into two main groups. Felsic parent rocks with predominance of quartz and feldspar have maximum Hg values around 100 µg/kg and averages around 50 µg/kg, mafic ones with less silica and higher Fe, Mg and Ca have maximum values around 250-300 µg/kg and averages around 150 µg/kg. In general the natural soil and saprolite Hg values are in the same order of magnitude as many published mine tailings and stream sediments, and therefore cannot be used to separate polluted from unpolluted materials.


Asunto(s)
Mercurio , Contaminantes del Suelo , Oligoelementos , Monitoreo del Ambiente , Oro/análisis , Hierro/análisis , Mercurio/análisis , Cuarzo/análisis , Suelo , Contaminantes del Suelo/análisis , Suriname , Oligoelementos/análisis
7.
Environ Res ; 214(Pt 1): 113886, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35839912

RESUMEN

Soil colloid is a nonnegligible factor when evaluating the environmental risk of engineered nanoparticles (ENPs) in the groundwater. In this study, the environmental fate of an emerging ENP (Ti3C2Tx MXene) in the groundwater was investigated for the first time, which currently poses a severe environmental risk due to its cytotoxicity but has received little attention. The colloidal dispersion stability and degradation kinetics of Ti3C2Tx MXene in the groundwater were evaluated by considering the effects of soil colloids prepared from sodium humate (SH), montmorillonite (MT), and a natural soil (NS) under variable solution chemistry. The results showed that the affinity of soil colloids with Ti3C2Tx followed an SH > MT > NS sequence. Increasing SH concentration led to Ti3C2Tx disaggregation by enhancing the electrical and steric repulsive forces, while MT and NS resulted in hetero-aggregation because of the elevated collision frequency. SH and MT enhanced the critical coagulation concentrations of Ti3C2Tx by 100 and 10 folders, respectively, via surface coating process, while NS slightly reduced due to the bridging effects induced by the soluble cations. The soil colloids promoted Ti3C2Tx degradation compared with their absence and in an SH > MT â‰« NS sequence. SH and MT were through forming Ti-O-C and Si-O-Ti bonds with Ti3C2Tx via their carboxyl and hydroxyl groups, respectively, rendering the Ti3C2Tx surface more reactive and faster degradation. NS showed a weak promotion effect because of its less affinity with Ti3C2Tx and limited organic matter and clay contents with hydroxyl and carboxyl groups. This study demonstrated the unstable environmental behaviors of Ti3C2Tx in the groundwater and mitigated its environmental risk concerns.


Asunto(s)
Nanopartículas , Suelo , Arcilla , Coloides , Titanio
8.
Artículo en Inglés | MEDLINE | ID: mdl-35697281

RESUMEN

The present study utilized a biomarker response method to evaluate the effect of 3,5,6-trichloro-2-pyridinol (TCP) in artificial and natural soils on Eisenia fetida after 7, 14, 28, 42 and 56 days exposure. Results indicated that TCP induced excessive reactive oxygen species, caused oxidative stress and DNA damage to Eisenia fetida. Biomarker responses were standardized to calculate the Integrated Biomarker Response (IBR) index. The IBR index of three enzymes (superoxide dismutase, catalase and glutathione S-transferase) activities showed that TCP induced the oxidative stress to E. fetida in red clay was stronger than in the other three soils. Specifically, chlorpyrifos exposure group showed a lower toxicity than TCP exposure group after 28 days exposure but a higher toxicity than TCP exposure group after 56 days exposure. Despite the deficiencies of this study, the above information is of great significance for assessing the risk of chlorpyrifos and its metabolite TCP pollution in soil ecosystems.


Asunto(s)
Cloropirifos , Oligoquetos , Contaminantes del Suelo , Animales , Biomarcadores/metabolismo , Catalasa/metabolismo , Cloropirifos/toxicidad , Ecosistema , Malondialdehído/metabolismo , Estrés Oxidativo , Piridonas , Suelo , Contaminantes del Suelo/toxicidad , Superóxido Dismutasa/metabolismo
9.
Water Res ; 209: 117886, 2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34861437

RESUMEN

Global production and use of plastics have resulted in the wide dissemination of micro- and nano-plastics (MNPs) to the natural environment. Potentially acting as a vector, the role of MNPs on the fate and transport of environmental pollutants (e.g., antibiotics such as chlortetracycline hydrochloride; CTC) has garnered global concern recently. Herein, the cotransport of MNPs and CTC in columns packed with uncoated sand or soil colloid-coated sand (SCCS) under different degrees of physicochemical heterogeneity and ionic strength was systematically explored. Our results show that MNPs and CTC inhibit the transport of each other when they coexist. The adsorption of CTC onto sand grains, soil colloids, and MNPs, as well as the aggregation of MNPs in the presence of CTC could be the major contributors to the enhanced retention of CTC and MNPs. In SCCS with different degrees of soil colloid coating, the adsorption of CTC on soil colloids is critical to influence the transport of CTC, and the nonlinear retention of MNPs to soil colloids is mainly attributed to the alteration of collector surface roughness by soil colloids. High ionic strength slightly facilitates CTC transport due to the competition for adsorption sites and the formation of CTC macromolecules, but significantly inhibits MNPs transport by suppressing the electrostatic double layers based on colloid stability theory. Consequently, the cotransport of MNPs and CTC is governed by the coupled interplay of collector surface roughness and chemical heterogeneity, due to the soil colloid coatings and the adsorbed CTC on the surfaces associated with solution chemistries such as ionic strength. Increased cotransport of MNPs and CTC occurred under a higher concentration of MNPs due to a larger number of adsorption sites for CTC. Our findings advance the current understanding of the complex cotransport of MNPs and antibiotics in the environment. This information is valuable for understanding contaminant fate and formulating strategies for environmental remediation due to the contamination of MNPs and co-occurring contaminants.

10.
Molecules ; 26(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34500563

RESUMEN

Magnetic resonance imaging is a valuable tool for three-dimensional mapping of soil water processes due to its sensitivity to the substance of interest: water. Since conventional gradient- or spin-echo based pulse sequences do not detect rapidly relaxing fractions of water in natural porous media with transverse relaxation times in the millisecond range, pulse sequences with ultrafast detection open a way out. In this work, we compare a spin-echo multislice pulse sequence with ultrashort (UTE) and zero-TE (ZTE) sequences for their suitability to map water content and its changes in 3D in natural soil materials. Longitudinal and transverse relaxation times were found in the ranges around 80 ms and 1 to 50 ms, respectively, so that the spin echo sequence misses larger fractions of water. In contrast, ZTE and UTE could detect all water, if the excitation and detection bandwidths were set sufficiently broad. More precisely, with ZTE we could map water contents down to 0.1 cm3/cm3. Finally, we employed ZTE to monitor the development of film flow in a natural soil core with high temporal resolution. This opens the route for further quantitative imaging of soil water processes.

11.
J Hazard Mater ; 415: 125687, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34088185

RESUMEN

In spite of extensive studies of soil model components, the role of natural soil colloids in the biodegradation of organic pollutants remain poorly understood. Accordingly, the present study selected Mollisol colloids (MCs) and Ultisol colloids (UCs) to investigate their effects on the biodegradation of 3, 3', 4, 4'-tetrachlorobiphenyl (PCB77) by Bradyrhizobium diazoefficiens USDA 110. Results demonstrated that both natural soil colloids significantly decreased the biodegradation of PCB77, which partly resulted from the significant decrease in the bioaccessibility of PCB77. Furthermore, the activity of Bradyrhizobium diazoefficiens USDA 110 was remarkably inhibited under the exposure to the two types of soil colloids, which was mainly ascribed to the inhibition of cell reproduction but not the lethal effect of reactive oxygen species. The calculated results from Ex-DLVO theory further indicated that the repulsion between UCs and biodegrading bacteria retarded the effective contact of cells with adsorbed PCB77 from UCs, resulting in the decline of the rate of cell reproduction. In general, the inhibition of MCs was limited to PCB77 bioaccessibility, whereas the negative effect of UCs was controlled by PCB77 bioaccessibility and the effective contact of cells with colloids. This study could provide implication for the enhancement of microbial remediation in contaminated soil.


Asunto(s)
Bifenilos Policlorados , Contaminantes del Suelo , Bacterias , Biodegradación Ambiental , Bradyrhizobium , Coloides , Bifenilos Policlorados/toxicidad , Suelo , Contaminantes del Suelo/análisis
12.
Pest Manag Sci ; 77(7): 3179-3186, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33683000

RESUMEN

BACKGROUND: Biotic and abiotic factors such as microbes and soil temperature can affect nematicide efficacy. Two experiments were conducted to test the effect of three soil temperatures on the efficacy of nonfumigant nematicides (fluopyram, fluensulfone, oxamyl and fluazaindolizine) against Meloidogyne javanica in pasteurized and natural soil in planta. RESULTS: The results showed that all tested nematicides were more efficacious in pasteurized than in natural soil. Temperature affected the nematicides differently with no effect of soil temperature on oxamyl and fluazaindolizine, whereas fluopyram and fluensulfone had greater efficacy at higher soil temperatures. CONCLUSION: Temperature effects were noted for some but not all nonfumigant nematicides. Fluopyram and fluensulfone were less effective when applied in cold soil, whereas oxamyl and fluazaindolizine were not affected by soil temperature. Although all nematicides resulted in almost complete control of M. javanica in pasteurized soil, this was not the case in natural soil, and much more root damage and nematode reproduction was noted in the latter. © 2021 Society of Chemical Industry.


Asunto(s)
Tylenchoidea , Animales , Antinematodos , Suelo , Temperatura
13.
Environ Res ; 194: 110705, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33400946

RESUMEN

Azoxystrobin, a widely used broad-spectrum strobilurin fungicide, may pose a potential threat in agricultural ecosystems. To assess the ecological risk of azoxystrobin in real soil environments, we performed a study on the toxic effects of azoxystrobin on earthworms (Eisenia fetida) in three different natural soils (fluvo-aquic soil, black soil and red clay soil) and an artificial soil. Acute toxicity of azoxystrobin was determined by filter paper test and soil test. Accordingly, exposure concentrations of chronic toxicity were set at 0, 0.1, 1.0 and 2.5 mg kg-1. For chronic toxicity test, reactive oxygen species, activity of antioxidant enzymes (superoxide dismutase, catalase and peroxidase), detoxifying enzyme (glutathione transferase), level of lipid peroxidation (malondialdehyde) and level of oxygen damage of DNA (8-hydroxydeoxyguanosine) in earthworms were determined on the 7th, 14th, 21st, 28th, 42nd and 56th days after treatment. Both acute and chronic toxic results showed azoxystrobin exhibit higher toxicity in natural soil than in artificial soil, indicating that traditional artificial soil testing method underestimate ecotoxicity of azoxystrobin in a real agricultural environment on the earthworm population. Combining with the analysis of soil physicochemical properties, the present experiment provided scientific guidance for rational application of azoxystrobin in agricultural production systems.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Catalasa/metabolismo , Ecosistema , Malondialdehído , Oligoquetos/metabolismo , Estrés Oxidativo , Pirimidinas , Suelo , Contaminantes del Suelo/toxicidad , Estrobilurinas/toxicidad , Superóxido Dismutasa/metabolismo
14.
Chemosphere ; 255: 126982, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32416393

RESUMEN

Pesticides can damage the soil environment, including damage to sentinel organisms such as earthworms. When assessing the toxicity of pesticides towards earthworms, assays are usually performed using standardized artificial soil, however, soil physicochemical properties may affect pesticide toxicity. In the present study, the toxicity of a commonly used insecticide (chlorpyrifos) to earthworms (Eisenia fetida) was determined in artificial soil and three typical natural soils (fluvo-aquic soil, black soil and red clay) by measuring acute and subchronic toxicity. Soil tests were conducted to measure the acute toxicity of chlorpyrifos to Eisenia fetida quantified by the half lethal concentration (LC50) while subchronic toxicity tests assessed the impact of low dose chlorpyrifos exposure (0.01, 0.1, 1 mg/kg; up to 56 d) on reactive oxygen species content, antioxidant enzymes activities, detoxifying enzyme activity, malondialdehyde content, and 8-hydroxydeoxyguanosine content. Subchronic toxicity was quantified using the integrated biomarker response (IBR) which highlighted that the toxicity of chlorpyrifos in artificial and natural soils was not the same. Outcomes from artificial soil studies may underestimate (fluvo-aquic soil and red clay) or overestimate (black soil) chlorpyrifos effects.


Asunto(s)
Cloropirifos/toxicidad , Daño del ADN/efectos de los fármacos , Oligoquetos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Suelo/química , Animales , Dosificación Letal Mediana , Malondialdehído/metabolismo , Plaguicidas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Contaminantes del Suelo/toxicidad
15.
Environ Pollut ; 262: 114270, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32135432

RESUMEN

Current understanding on the fate and behavior of microplastics (MPs) in complex soil media remains inadequate. We characterized the aging and hetero-aggregation of a MP sampled in farmland soil, and explored its vertical downward transport in natural loamy sand. The MP was identified with FTIR spectrum as polypropylene, a plastic lighter than water. FTIR spectrum combined with SEM imaging confirmed the MP was highly aged, generating colloidal plastic fibers and carbonyl groups. SEM imaging coupled with EDX analysis suggested hetero-aggregation of the MP with soil minerals. Soil leaching tests performed with the clean MP (without soil minerals) (CMP), the raw MP (RMP) (with soil minerals), and the RMP with humic acid (HA) (RMP + HA) demonstrated that the mobility was insignificant for the CMP, moderate for the RMP and highest for the RMP + HA, resulting in a maximal downward traveling distance of 0 cm, 3-4 cm, and 9-10 cm, respectively. Correlation between the maximal traveling distance and zeta potential of the CMP, RMP, and RMP + HA confirmed surface charge as a dominant control on the MP mobility; while the increasing density of the MP, due to hetero-aggregation with soil minerals, was identified as a driving mechanism for its downward transport, despite its intrinsic density lower than water. Occurrence of only the lower-sized rod-shaped plastic fibers at the maximal traveling distance suggested the natural aging, a process leading to plastic vibration and fragmentation, was conducive to plastic translocation. The three explored classes of antibiotic resistance genes (ARGs) (tetracycline, beta-lactam and sulfonamide) were all detected in the plastic surface, suggesting the MP may function as a potential pathway for the dissemination of ARGs to the deeper soil layer. These findings are important to understand the concentration distribution of both the MPs and ARGs in agriculture impacted soils, a natural reservoir of both emerging contaminants.


Asunto(s)
Antibacterianos/farmacología , Plásticos , Farmacorresistencia Microbiana/efectos de los fármacos , Microplásticos , Arena , Suelo
16.
Nanomaterials (Basel) ; 10(2)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085453

RESUMEN

Understanding the dispersivity and migration of cellulose nanocrystals (CNCs) in porous media is important for exploring their potential for soil and water remediation. In this study, a series of saturated column experiments were conducted to investigate the coupled effects of ionic strength, iron oxides (hematite), and soil colloids on the transport of CNCs through quartz sand and natural soils (red earth and brown earth). Results showed that CNCs had high mobility in oxide-free sand and that iron oxide coating reduced the mobility of CNCs. An analysis of Derjaguin-Landau-Verwey-Overbeek interactions indicated that CNCs exhibited a deep primary minimum, nonexistent maximum repulsion and secondary minimum on hematite-coated sand, favorable for the attachment of CNCs. The maximum effluent percentage of CNCs was 96% in natural soils at 5 mM, but this value decreased to 4% at 50 mM. Soil colloids facilitated the transport of CNCs in brown earth with larger effect at higher ionic strength. The ionic strength effect was larger in natural soils than sand and in red earth than brown earth. The study showed that CNCs can travel 0.2 m to 72 m in porous media, depending on soil properties, solution chemistry, and soil colloids.

17.
Environ Sci Pollut Res Int ; 27(5): 5211-5221, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31848948

RESUMEN

Flax (Linum usitatissimum L.), one of the oldest cultivated crops, continues to be widely grown for oil, fiber and food. Furthermore, the plants show a metal tolerance dependent on species so is ideal for research. Present study was conducted to find out the influence of copper (Cu) toxicity on plant biomass, growth, chlorophyll content, malondialdehyde (MDA) contents, proline production, antioxidative enzymes and metal up taken by L. usitatissimum from the soil grown under mixing of Cu-contaminated soil with natural soil by 0:1 (control), 1:0, 1:1, 1:2 and 1:4. Results revealed that, high concentration of Cu in the soil affected plant growth and development by reducing plant height, plant diameter and plant fresh and dry biomass and chlorophyll contents in the leaves compared with the control. Furthermore, Cu in excess causes generation of reactive oxygen species (ROS) such as superoxide radical (O-) and hydroxyl radicals (OH), which is manifested by high malondialdehyde (MDA) and proline contents also. The increasing activities of superoxidase dismutase (SOD) and peroxidase (POD) in the roots and leaves of L. usitatissimum are involved in the scavenging of ROS. Results also showed that L. usitatissimum also has capability to revoke large amount of Cu from the contaminated soil. As Cu concentration in the soil increases, the final uptake of Cu concentration by L. usitatissimum increases. Furthermore, the soil chemical parameters (pH, electrical conductivity and cation exchange capacity) were increasing to highest levels as the ratio of Cu concentration to the natural soil increases. Thus, Cu-contaminated soil is amended with the addition of natural soil significantly reduced plant growth and biomass, while L. usitatissimum is able to revoke large amount of Cu from the soil and could be grown as flaxseed and a potential candidate for phytoremediation of Cu.


Asunto(s)
Antioxidantes/metabolismo , Cobre/análisis , Lino , Estrés Oxidativo/fisiología , Raíces de Plantas/química , Contaminantes del Suelo , Antioxidantes/química , Biodegradación Ambiental , China , Cobre/química , Lino/química , Plantones , Suelo
18.
New Phytol ; 224(1): 409-420, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31125425

RESUMEN

Most land plants establish mutualistic interactions with arbuscular mycorrhizal (AM) fungi. Intracellular accommodation of AM fungal symbionts remodels important host traits like root morphology and nutrient acquisition. How mycorrhizal colonization impacts plant microbiota is unclear. To understand the impact of AM symbiosis on fungal microbiota, ten Lotus japonicus mutants impaired at different stages of AM formation were grown in non-sterile natural soil and their root-associated fungal communities were studied. Plant mutants lacking the capacity to form mature arbuscules (arb- ) exhibited limited growth performance associated with altered phosphorus (P) acquisition and reduction-oxidation (redox) processes. Furthermore, arb- plants assembled moderately but consistently different root-associated fungal microbiota, characterized by the depletion of Glomeromycota and the concomitant enrichment of Ascomycota, including Dactylonectria torresensis. Single and co-inoculation experiments showed a strong reduction of root colonization by D. torresensis in the presence of AM fungus Rhizophagus irregularis, particularly in arbuscule-forming plants. Our results suggest that impairment of central symbiotic functions in AM host plants leads to specific changes in root microbiomes and in tripartite interactions between the host plant, AM and non-AM fungi. This lays the foundation for mechanistic studies on microbe-microbe and microbe-host interactions in AM symbiosis of the model L. japonicus.


Asunto(s)
Lotus/microbiología , Micobioma , Micorrizas/fisiología , Simbiosis , Ascomicetos/genética , Ascomicetos/fisiología , Regulación de la Expresión Génica de las Plantas , Lotus/genética , Lotus/crecimiento & desarrollo , Mutación/genética , Micobioma/genética , Micorrizas/genética , Fenotipo , Suelo , Simbiosis/genética , Transcriptoma/genética
19.
Sci Total Environ ; 675: 90-97, 2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31026647

RESUMEN

Degradation rates of two widely used pesticides were assessed, and acute and chronic effects on a standard invertebrate species investigated. An herbicide (Montana®) and fungicide (Bravo500®) formulations were investigated and results were compared to the isolated active substances of each formulation (glyphosate and chlorothalonil, respectively). Tests were performed using the invertebrate Folsomia candida as test species and an agricultural natural soil. Degradation rate tests were determined under aerobic conditions at 20 ±â€¯2 °C, using an ecologically relevant concentration of 5 mg (a.i.) kg-1 of soil for both chemicals. Results demonstrated degradation half-lives (DT50) of 2.2 days for Montana® and 2.8 days when pure glyphosate was tested. Values of 1.1 and 2.9 days were registered for Bravo500® and its active substance chlorothalonil, respectively. There were no effects on survival for the tested concentrations of both forms of the herbicide (up to 17.3 mg kg-1). However, reproduction was affected, but only by the herbicide formulation, with an estimated EC50 value of 4.63 mg (a.i.) kg-1. Effects were most unlikely related to glyphosate. For chlorothalonil, both tested forms affected survival and reproduction. The estimated LC50 values were 117 mg (a.i.) kg-1 and 73.5 mg (a.i.) kg-1, and the EC50 41.3 mg (a.i.) kg-1 and 14.9 mg kg-1 for the formulation and the active ingredient, respectively. The effects of the active ingredient were significantly stronger, indicating the major influence of the active substance in the effects caused also by the formulation. Overall results demonstrate the importance of evaluating the effects of the formulated chemicals, as they are applied in the field, and not only their isolated active ingredients.


Asunto(s)
Plaguicidas/análisis , Contaminantes del Suelo/análisis , Agricultura , Animales , Artrópodos/efectos de los fármacos , Monitoreo del Ambiente , Herbicidas , Plaguicidas/toxicidad , Suelo/química , Contaminantes del Suelo/toxicidad
20.
Ecotoxicology ; 27(7): 764-771, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29616379

RESUMEN

In the field, long-term exposure is a rule rather than an exception. As a consequence, the relatively short-term standard toxicity tests may not be adequate for assessing long-term effects of pesticide exposure. This study determined the toxicity of the neonicotinoid thiamethoxam, both pure and in the formulation Actara® (25% active substance), to the springtail Folsomia candida, over three generations (P, F1 and F2). For the parental generation (P), the toxicity of pure thiamethoxam and Actara® did not differ significantly, with LC50s and EC50s of 0.32-0.35 and 0.23-0.25 mg a.s./kg dry soil, respectively. For the F1 and F2 generations, LC50s were >0.37 mg a.s./kg dry soil for both compounds. Actara was more toxic towards reproduction in the F1 generation (EC50 0.16 mg a.s./kg dry soil) than pure thiamethoxam (EC50 0.23 mg a.s./kg dry soil). For generation F2, there was no significant difference in the toxicity of the compounds towards reproduction, with EC50s of >0.37 and 0.30 mg a.s./kg dry soil for Actara® and pure thiamethoxam respectively. These results suggest a slight decrease in the toxicity of the compounds throughout the generations tested. The similarity in the toxicity of pure and formulated thiamethoxam indicates that the ingredients in the formulation Actara® do not enhance toxicity.


Asunto(s)
Artrópodos/efectos de los fármacos , Insecticidas/toxicidad , Contaminantes del Suelo/toxicidad , Tiametoxam/toxicidad , Animales , Dosificación Letal Mediana , Reproducción/efectos de los fármacos , Pruebas de Toxicidad Crónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA