Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
J Med Case Rep ; 18(1): 420, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39252049

RESUMEN

BACKGROUND: Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes and nemaline myopathy are two rare genetic conditions. We report the first case reported in world literature with coexistence of both these rare disorders. CASE PRESENTATION: A 11-year-old previously healthy Sri Lankan male child, product of a nonconsanguineous marriage with normal development presented with acute onset short lasting recurring episodes of right-sided eye deviation with impaired consciousness. In between episodes he regained consciousness. Family history revealed a similar presentation in the mother at 36 years of age. Examination was significant for short stature and proximal upper and lower limb weakness. His plasma and cerebrospinal fluid lactate were elevated. Magnetic resonance imaging brain had evidence of an acute infarction in the right occipital territory. Sanger sequencing for common mitochondrial variants of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes confirmed this diagnosis. Whole exome sequencing revealed pathogenic compound heterozygous variants in NEB gene implicating in coexisting nemaline myopathy. Acute presentation was managed with supportive care, antiepileptics, and mitochondrial supplementation. Currently he is stable on daily supplementation of arginine and limb-strengthening physiotherapy. He is being monitored closely clinically and with serum lactate level. CONCLUSION: Genetic diseases are rare. Coexistence of two genetic conditions is even rarer. Genetic confirmation of diagnosis is imperative for prediction of complications, accurate management, and genetic counseling.


Asunto(s)
Miopatías Nemalínicas , Humanos , Masculino , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/complicaciones , Niño , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/complicaciones , Encefalomiopatías Mitocondriales/diagnóstico , Imagen por Resonancia Magnética , Accidente Cerebrovascular , Sri Lanka , Acidosis Láctica/genética , Secuenciación del Exoma
2.
J Physiol ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39216086

RESUMEN

Nemaline myopathy (NM) is a genetic muscle disease, primarily caused by mutations in the NEB gene (NEB-NM) and with muscle myosin dysfunction as a major molecular pathogenic mechanism. Recently, we have observed that the myosin biochemical super-relaxed state was significantly impaired in NEB-NM, inducing an aberrant increase in ATP consumption and remodelling of the energy proteome in diseased muscle fibres. Because the small-molecule Mavacamten is known to promote the myosin super-relaxed state and reduce the ATP demand, we tested its potency in the context of NEB-NM. We first conducted in vitro experiments in isolated single myofibres from patients and found that Mavacamten successfully reversed the myosin ATP overconsumption. Following this, we assessed its short-term in vivo effects using the conditional nebulin knockout (cNeb KO) mouse model and subsequently performing global proteomics profiling in dissected soleus myofibres. After a 4 week treatment period, we observed a remodelling of a large number of proteins in both cNeb KO mice and their wild-type siblings. Nevertheless, these changes were not related to the energy proteome, indicating that short-term Mavacamten treatment is not sufficient to properly counterbalance the metabolically dysregulated proteome of cNeb KO mice. Taken together, our findings emphasize Mavacamten potency in vitro but challenge its short-term efficacy in vivo. KEY POINTS: No cure exists for nemaline myopathy, a type of genetic skeletal muscle disease mainly derived from mutations in genes encoding myofilament proteins. Applying Mavacamten, a small molecule directly targeting the myofilaments, to isolated membrane-permeabilized muscle fibres from human patients restored myosin energetic disturbances. Treating a mouse model of nemaline myopathy in vivo with Mavacamten for 4 weeks, remodelled the skeletal muscle fibre proteome without any noticeable effects on energetic proteins. Short-term Mavacamten treatment may not be sufficient to reverse the muscle phenotype in nemaline myopathy.

3.
Neuromuscul Disord ; 43: 29-38, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39180840

RESUMEN

Nemaline myopathy (NM) is a congenital myopathy with generalised muscle weakness, most pronounced in neck flexor, bulbar and respiratory muscles. The aim of this cross-sectional study was to assess the Dutch NM patient cohort. We assessed medical history, physical examination, quality of life (QoL), fatigue severity, motor function (MFM), and respiratory muscle function. We included 18 of the 28 identified patients (13 females (11-67 years old); five males (31-74 years old)) with typical or mild NM and eight different genotypes. Nine patients (50 %) used a wheelchair, eight patients (44 %) used mechanical ventilation, and four patients (22 %) were on tube feeding. Spinal deformities were found in 14 patients (78 %). The median Medical Research Council (MRC) sum score was 38/60 [interquartile range 32-51] in typical and 48/60 [44-50] in mild NM. The experienced QoL was lower and fatigue severity was higher than reference values of the healthy population. The total MFM score was 55 % [49-94] in typical and 88 % [72-93] in mild NM. Most of the patients who performed spirometry had a restrictive lung function pattern (11/15). This identification and characterisation of the Dutch NM patient cohort is important for international collaboration and can guide the design of future clinical trials.


Asunto(s)
Miopatías Nemalínicas , Calidad de Vida , Humanos , Masculino , Femenino , Estudios Transversales , Persona de Mediana Edad , Países Bajos , Adulto , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/fisiopatología , Adolescente , Anciano , Adulto Joven , Niño , Índice de Severidad de la Enfermedad , Fatiga/fisiopatología , Músculos Respiratorios/fisiopatología
4.
Cureus ; 16(7): e63828, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39099920

RESUMEN

A class of genetically based congenital myopathies known as nemaline myopathies is defined by the development of nemaline rods within muscle fibers. We present a case involving an eight-year-old boy who presented with a history of delayed motor development, proximal muscle weakness, and neck flexor weakness. Muscle enzymes were normal, and electrophysiological studies revealed a myopathic pattern. Nemaline myopathy (NM) was diagnosed with the help of clinical exome sequencing, which showed a compound heterozygous mutation with a novel variant in the nebulin (NEB) gene.

5.
Genome Med ; 16(1): 87, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982518

RESUMEN

BACKGROUND: Congenital myopathies are severe genetic diseases with a strong impact on patient autonomy and often on survival. A large number of patients do not have a genetic diagnosis, precluding genetic counseling and appropriate clinical management. Our objective was to find novel pathogenic variants and genes associated with congenital myopathies and to decrease diagnostic odysseys and dead-end. METHODS: To identify pathogenic variants and genes implicated in congenital myopathies, we established and conducted the MYOCAPTURE project from 2009 to 2018 to perform exome sequencing in a large cohort of 310 families partially excluded for the main known genes. RESULTS: Pathogenic variants were identified in 156 families (50%), among which 123 families (40%) had a conclusive diagnosis. Only 44 (36%) of the resolved cases were linked to a known myopathy gene with the corresponding phenotype, while 55 (44%) were linked to pathogenic variants in a known myopathy gene with atypical signs, highlighting that most genetic diagnosis could not be anticipated based on clinical-histological assessments in this cohort. An important phenotypic and genetic heterogeneity was observed for the different genes and for the different congenital myopathy subtypes, respectively. In addition, we identified 14 new myopathy genes not previously associated with muscle diseases (20% of all diagnosed cases) that we previously reported in the literature, revealing novel pathomechanisms and potential therapeutic targets. CONCLUSIONS: Overall, this approach illustrates the importance of massive parallel gene sequencing as a comprehensive tool for establishing a molecular diagnosis for families with congenital myopathies. It also emphasizes the contribution of clinical data, histological findings on muscle biopsies, and the availability of DNA samples from additional family members to the diagnostic success rate. This study facilitated and accelerated the genetic diagnosis of congenital myopathies, improved health care for several patients, and opened novel perspectives for either repurposing of existing molecules or the development of novel treatments.


Asunto(s)
Secuenciación del Exoma , Estudios de Asociación Genética , Fenotipo , Humanos , Masculino , Femenino , Predisposición Genética a la Enfermedad , Mutación , Exoma/genética , Linaje , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/congénito , Niño , Adulto
6.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38869008

RESUMEN

Cofilin, an actin-severing protein, plays key roles in muscle sarcomere addition and maintenance. Our previous work found that Drosophila cofilin (DmCFL) knockdown in muscle causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA-sequencing analysis that unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL muscle knockdown causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown resulted in mislocalization of GluRIIA class glutamate receptors in more deteriorated muscles and strongly impaired NMJ transmission strength. These findings expand our understanding of the roles of cofilin in muscle to include NMJ structural development and suggest that NMJ defects may contribute to the pathophysiology of nemaline myopathy.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Unión Neuromuscular , Transmisión Sináptica , Animales , Unión Neuromuscular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Factores Despolimerizantes de la Actina/metabolismo , Factores Despolimerizantes de la Actina/genética , Actinas/metabolismo , Sarcómeros/metabolismo , Técnicas de Silenciamiento del Gen , Citoesqueleto de Actina/metabolismo , Miopatías Nemalínicas/metabolismo , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología
7.
Acta Neuropathol ; 147(1): 72, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634969

RESUMEN

Nebulin, a critical protein of the skeletal muscle thin filament, plays important roles in physiological processes such as regulating thin filament length (TFL), cross-bridge cycling, and myofibril alignment. Pathogenic variants in the nebulin gene (NEB) cause NEB-based nemaline myopathy (NEM2), a genetically heterogeneous disorder characterized by hypotonia and muscle weakness, currently lacking curative therapies. In this study, we examined a cohort of ten NEM2 patients, each with unique pathogenic variants, aiming to understand their impact on mRNA, protein, and functional levels. Results show that pathogenic truncation variants affect NEB mRNA stability and lead to nonsense-mediated decay of the mutated transcript. Moreover, a high incidence of cryptic splice site activation was found in patients with pathogenic splicing variants that are expected to disrupt the actin-binding sites of nebulin. Determination of protein levels revealed patients with either relatively normal or markedly reduced nebulin. We observed a positive relation between the reduction in nebulin and a reduction in TFL, or reduction in tension (both maximal and submaximal tension). Interestingly, our study revealed a pathogenic duplication variant in nebulin that resulted in a four-copy gain in the triplicate region of NEB and a much larger nebulin protein and longer TFL. Additionally, we investigated the effect of Omecamtiv mecarbil (OM), a small-molecule activator of cardiac myosin, on force production of type 1 muscle fibers of NEM2 patients. OM treatment substantially increased submaximal tension across all NEM2 patients ranging from 87 to 318%, with the largest effects in patients with the lowest level of nebulin. In summary, this study indicates that post-transcriptional or post-translational mechanisms regulate nebulin expression. Moreover, we propose that the pathomechanism of NEM2 involves not only shortened but also elongated thin filaments, along with the disruption of actin-binding sites resulting from pathogenic splicing variants. Significantly, our findings highlight the potential of OM treatment to improve skeletal muscle function in NEM2 patients, especially those with large reductions in nebulin levels.


Asunto(s)
Miopatías Nemalínicas , Urea , Humanos , Actinas , Debilidad Muscular , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miopatías Nemalínicas/tratamiento farmacológico , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Urea/análogos & derivados , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
8.
Cureus ; 16(3): e56866, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38659511

RESUMEN

Neonatal hypotonia presents with low muscle tone and an array of symptoms that vary depending on the etiology. The differential diagnosis for this condition is complex. It is crucial to exclude life-threatening causes before following a diagnostic algorithm and performing additional tests. Given the wide range of clinical symptoms and etiologies for neonatal hypotonia, rapid genetic testing has the potential to expedite diagnosis, reduce invasive testing such as muscle biopsy, reduce hospital stays, and guide condition management.  A four-week-old girl was admitted to the emergency department (ED) with a one-day history of lethargy, poor feeding, congestion, cough, and hypoxemia. Given positive rhino-enterovirus testing and high inflammatory markers, antibiotics were administered. Imaging, venous blood gas, and blood cultures were negative, and the patient was admitted to the pediatric intensive care unit (PICU) for hypoxemia. After speech-language pathology (SLP) and occupational therapy (OT) evaluation, weak orofacial muscles and feeding issues resulted in a nasogastric tube placement. A swallow study revealed decreased pharyngeal contraction and post-swallow liquid residue. Laryngoscopy showed mild laryngomalacia and dysphagia with aspiration. Genetic testing identified an ACTA1 mutation and confirmed nemaline myopathy (NM). The patient's oxygen levels dropped further during sleep, resulting in diagnoses of severe obstructive and moderate-severe central sleep apnea. Treatment included oxygen therapy, SLP, physical therapy, albuterol, and cough assists. After discharge, the patient was frequently re-admitted with chronic respiratory failure and bronchiolitis and later had gastrostomy and tracheostomy tubes inserted.  This specific case highlights the importance of implementing a diagnostic algorithm for neonatal hypotonia. It is also important for physicians, especially emergency medicine (EM) providers, to first exclude infection, sepsis, and cardiac and respiratory organ failure before looking into other tests. Then, physicians should evaluate for more rare etiologies. In this patient's case, the hypotonia was due to a rare genetic disease, nemaline myopathy, and a multidisciplinary approach was used for this patient's care.

9.
Intern Med ; 63(19): 2683-2687, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432961

RESUMEN

We report the case of a 46-year-old female patient who developed a subacute progression of axial and proximal muscle weakness. Laboratory findings revealed mildly elevated serum creatine kinase levels. No monoclonal gammopathy was detected. A muscle biopsy revealed that she had nemaline myopathy. Serological tests and a lip biopsy revealed Sjögren's syndrome (SjS). We diagnosed her as having sporadic late-onset nemaline myopathy without monoclonal gammopathy of undetermined significance associated with SjS. Her symptoms improved after methylprednisolone pulse therapy followed by intravenous immunoglobulin therapy. A good response to immunotherapy demonstrates the necessity of making a correct diagnosis, for which a muscle biopsy is required.


Asunto(s)
Miopatías Nemalínicas , Síndrome de Sjögren , Humanos , Síndrome de Sjögren/complicaciones , Síndrome de Sjögren/diagnóstico , Miopatías Nemalínicas/complicaciones , Miopatías Nemalínicas/diagnóstico , Femenino , Persona de Mediana Edad , Inmunoglobulinas Intravenosas/uso terapéutico , Metilprednisolona/uso terapéutico
10.
Hum Mol Genet ; 33(12): 1036-1054, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38493359

RESUMEN

Nemaline myopathy (NM) is a rare congenital neuromuscular disorder characterized by muscle weakness and hypotonia, slow gross motor development, and decreased respiratory function. Mutations in at least twelve genes, all of each encode proteins that are either components of the muscle thin filament or regulate its length and stability, have been associated with NM. Mutations in Nebulin (NEB), a giant filamentous protein localized in the sarcomere, account for more than 50% of NM cases. At present, there remains a lack of understanding of whether NEB genotype influences nebulin function and NM-patient phenotypes. In addition, there is a lack of therapeutically tractable models that can enable drug discovery and address the current unmet treatment needs of patients. To begin to address these gaps, here we have characterized five new zebrafish models of NEB-related NM. These mutants recapitulate most aspects of NEB-based NM, showing drastically reduced survival, defective muscle structure, reduced contraction force, shorter thin filaments, presence of electron-dense structures in myofibers, and thickening of the Z-disks. This study represents the first extensive investigation of an allelic series of nebulin mutants, and thus provides an initial examination in pre-clinical models of potential genotype-phenotype correlations in human NEB patients. It also represents the first utilization of a set of comprehensive outcome measures in zebrafish, including correlation between molecular analyses, structural and biophysical investigations, and phenotypic outcomes. Therefore, it provides a rich source of data for future studies exploring the NM pathomechanisms, and an ideal springboard for therapy identification and development for NEB-related NM.


Asunto(s)
Alelos , Modelos Animales de Enfermedad , Proteínas Musculares , Músculo Esquelético , Mutación , Miopatías Nemalínicas , Fenotipo , Sarcómeros , Pez Cebra , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Miopatías Nemalínicas/fisiopatología , Pez Cebra/genética , Animales , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Sarcómeros/genética , Sarcómeros/metabolismo , Sarcómeros/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Humanos , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Front Neurol ; 15: 1340693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500810

RESUMEN

Background: Congenital myopathies are a group of heterogeneous inherited disorders, mainly characterized by early-onset hypotonia and muscle weakness. The spectrum of clinical phenotype can be highly variable, going from very mild to severe presentations. The course also varies broadly resulting in a fatal outcome in the most severe cases but can either be benign or lead to an amelioration even in severe presentations. Muscle biopsy analysis is crucial for the identification of pathognomonic morphological features, such as core areas, nemaline bodies or rods, nuclear centralizations and congenital type 1 fibers disproportion. However, multiple abnormalities in the same muscle can be observed, making more complex the myopathological scenario. Case presentation: Here, we describe an Italian newborn presenting with severe hypotonia, respiratory insufficiency, inability to suck and swallow, requiring mechanical ventilation and gastrostomy feeding. Muscle biopsy analyzed by light microscopy showed the presence of vacuoles filled with glycogen, suggesting a metabolic myopathy, but also fuchsinophilic inclusions. Ultrastructural studies confirmed the presence of normally structured glycogen, and the presence of minirods, directing the diagnostic hypothesis toward a nemaline myopathy. An expanded Next Generation Sequencing analysis targeting congenital myopathies genes revealed the presence of a novel heterozygous c.965 T > A p. (Leu322Gln) variant in the ACTA1 gene, which encodes the skeletal muscle alpha-actin. Conclusion: Our case expands the repertoire of molecular and pathological features observed in actinopathies. We highlight the value of ultrastructural examination to investigate the abnormalities detected at the histological level. We also emphasized the use of expanded gene panels in the molecular analysis of neuromuscular patients, especially for those ones presenting multiple bioptic alterations.

12.
Genes Genomics ; 46(5): 613-620, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38363456

RESUMEN

BACKGROUND: Nemaline Myopathy (NM) is a rare genetic disorder that affects muscle function and is characterized by the presence of nemaline rods in muscle fibers. These rods are abnormal structures that interfere with muscle contraction and can cause muscle weakness, respiratory distress, and other complications. NM is caused by variants in several genes, including TNNT1, which encodes the protein troponin T1. NM is inherited in an autosomal recessive pattern. The prevalence of heterozygous TNNT1 variants has been reported to be 1/152,000, indicating that the disease is relatively rare. OBJECTIVE: Investigation of TNNT1 gene variants that may cause cretin kinase elevation. METHODS: Detailed family histories and clinical data were recorded. Whole exome sequencing was performed and family segregation was done by Sanger sequencing. RESULTS: In this study, we report a 5-year-old girl with a novel variant recessive congenital TNNT1 myopathy. The patient had a novel homozygous (c.271_273del) deletion in the TNNT1 gene that is associated with creatine kinase elevation, which is a marker of muscle damage. CONCLUSION: This case expands the phenotypic spectrum of TNNT1 myopathy and highlights the importance of genetic testing and counseling for families affected by this rare disorder. In this study provides valuable insights into the genetic basis of NM and highlights the importance of early diagnosis and management for patients with this rare disorder. Further research is needed to better understand the pathophysiology of TNNT1 myopathy and to develop effective treatments for this debilitating condition.


Asunto(s)
Miopatías Nemalínicas , Femenino , Humanos , Preescolar , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/diagnóstico , Creatina Quinasa/genética , Homocigoto , Pruebas Genéticas , Troponina T/genética
13.
Cureus ; 16(1): e52907, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38406159

RESUMEN

This is the case of a 49-year-old woman who was admitted to the hospital for a close examination of pulmonary hypertension; however, the next morning, she developed carbon dioxide (CO2) narcosis and was started on artificial ventilation. As pulmonary arterial hypertension was ruled out, the patient was extubated, and 24-hour transcutaneous partial pressure of carbon dioxide (PCO2)(transcutaneous carbon dioxide (TcPCO2)) monitoring was performed to diagnose sleep-related hypoventilation. Polysomnography (PSG) during daytime napping revealed markedly decreased chest motion and a "pseudo-central event," which was neither central nor obstructive hypopnea. Based on the PSG results and physical examination findings, a neuromuscular disorder was suspected, and a muscle biopsy was performed to diagnose nemaline myopathy. Neuromuscular diseases are widely recognized for their association with sleep-disordered breathing; thus, sleep-related hypoventilation should also be considered. Monitoring of TcPCO2 and PSG are useful tools in identifying the cause of hypoventilation; however, overnight PSG may cause CO2 narcosis in some diseases. In such cases, PSG may be beneficial during daytime napping.

14.
Eur J Obstet Gynecol Reprod Biol ; 292: 263-266, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38071834

RESUMEN

OBJECTIVE: To present the prenatal features and postnatal outcomes of pregnancies with fetal nemaline myopathy (NM). STUDY DESIGN: This was a retrospective study of nine cases with NM diagnosed by prenatal or postnatal clinical features and confirmed by genetic testing. Clinical and laboratory data were collected and reviewed for these cases, including maternal demographics, prenatal sonographic findings, exome sequencing (ES) results, and pregnancy outcomes. RESULTS: All of the nine cases were detected to have NM-causing variants, involving NEB gene in 2 cases, ACTA1 in 3 cases, KLHL40 in 3 cases, and TPM2 in 1 case. Almost all (8/9) had normal first-trimester ultrasound scans except one who had an increased nuchal translucency. Seven (7/9) cases had second-trimester abnormal ultrasounds with fetal akinesia and/or extremity anomalies. Two (2/9) had only third-trimester abnormal ultrasounds with fetal akinesia and polyhydramnios, with one combined with fetal growth restriction. Four pregnancies with a positive prenatal ES were terminated, while five having not receiving prenatal ES continued to term. Only one infant survived 1 year old, and four passed away within 12 months. CONCLUSION: Prenatal ultrasound can detect clues that lead to the diagnosis of NM, such as reduced or absent fetal movements, polyhydramnios and extremity anomalies.


Asunto(s)
Miopatías Nemalínicas , Polihidramnios , Embarazo , Femenino , Humanos , Lactante , Miopatías Nemalínicas/diagnóstico por imagen , Miopatías Nemalínicas/genética , Estudios Retrospectivos , Ultrasonografía Prenatal/métodos , Resultado del Embarazo , Proteínas Musculares
15.
Neurol Sci ; 45(3): 1225-1231, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37851294

RESUMEN

BACKGROUND: Inherited nemaline myopathy is one of the most common congenital myopathies. This genetically heterogeneous disease is defined by the presence of nemaline bodies in muscle biopsy. The phenotypic spectrum is wide and cognitive involvement has been reported, although not extensively evaluated. METHODS: We report two nemaline myopathy patients presenting pronounced central nervous system involvement leading to functional compromise and novel facial and skeletal dysmorphic findings, possibly expanding the disease phenotype. RESULTS: One patient had two likely pathogenic NEB variants, c.2943G > A and c.8889 + 1G > A, and presented cognitive impairment and dysmorphic features, and the other had one pathogenic variant in ACTA1, c.169G > C (p.Gly57Arg), presenting autism spectrum disorder and corpus callosum atrophy. Both patients had severe cognitive involvement despite milder motor dysfunction. CONCLUSION: We raise the need for further studies regarding the role of thin filament proteins in the central nervous system and for a systematic cognitive assessment of congenital myopathy patients.


Asunto(s)
Trastorno del Espectro Autista , Miopatías Nemalínicas , Humanos , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Músculo Esquelético/patología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Sistema Nervioso Central , Mutación
16.
Hum Mol Genet ; 33(3): 233-244, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-37883471

RESUMEN

Mutations in skeletal muscle α-actin (Acta1) cause myopathies. In a mouse model of congenital myopathy, heterozygous Acta1 (H40Y) knock-in (Acta1+/Ki) mice exhibit features of human nemaline myopathy, including premature lethality, severe muscle weakness, reduced mobility, and the presence of nemaline rods in muscle fibers. In this study, we investigated the impact of Acta1 (H40Y) mutation on the neuromuscular junction (NMJ). We found that the NMJs were markedly fragmented in Acta1+/Ki mice. Electrophysiological analysis revealed a decrease in amplitude but increase in frequency of miniature end-plate potential (mEPP) at the NMJs in Acta1+/Ki mice, compared with those in wild type (Acta1+/+) mice. Evoked end-plate potential (EPP) remained similar at the NMJs in Acta1+/Ki and Acta1+/+ mice, but quantal content was increased at the NMJs in Acta1+/Ki, compared with Acta1+/+ mice, suggesting a homeostatic compensation at the NMJs in Acta1+/Ki mice to maintain normal levels of neurotransmitter release. Furthermore, short-term synaptic plasticity of the NMJs was compromised in Acta1+/Ki mice. Together, these results demonstrate that skeletal Acta1 H40Y mutation, albeit muscle-origin, leads to both morphological and functional defects at the NMJ.


Asunto(s)
Enfermedades Musculares , Miopatías Nemalínicas , Miotonía Congénita , Humanos , Ratones , Animales , Actinas/genética , Músculo Esquelético/fisiología , Miopatías Nemalínicas/genética , Unión Neuromuscular/genética , Modelos Animales de Enfermedad , Mutación
17.
Acta Neurol Belg ; 124(1): 91-99, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37525074

RESUMEN

BACKGROUND: Nemaline myopathy, the most common of the congenital myopathies, is caused by various genetic mutations. In this study, we attempted to investigate the clinical features, muscle pathology and genetic features of 15 patients with nemaline myopathy. RESULTS: Among the 15 patients, there were 9 (60.00%) males and 6 (40.00%) females, and 9 (60.00%) of them came from three families respectively. The age of seeing a doctor ranged from 9 to 52 years old, the age of onset was from 5 to 23 years old, and the duration of disease ranged from 3 to 35 years. Ten out of the 15 patients had high arched palate and elongated face. Only one patient had mild respiratory muscle involvement and none had dysphagia. Muscle biopsies were performed in 9 out of the 15 patients. Pathologically, muscle fibers of different sizes, atrophic muscle fibers and compensatory hypertrophic fibers could be found, and occasionally degenerated and necrotic muscle fibers were observed. Different degrees of nemaline bodies aggregation could be seen in all 9 patients. The distribution of type I and type II muscle fibers were significantly abnormal in patients with nemaline myopathy caused by NEB gene, however, it was basically normal in patients with nemaline myopathy caused by TPM3 gene and ACTA1 gene. Electron microscopic analysis of 6 patients showed that nemaline bodies aggregated between myofibrils were found in 5(83.33%) cases, and most of them were located near the Z band, but no intranuclear rods were found. The gene analysis of 15 NM patients showed that three NM-related genes were harbored, including 11 (73.33%) patients with NEB, 3 (20.00%) patients with TPM3, and 1 (6.67%) patient with ACTA1, respectively. A total of 12 mutation sites were identified and included 10 (83.33%) mutations in exon and 2(16.67%) mutations in intron. CONCLUSIONS: The clinical phenotype of nemaline myopathy is highly heterogeneous. Muscle pathology shows that nemaline bodies aggregation is an important feature for the diagnosis of NM. NEB is the most frequent causative gene in this cohort. The splicing mutation, c.21522 + 3A > G may be the hotspot mutation of the NEB gene in Chinese NM patients.


Asunto(s)
Enfermedades Musculares , Miopatías Nemalínicas , Masculino , Femenino , Humanos , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Músculo Esquelético/patología , Mutación , China
18.
Neuromuscul Disord ; 34: 32-40, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142473

RESUMEN

We describe three patients with asymmetric congenital myopathy without definite nemaline bodies and one patient with severe nemaline myopathy. In all four patients, the phenotype had been caused by pathogenic missense variants in ACTA1 leading to the same amino acid change, p.(Gly247Arg). The three patients with milder myopathy were mosaic for their variants. In contrast, in the severely affected patient, the missense variant was present in a de novo, constitutional form. The grade of mosaicism in the three mosaic patients ranged between 20 % and 40 %. We speculate that the milder clinical and histological manifestations of the same ACTA1 variant in the patients with mosaicism reflect the lower abundance of mutant actin in their muscle tissue. Similarly, the asymmetry of body growth and muscle weakness may be a consequence of the affected cells being unevenly distributed. The partial improvement in muscle strength with age in patients with mosaicism might be due to an increased proportion over time of nuclei carrying and expressing two normal alleles.


Asunto(s)
Enfermedades Musculares , Miopatías Nemalínicas , Humanos , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Músculo Esquelético/patología , Actinas/genética , Mutación , Enfermedades Musculares/genética , Aminoácidos/genética , Aminoácidos/metabolismo
19.
bioRxiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38045306

RESUMEN

Cofilin, an actin severing protein, plays critical roles in muscle sarcomere addition and maintenance. Our previous work has shown Drosophila cofilin (DmCFL) knockdown causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy (NM) caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA sequencing analysis which unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL deficiency causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown results in mislocalization of glutamate receptors containing the GluRIIA subunit in more deteriorated muscles and neurotransmission strength is strongly impaired. These findings expand our understanding of cofilin's roles in muscle to include NMJ structural development and suggest that NMJ defects may contribute to NM pathophysiology.

20.
Orphanet J Rare Dis ; 18(1): 374, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037113

RESUMEN

BACKGROUND: Nemaline myopathy (NM) and related disorders (NMr) form a heterogenous group of ultra-rare (1:50,000 live births or less) congenital muscle disorders. To elucidate the self-reported physical, psychological, and social functioning in the daily lives of adult persons with congenital muscle disorders, we designed a survey using items primarily from the Patient Reported Outcomes Measurement Information System, PROMIS®, and conducted a pilot study in patients with NM and NMr in Finland. The items were linked to International Classification of Functioning, Disability and Health (ICF) categories. RESULTS: In total, 20 (62.5%) out of 32 invited persons resident in Finland participated in the study; 12 had NM and 8 NMr, 15 were women and 5 men aged 19-75 years. Sixteen (80%) were ambulatory and 4 (20%) NM patients used wheelchairs. The results from the PROMIS measuring system and ICF categories both indicated that non-ambulatory patients of this study faced more challenges in all areas of functioning than ambulatory ones, but the differences were smaller in the domains measuring psychological and social functioning than in physical functioning. In addition, the COVID-19 pandemic adversely affected the functioning of non-ambulatory patients more than that of ambulatory patients. The interindividual differences were, however, noticeable. CONCLUSIONS: To our knowledge, this pilot study is the first comprehensive survey-based study of the physical, psychological, and social functioning of adult persons with nemaline myopathy or related disorders. The results indicate vulnerability of non-ambulatory patients being at higher risk to a decrease in general functioning during global or national exceptional periods. The responses also gave directions for modifying and improving the survey for future studies.


Asunto(s)
Miopatías Nemalínicas , Masculino , Adulto , Humanos , Femenino , Autoinforme , Proyectos Piloto , Clasificación Internacional del Funcionamiento, de la Discapacidad y de la Salud , Finlandia , Pandemias , Actividades Cotidianas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA