Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dev Genes Evol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079985

RESUMEN

The zebrafish is an invaluable model organism for genetic, developmental, and disease research. Although its high conservation with humans is often cited as justification for its use, the zebrafish harbors oft-ignored genetic characteristics that may provide unique insights into gene structure and function. Zebrafish, along with other teleost fish, underwent an additional round of whole genome duplication after their split from tetrapods-resulting in an abundance of duplicated genes when compared to other vertebrates. These duplicated genes have evolved in distinct ways over the ensuing 350 million years. Thus, each gene within a duplicated gene pair has nuanced differences that create a unique identity. By investigating both members of the gene pair together, we can elucidate the mechanisms that underly protein structure and function and drive the complex interplay within biological systems, such as signal transduction cascades, genetic regulatory networks, and evolution of tissue and organ function. It is crucial to leverage such studies to explore these molecular dynamics, which could have far-reaching implications for both basic science and therapeutic development. Here, we will review the role of gene duplications and the existing models for gene divergence and retention following these events. We will also highlight examples within each of these models where studies comparing duplicated genes in the zebrafish have yielded key insights into protein structure, function, and regulation.

2.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892461

RESUMEN

The Sirtuin (SIRT1-7) family comprises seven evolutionary-conserved enzymes that couple cellular NAD availability with health, nutrition and welfare status in vertebrates. This study re-annotated the sirt3/5 branch in the gilthead sea bream, revealing three paralogues of sirt3 (sirt3.1a/sirt3.1b/sirt3.2) and two of sirt5 (sirt5a/sirt5b) in this Perciform fish. The phylogeny and synteny analyses unveiled that the Sirt3.1/Sirt3.2 dichotomy was retained in teleosts and aquatic-living Sarcopterygian after early vertebrate 2R whole genome duplication (WGD). Additionally, only certain percomorphaceae and gilthead sea bream showed a conserved tandem-duplicated synteny block involving the mammalian-clustered sirt3.1 gene (psmd13-sirt3.1a/b-drd4-cdhr5-ctsd). Conversely, the expansion of the Sirt5 branch was shaped by the teleost-specific 3R WGD. As extensively reviewed in the literature, human-orthologues (sirt3.1/sirt5a) showed a high, conserved expression in skeletal muscle that increased as development advanced. However, recent sirt3.2 and sirt5b suffered an overall muscle transcriptional silencing across life, as well as an enhanced expression on immune-relevant tissues and gills. These findings fill gaps in the ontogeny and differentiation of Sirt genes in the environmentally adaptable gilthead sea bream, becoming a good starting point to advance towards a full understanding of its neo-functionalization. The mechanisms originating from these new paralogs also open new perspectives in the study of cellular energy sensing processes in vertebrates.


Asunto(s)
Evolución Molecular , Filogenia , Dorada , Sirtuinas , Sintenía , Animales , Dorada/genética , Dorada/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Familia de Multigenes , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Vertebrados/genética
3.
FEBS J ; 291(16): 3653-3664, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38775146

RESUMEN

Cultivated rice (Oryza sativa) produces a variety of diterpenoid-type phytoalexins. Diterpene synthase genes that are responsible for the biosynthesis of momilactones, phytocassanes, and oryzalexins have been identified in O. sativa cv. Nipponbare. OsKSL10 (Os12t0491800 in RAP and LOC_Os12g30824 in MSU) was previously identified as an enzyme catalyzing the conversion of ent-copalyl diphosphate to ent-sandaracopimaradiene for the production of oryzalexins A to F. Our previous study on Oryza rufipogon, a wild progenitor of Asian cultivated rice, showed that both OrKSL10 and OrKSL10ind from O. rufipogon accessions W1943 and W0106, respectively, closely related to the japonica and indica subspecies, converted ent-copalyl diphosphate to ent-miltiradiene. Thus, the functional conversion of ent-miltiradiene synthase into ent-sandaracopimaradiene synthase is implied to have occurred through natural amino acid mutations, the details of which have not been elucidated. In this study, we show that introduction of A654G substitution into OrKSL10 significantly alters its function into more closely resembling that of OsKSL10. Moreover, double substitution V546I/A654G almost completely converts the function of OrKSL10 into that of OsKSL10. On the other hand, the reversed substitution I546V/G654A was insufficient to convert the function of OsKSL10 into OrKSL10, indicating the introduction of additional substitution S522I is required for the functionality of OsKSL10. Lastly, point mutations at the 654A residue in OrKSL10 suggest that hydrophobic side chains at this position have a negative influence on the production of ent-sandaracopimaradiene.


Asunto(s)
Transferasas Alquil y Aril , Diterpenos , Oryza , Fitoalexinas , Proteínas de Plantas , Sesquiterpenos , Oryza/genética , Oryza/metabolismo , Oryza/enzimología , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/química , Diterpenos/metabolismo , Diterpenos/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Indoles/metabolismo , Indoles/química , Secuencia de Aminoácidos
4.
Genome Biol Evol ; 16(5)2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38670115

RESUMEN

Gene duplication contributes to the evolution of expression and the origin of new genes, but the relative importance of different patterns of duplicate gene expression and mechanisms of retention remains debated and particularly poorly understood in bacteria. Here, we investigated gene expression patterns for two lab strains of the cyanobacterium Acaryochloris marina with expanding genomes that contain about 10-fold more gene duplicates compared with most bacteria. Strikingly, we observed a generally stoichiometric pattern of greater combined duplicate transcript dosage with increased gene copy number, in contrast to the prevalence of expression reduction reported for many eukaryotes. We conclude that increased transcript dosage is likely an important mechanism of initial duplicate retention in these bacteria and may persist over long periods of evolutionary time. However, we also observed that paralog expression can diverge rapidly, including possible functional partitioning, for which different copies were respectively more highly expressed in at least one condition. Divergence may be promoted by the physical separation of most Acaryochloris duplicates on different genetic elements. In addition, expression pattern for ancestrally shared duplicates could differ between strains, emphasizing that duplicate expression fate need not be deterministic. We further observed evidence for context-dependent transcript dosage, where the aggregate expression of duplicates was either greater or lower than their single-copy homolog depending on physiological state. Finally, we illustrate how these different expression patterns of duplicated genes impact Acaryochloris biology for the innovation of a novel light-harvesting apparatus and for the regulation of recA paralogs in response to environmental change.


Asunto(s)
Cianobacterias , Evolución Molecular , Duplicación de Gen , Genoma Bacteriano , Cianobacterias/genética , Cianobacterias/metabolismo , Dosificación de Gen , Regulación Bacteriana de la Expresión Génica , Genes Duplicados
5.
Proc Natl Acad Sci U S A ; 121(14): e2321615121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38530892

RESUMEN

Polymethoxyflavones (PMFs) are a class of abundant specialized metabolites with remarkable anticancer properties in citrus. Multiple methoxy groups in PMFs are derived from methylation modification catalyzed by a series of hydroxylases and O-methyltransferases (OMTs). However, the specific OMTs that catalyze the systematic O-methylation of hydroxyflavones remain largely unknown. Here, we report that PMFs are highly accumulated in wild mandarins and mandarin-derived accessions, while undetectable in early-diverging citrus species and related species. Our results demonstrated that three homologous genes, CreOMT3, CreOMT4, and CreOMT5, are crucial for PMF biosynthesis in citrus, and their encoded methyltransferases exhibit multisite O-methylation activities for hydroxyflavones, producing seven PMFs in vitro and in vivo. Comparative genomic and syntenic analyses indicated that the tandem CreOMT3, CreOMT4, and CreOMT5 may be duplicated from CreOMT6 and contributes to the genetic basis of PMF biosynthesis in the mandarin group through neofunctionalization. We also demonstrated that N17 in CreOMT4 is an essential amino acid residue for C3-, C5-, C6-, and C3'-O-methylation activity and provided a rationale for the functional deficiency of OMT6 to produce PMFs in early-diverging citrus and some domesticated citrus species. A 1,041-bp deletion in the CreOMT4 promoter, which is found in most modern cultivated mandarins, has reduced the PMF content relative to that in wild and early-admixture mandarins. This study provides a framework for reconstructing PMF biosynthetic pathways, which may facilitate the breeding of citrus fruits with enhanced health benefits.


Asunto(s)
Citrus , Citrus/química , Domesticación , Fitomejoramiento , Metilación , Metiltransferasas/metabolismo
6.
Trends Microbiol ; 32(8): 746-755, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38307786

RESUMEN

The evolutionary history of cells has been marked by drastic increases in complexity. Some hypothesize that such cellular complexification requires a massive energy flux as the origin of new features is hypothetically more energetically costly than their evolutionary maintenance. However, it remains unclear how increases in cellular complexity demand more energy. I propose that the early evolution of new genes with weak functions imposes higher energetic costs by overexpression before their functions are evolutionarily refined. In the long term, the accumulation of new genes deviates resources away from growth and reproduction. Accrued cellular complexity further requires additional infrastructure for its maintenance. Altogether, this suggests that larger and more complex cells are defined by increased survival but lower reproductive capacity.


Asunto(s)
Evolución Biológica , Metabolismo Energético , Evolución Molecular
7.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38366199

RESUMEN

Duplication is a major route for the emergence of new gene functions. However, the emergence of new gene functions via this route may be reduced in prokaryotes, as redundant genes are often rapidly purged. In lineages with compact, streamlined genomes, it thus appears challenging for novel function to emerge via duplication and divergence. A further pressure contributing to gene loss occurs under Black Queen dynamics, as cheaters that lose the capacity to produce a public good can instead acquire it from neighbouring producers. We propose that Black Queen dynamics can favour the emergence of new function because, under an emerging Black Queen dynamic, there is high gene redundancy spread across a community of interacting cells. Using computational modelling, we demonstrate that new gene functions can emerge under Black Queen dynamics. This result holds even if there is deletion bias due to low duplication rates and selection against redundant gene copies resulting from the high cost associated with carrying a locus. However, when the public good production costs are high, Black Queen dynamics impede the fixation of new functions. Our results expand the mechanisms by which new gene functions can emerge in prokaryotic systems.


Asunto(s)
Familia de Multigenes , Células Procariotas , Evolución Molecular
8.
New Phytol ; 241(2): 764-778, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37904576

RESUMEN

Bioactive triterpenes feature complex fused-ring structures, primarily shaped by the first-committed enzyme, 2,3-oxidosqualene cyclases (OSCs) in plant triterpene biosynthesis. Triterpenes with B,C-ring-opened skeletons are extremely rare with unknown formation mechanisms, harbouring unchartered chemistry and biology. Here, through mining the genome of Chenopodium quinoa followed by functional characterization, we identified a stress-responsive and neofunctionalized OSC capable of generating B,C-ring-opened triterpenes, including camelliol A and B and the novel (-)-quinoxide A as wax components of the specialized epidermal bladder cells, namely the quinoxide synthase (CqQS). Protein structure analysis followed by site-directed mutagenesis identified key variable amino acid sites underlying functional interconversion between pentacyclic ß-amyrin synthase (CqbAS1) and B,C-ring-opened triterpene synthase CqQS. Mutation of one key residue (N612K) in even evolutionarily distant Arabidopsis ß-amyrin synthase could generate quinoxides, indicating a conserved mechanism for B,C-ring-opened triterpene formation in plants. Quantum computation combined with docking experiments further suggests that conformations of conserved W613 and F413 of CqQS might be key to selectively stabilizing intermediate carbocations towards B,C-ring-opened triterpene formation. Our findings shed light on quinoa triterpene skeletal diversity and mechanisms underlying B,C-ring-opened triterpene biosynthesis, opening avenues towards accessing their chemistry and biology and paving the way for quinoa trait engineering and quality improvement.


Asunto(s)
Chenopodium quinoa , Transferasas Intramoleculares , Triterpenos , Chenopodium quinoa/metabolismo , Triterpenos/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo
9.
Genome Biol Evol ; 16(1)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38039384

RESUMEN

Aquaporin (Aqp) 10 is a member of the aquaglyceroporin subfamily of water channels, and human Aqp10 is permeable to solutes such as glycerol, urea, and boric acid. Tetrapods have a single aqp10 gene, whereas ray-finned fishes have paralogs of this gene through tandem duplication, whole-genome duplication, and subsequent deletion. A previous study on Aqps in the Japanese pufferfish Takifugu rubripes showed that one pufferfish paralog, Aqp10.2b, was permeable to water and glycerol, but not to urea and boric acid. To understand the functional differences of Aqp10s between humans and pufferfish from an evolutionary perspective, we analyzed Aqp10s from an amphibian (Xenopus laevis) and a lobe-finned fish (Protopterus annectens) and Aqp10.1 and Aqp10.2 from several ray-finned fishes (Polypterus senegalus, Lepisosteus oculatus, Danio rerio, and Clupea pallasii). The expression of tetrapod and lobe-finned fish Aqp10s and Aqp10.1-derived Aqps in ray-finned fishes in Xenopus oocytes increased the membrane permeabilities to water, glycerol, urea, and boric acid. In contrast, Aqp10.2-derived Aqps in ray-finned fishes increased water and glycerol permeabilities, whereas those of urea and boric acid were much weaker than those of Aqp10.1-derived Aqps. These results indicate that water, glycerol, urea, and boric acid permeabilities are plesiomorphic activities of Aqp10s and that the ray-finned fish-specific Aqp10.2 paralogs have secondarily reduced or lost urea and boric acid permeability.


Asunto(s)
Acuaporinas , Glicerol , Animales , Humanos , Filogenia , Peces/genética , Acuaporinas/genética , Urea , Agua/metabolismo
10.
J Mol Evol ; 92(1): 21-29, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158403

RESUMEN

The Praja family is an E3 ubiquitin ligase, promoting polyubiquitination and subsequent degradation of substrates. It comprises two paralogs, praja1 and praja2. Prior research suggests these paralogs have undergone functional divergence, with examples, such as their distinct roles in neurite outgrowth. However, the specific evolutionary trajectories of each paralog remain largely unexplored preventing mechanistic understanding of functional differences between paralogs. Here, we investigated the phylogeny and divergence of the vertebrate Praja family through molecular evolutionary analysis. Phylogenetic examination of the vertebrate praja revealed that praja1 and praja2 originated from the common ancestor of placentals via gene duplication, with praja1 evolving at twice the rate of praja2 shortly after the duplication. Moreover, a unique evolutionary trajectory for praja1 relative to other vertebrate Praja was indicated, as evidenced by principal component analysis on GC content, codon usage frequency, and amino acid composition. Subsequent motif/domain comparison revealed conserved N terminus and C terminus in praja1 and praja2, together with praja1-specific motifs, including nuclear localization signal and Ala-Gly-Ser repeats. The nuclear localization signal was demonstrated to be functional in human neuroblastoma SH-SY5Y cells using deletion mutant, while praja2 was exclusively expressed in the nucleus. These discoveries contribute to a more comprehensive understanding of the Praja family's phylogeny and suggest a functional divergence between praja1 and praja2. Specifically, the shift of praja1 into the nucleus implies the degradation of novel substrates located in the nucleus as an evolutionary consequence.


Asunto(s)
Neuroblastoma , Señales de Localización Nuclear , Animales , Humanos , Filogenia , Señales de Localización Nuclear/genética , Vertebrados/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Evolución Molecular
11.
R Soc Open Sci ; 10(11): 231209, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37920568

RESUMEN

In Saccharomyces cerevisiae, the transcriptional repressor Nrg1 (Negative Regulator of Glucose-repressed genes) and the ß-Zip transcription factor Rtg3 (ReTroGrade regulation) mediate glucose repression and signalling from the mitochondria to the nucleus, respectively. Here, we show a novel function of these two proteins, in which alanine promotes the formation of a chimeric Nrg1/Rtg3 regulator that represses the ALT2 gene (encoding an alanine transaminase paralog of unknown function). An NRG1/NRG2 paralogous pair, resulting from a post-wide genome small-scale duplication event, is present in the Saccharomyces genus. Neo-functionalization of only one paralog resulted in the ability of Nrg1 to interact with Rtg3. Both nrg1Δ and rtg3Δ single mutant strains were unable to use ethanol and showed a typical petite (small) phenotype on glucose. Neither of the wild-type genes complemented the petite phenotype, suggesting irreversible mitochondrial DNA damage in these mutants. Neither nrg1Δ nor rtg3Δ mutant strains expressed genes encoded by any of the five polycistronic units transcribed from mitochondrial DNA in S. cerevisiae. This, and the direct measurement of the mitochondrial DNA gene complement, confirmed that irreversible damage of the mitochondrial DNA occurred in both mutant strains, which is consistent with the essential role of the chimeric Nrg1/Rtg3 regulator in mitochondrial DNA maintenance.

12.
Genome Biol Evol ; 15(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931037

RESUMEN

The evolution and diversification of proteins capable of remodeling domains has been critical for transcriptional reprogramming during cell fate determination in multicellular eukaryotes. Chromatin remodeling proteins of the CHD3 family have been shown to have important and antagonistic impacts on seed development in the model plant, Arabidopsis thaliana, yet the basis of this functional divergence remains unknown. In this study, we demonstrate that genes encoding the CHD3 proteins PICKLE (PKL) and PICKLE-RELATED 2 (PKR2) originated from a duplication event during the diversification of crown Brassicaceae, and that these homologs have undergone distinct evolutionary trajectories since this duplication, with PKR2 fast evolving under positive selection, while PKL is subject to purifying selection. We find that the rapid evolution of PKR2 under positive selection reduces the encoded protein's intrinsic disorder, possibly suggesting a tertiary structure configuration which differs from that of PKL. Our whole genome transcriptome analysis in seeds of pkr2 and pkl mutants reveals that they act antagonistically on the expression of specific sets of genes, providing a basis for their differing roles in seed development. Our results provide insights into how gene duplication and neofunctionalization can lead to differing and antagonistic selective pressures on transcriptomes during plant reproduction, as well as on the evolutionary diversification of the CHD3 family within seed plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Semillas/genética , Factores de Transcripción/genética , Transcriptoma , Duplicación de Gen
13.
Genome Biol Evol ; 15(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38019573

RESUMEN

Most characterized metazoan mitochondrial genomes are compact and encode a small set of proteins that are essential for oxidative phosphorylation, as well as rRNA and tRNA for their expression. However, in rare cases, invertebrate taxa have additional open reading frames (ORFs) in their mtDNA sequences. Here, we sequenced and analyzed the mitochondrial genome of a polychaete worm, Polydora cf. ciliata, part of whose life cycle takes place in low-oxygen conditions. In the mitogenome, we found three "ORFan" regions (544, 1,060, and 427 bp) that have no resemblance to any standard metazoan mtDNA gene but lack stop codons in one of the reading frames. Similar regions are found in the mitochondrial genomes of three other Polydora species and Bocardiella hamata. All five species share the same gene order in their mitogenomes, which differ from that of other known Spionidae mitogenomes. By analyzing the ORFan sequences, we found that they are under purifying selection pressure and contain conservative regions. The codon adaptation indices (CAIs) of the ORFan genes were in the same range of values as the CAI of conventional protein-coding genes in corresponding mitochondrial genomes. The analysis of the P. cf. ciliata mitochondrial transcriptome showed that ORFan-544, ORFan-427, and a portion of the ORFan-1060 are transcribed. Together, this suggests that ORFan-544 and ORFan-427 encode functional proteins. It is likely that the ORFans originated when the Polydora/Bocardiella species complex separated from the rest of the Spionidae, and this event coincided with massive gene rearrangements in their mitochondrial genomes and tRNA-Met duplication.


Asunto(s)
Genoma Mitocondrial , Animales , ADN Mitocondrial/genética , Secuencia de Bases , Proteínas/genética , ARN de Transferencia/genética , Filogenia
14.
J Mol Evol ; 91(6): 761-772, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37979044

RESUMEN

Much evidence exists suggesting the presence of genetic functional diversification in plants, though literature associated with the role of functional diversification in the evolution of the plant secondary cell wall (SCW) has sparsely been compiled and reviewed in a recent context. This review aims to elucidate, through the examination of gene phylogenies associated with its biosynthesis and maintenance, the role of functional diversification in shaping the critical, dynamic, and characteristic organelle, the secondary cell wall. It will be asserted that gene families resulting from gene duplication and subsequent functional divergence are present and are heavily involved in SCW biosynthesis and maintenance. Furthermore, diversification will be presented as a significant driver behind the evolution of the many functional characteristics of the SCW. The structure and function of the plant cell wall and its constituents will first be explored, followed by a discussion on the phenomenon of gene duplication and the resulting genetic functional divergence that can emerge. Finally, the major constituents of the SCW and their individual relationships with duplication and divergence will be reviewed to the extent of current knowledge on the subject.


Asunto(s)
Pared Celular , Plantas , Plantas/genética , Pared Celular/genética , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas
15.
Mol Biol Evol ; 40(10)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37788637

RESUMEN

The availability of an ever-increasing diversity of prokaryotic genomes and metagenomes represents a major opportunity to understand and decipher the mechanisms behind the functional diversification of microbial biosynthetic pathways. However, it remains unclear to what extent a pathway producing a specific molecule from a specific precursor can diversify. In this study, we focus on the biosynthesis of ubiquinone (UQ), a crucial coenzyme that is central to the bioenergetics and to the functioning of a wide variety of enzymes in Eukarya and Pseudomonadota (a subgroup of the formerly named Proteobacteria). UQ biosynthesis involves three hydroxylation reactions on contiguous carbon atoms. We and others have previously shown that these reactions are catalyzed by different sets of UQ-hydroxylases that belong either to the iron-dependent Coq7 family or to the more widespread flavin monooxygenase (FMO) family. Here, we combine an experimental approach with comparative genomics and phylogenetics to reveal how UQ-hydroxylases evolved different selectivities within the constrained framework of the UQ pathway. It is shown that the UQ-FMOs diversified via at least three duplication events associated with two cases of neofunctionalization and one case of subfunctionalization, leading to six subfamilies with distinct hydroxylation selectivity. We also demonstrate multiple transfers of the UbiM enzyme and the convergent evolution of UQ-FMOs toward the same function, which resulted in two independent losses of the Coq7 ancestral enzyme. Diversification of this crucial biosynthetic pathway has therefore occurred via a combination of parallel evolution, gene duplications, transfers, and losses.


Asunto(s)
Duplicación de Gen , Ubiquinona , Ubiquinona/genética , Ubiquinona/metabolismo , Oxigenasas de Función Mixta/genética , Hierro/metabolismo
16.
Insects ; 14(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37754742

RESUMEN

Expanding on previous efforts to survey the visual opsin repertoires of the Hemiptera, this study confirms that homologs of the UV- and LW-opsin subfamilies are conserved in all Hemiptera, while the B-opsin subfamily is missing from the Heteroptera and subgroups of the Sternorrhyncha and Auchenorrhyncha, i.e., aphids (Aphidoidea) and planthoppers (Fulgoroidea), respectively. Unlike in the Heteroptera, which are characterized by multiple independent expansions of the LW-opsin subfamily, the lack of B-opsin correlates with the presence of tandem-duplicated UV-opsins in aphids and planthoppers. Available data on organismal wavelength sensitivities and retinal gene expression patterns lead to the conclusion that, in both groups, one UV-opsin paralog shifted from ancestral UV peak sensitivity to derived blue sensitivity, likely compensating for the lost B-opsin. Two parallel bona fide tuning site substitutions compare to 18 non-corresponding amino acid replacements in the blue-shifted UV-opsin paralogs of aphids and planthoppers. Most notably, while the aphid blue-shifted UV-opsin clade is characterized by a replacement substitution at one of the best-documented UV/blue tuning sites (Rhodopsin site 90), the planthopper blue-shifted UV-opsin paralogs retained the ancestral lysine at this position. Combined, the new findings identify aphid and planthopper UV-opsins as a new valuable data sample for studying adaptive opsin evolution.

17.
BMC Biol ; 21(1): 204, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775818

RESUMEN

BACKGROUND: Molluscan shell, composed of a diverse range of architectures and microstructures, is a classic model system to study the relationships between molecular evolution and biomineralized structure formation. The shells of oysters differ from those of other molluscs by possessing a novel microstructure, chalky calcite, which facilitates adaptation to the sessile lifestyle. However, the genetic basis and evolutionary origin of this adaptive innovation remain largely unexplored. RESULTS: We report the first whole-genome assembly and shell proteomes of the Iwagaki oyster Crassostrea nippona. Multi-omic integrative analyses revealed that independently expanded and co-opted tyrosinase, peroxidase, TIMP genes may contribute to the chalky layer formation in oysters. Comparisons with other molluscan shell proteomes imply that von Willebrand factor type A and chitin-binding domains are basic members of molluscan biomineralization toolkit. Genome-wide identification and analyses of these two domains in 19 metazoans enabled us to propose that the well-known Pif may share a common origin in the last common ancestor of Bilateria. Furthermore, Pif and LamG3 genes acquire new genetic function for shell mineralization in bivalves and the chalky calcite formation in oysters likely through a combination of gene duplication and domain reorganization. CONCLUSIONS: The spatial expression of SMP genes in the mantle and molecular evolution of Pif are potentially involved in regulation of the chalky calcite deposition, thereby shaping the high plasticity of the oyster shell to adapt to a sessile lifestyle. This study further highlights neo-functionalization as a crucial mechanism for the diversification of shell mineralization and microstructures in molluscs, which may be applied more widely for studies on the evolution of metazoan biomineralization.


Asunto(s)
Crassostrea , Proteoma , Animales , Proteoma/genética , Multiómica , Carbonato de Calcio/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Genoma
18.
Genome Biol Evol ; 15(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37625791

RESUMEN

The Transforming Growth Factor-ß mimic (TGM) multigene family was recently discovered in the murine intestinal parasite Heligmosomoides polygyrus. This family was shaped by an atypical set of organismal and molecular evolutionary mechanisms along its path through the adaptive landscape. The relevant mechanisms are mimicry, convergence, exon modularity, new gene origination, and gene family neofunctionalization. We begin this review with a description of the TGM family and then address two evolutionary questions: "Why were TGM proteins needed for parasite survival" and "when did the TGM family originate"? For the former, we provide a likely answer, and for the latter, we identify multiple TGM building blocks in the ruminant intestinal parasite Haemonchus contortus. We close by identifying avenues for future investigation: new biochemical data to assign functions to more family members as well as new sequenced genomes in the Trichostrongyloidea superfamily and the Heligmosomoides genus to clarify TGM origins and expansion. Continued study of TGM proteins will generate increased knowledge of Transforming Growth Factor-ß signaling, host-parasite interactions, and metazoan evolutionary mechanisms.


Asunto(s)
Haemonchus , Parásitos , Animales , Ratones , Interacciones Huésped-Parásitos/genética , Haemonchus/genética , Inmunidad , Factores de Crecimiento Transformadores
19.
Mol Ecol ; 32(18): 5071-5088, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37584177

RESUMEN

Acquisition of new genes often results in the emergence of novel functions and is a key step in lineage-specific adaptation. As a group of sessile crustaceans, barnacles establish permanent attachment through initial cement secretion at the larval phase followed by continuous cement secretion in juveniles and adults. However, the origins and evolution of barnacle larval and adult cement proteins remain poorly understood. By performing microdissection of larval cement glands, transcriptome and shotgun proteomics and immunohistochemistry validation, we identified 30 larval and 27 adult cement proteins of the epibiotic turtle barnacle Chelonibia testudinaria, of which the majority are stage- and barnacle-specific. While only two proteins, SIPC and CP100K, were expressed in both larvae and adults, detection of protease inhibitors and the cross-linking enzyme lysyl oxidase paralogs in larvae and adult cement. Other barnacle-specific cement proteins such as CP100k and CP52k likely share a common origin dating back at least to the divergence of Rhizocephala and Thoracica. Different CP52k paralogues could be detected in larval and adult cement, suggesting stage-specific cement proteins may arise from duplication followed by changes in expression timing of the duplicates. Interestingly, the biochemical properties of larval- and adult-specific CP52k paralogues exhibited remarkable differences. We conclude that barnacle larval and adult cement systems evolved independently, and both emerged from co-option of existing genes and de novo formation, duplication and functional divergence of lineage-specific cement protein genes. Our findings provide important insights into the evolutionary mechanisms of bioadhesives in sessile marine invertebrates.


Asunto(s)
Thoracica , Animales , Thoracica/genética , Thoracica/metabolismo , Proteínas/genética , Larva/genética , Larva/metabolismo , Transcriptoma/genética
20.
J Biol Chem ; 299(8): 105005, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37399976

RESUMEN

S-adenosylmethionine decarboxylase (AdoMetDC/SpeD) is a key polyamine biosynthetic enzyme required for conversion of putrescine to spermidine. Autocatalytic self-processing of the AdoMetDC/SpeD proenzyme generates a pyruvoyl cofactor from an internal serine. Recently, we discovered that diverse bacteriophages encode AdoMetDC/SpeD homologs that lack AdoMetDC activity and instead decarboxylate L-ornithine or L-arginine. We reasoned that neofunctionalized AdoMetDC/SpeD homologs were unlikely to have emerged in bacteriophages and were probably acquired from ancestral bacterial hosts. To test this hypothesis, we sought to identify candidate AdoMetDC/SpeD homologs encoding L-ornithine and L-arginine decarboxylases in bacteria and archaea. We searched for the anomalous presence of AdoMetDC/SpeD homologs in the absence of its obligatory partner enzyme spermidine synthase, or the presence of two AdoMetDC/SpeD homologs encoded in the same genome. Biochemical characterization of candidate neofunctionalized genes confirmed lack of AdoMetDC activity, and functional presence of L-ornithine or L-arginine decarboxylase activity in proteins from phyla Actinomycetota, Armatimonadota, Planctomycetota, Melainabacteria, Perigrinibacteria, Atribacteria, Chloroflexota, Sumerlaeota, Omnitrophota, Lentisphaerota, and Euryarchaeota, the bacterial candidate phyla radiation and DPANN archaea, and the δ-Proteobacteria class. Phylogenetic analysis indicated that L-arginine decarboxylases emerged at least three times from AdoMetDC/SpeD, whereas L-ornithine decarboxylases arose only once, potentially from the AdoMetDC/SpeD-derived L-arginine decarboxylases, revealing unsuspected polyamine metabolic plasticity. Horizontal transfer of the neofunctionalized genes appears to be the more prevalent mode of dissemination. We identified fusion proteins of bona fide AdoMetDC/SpeD with homologous L-ornithine decarboxylases that possess two, unprecedented internal protein-derived pyruvoyl cofactors. These fusion proteins suggest a plausible model for the evolution of the eukaryotic AdoMetDC.


Asunto(s)
Adenosilmetionina Descarboxilasa , Carboxiliasas , Adenosilmetionina Descarboxilasa/genética , Adenosilmetionina Descarboxilasa/metabolismo , Archaea/genética , Archaea/metabolismo , Ornitina , Filogenia , Carboxiliasas/genética , Carboxiliasas/metabolismo , Poliaminas/metabolismo , Bacterias/metabolismo , Ornitina Descarboxilasa/metabolismo , Arginina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA