Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Microorganisms ; 12(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39203432

RESUMEN

Endophytic fungi, residing within plants without causing disease, are known for their ability to produce bioactive metabolites with diverse properties such as antibacterial, antioxidant, and antifungal activities, while also influencing plant defense mechanisms. In this study, five novel endophytic fungi species were isolated from the leaves of Psychotria poeppigiana Müll. Arg., a plant from the Rubiaceae family, collected in the tropical Amazon region of Bolivia. The endophytic fungi were identified as a Neopestalotiopsis sp., three Penicillium sp., and an Aspergillus sp. through 18S ribosomal RNA sequencing and NCBI-BLAST analysis. Chemical profiling revealed that their extracts obtained by ethyl acetate contained terpenes, flavonoids, and phenolic compounds. In a bioautography study, the terpenes showed high antimicrobial activity against Escherichia coli. Notably, extracts from the three Penicillium species exhibited potent antibacterial activity, with minimum inhibitory concentration (MIC) values ranging from 62.5 to 2000 µg/mL against all three pathogens: Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis (both Gram-positive and Gram-negative bacteria). These findings highlight the potential of these endophytic fungi, especially Penicillium species as valuable sources of secondary metabolites with significant antibacterial activities, suggesting promising applications in medicine, pharmaceuticals, agriculture, and environmental technologies.

2.
Plant Dis ; 107(5): 1544-1549, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36383989

RESUMEN

A new Neopestalotiopsis sp. was recently reported causing outbreaks of leaf spot and fruit rot on strawberry in Florida, Georgia, and South Carolina. In contrast to other Pestalotiopsis pathogens, the new species appears more aggressive and destructive on strawberry. Current chemical options for management are disease suppressive at best, and affected growers have been experiencing major yield losses. In this study, we developed a molecular method based on polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) for identification of the new Neopestalotiopsis sp. from strawberry. Isolates of the new Neopestalotiopsis sp. collected in Florida; isolates of N. rosae, N. honoluluana, N. ellipsopora, N. saprophytica, N. samarangensis, and P. rhododendri; and isolates from South Carolina suspected to be the new Neopestalotiopsis sp. were included in this study. This method is based on PCR amplification of a ß-tubulin gene fragment using a previously published set of primers (Bt2a and Bt2b), followed by use of the restriction enzyme BsaWI. The enzyme cuts the PCR product from the new Neopestalotiopsis sp. twice, yielding fragments of 290 base pairs (bp) and 130 and 20 bp in size, whereas fragments from other species are only cut once, yielding fragments of 420 and 20 bp. This method will aid research labs and diagnostic clinics in the accurate and fast identification of the aggressive Neopestalotiopsis sp. variant from strawberry.


Asunto(s)
Fragaria , Xylariales , Fragaria/genética , Polimorfismo de Longitud del Fragmento de Restricción , Xylariales/genética , Reacción en Cadena de la Polimerasa/métodos , Florida
3.
Plant Dis ; 104(8): 2054-2059, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32515689

RESUMEN

In the 2017 strawberry season, several transplant losses reaching 50% were observed in Zamora, Michoacán Valley, Mexico, due to a new fungal disease associated with root rot, crown rot, and leaf spot. In this year the disease appeared consistently and increased in the following seasons, becoming a concern among strawberry growers. Thus, the aim of this research was to determine the etiology of the disease and to determine the in vitro effect of fungicides on mycelial growth of the pathogen. Fungal isolates were obtained from symptomatic strawberry plants of the cultivars 'Albion' and 'Festival' and were processed to obtain monoconidial isolates. Detailed morphological analysis was conducted. Concatenated phylogenetic reconstruction was conducted by amplifying and sequencing the translation elongation factor 1 α, ß-tubulin partial gene, and the internal transcribed spacer region of rDNA. Pathogenicity tests involving inoculation of leaves and crowns reproduced the same symptoms as those observed in the field, fulfilling Koch's postulates. Morphology and phylogenetic reconstruction indicated that the causal agent of the described symptoms was Neopestalotiopsis rosae, marking the first report anywhere in the world of this species infecting strawberry. N. rosae was sensitive to cyprodinil + fludioxonil, captan, iprodione, difenoconazole, and prochloraz.


Asunto(s)
Fragaria , Micosis , ADN de Hongos , Humanos , México , Filogenia , Enfermedades de las Plantas
4.
Acta sci., Biol. sci ; 41: e48785, 20190000. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1460898

RESUMEN

Fungi are present in the most diverse environments including the interior of plant tissues, living as endophytes without causing apparent damage. These endophytes are producers of secondary metabolites, also known as natural products, such as fungicides. Here, we evaluated the ethyl acetate fractions obtained from endophytic fungiisolated from plants in the genus Begonia. The fractions were submitted to inhibitorytest against the plant pathogens Diaporthe phaseolorum and Colletotrichum gloeosporioides. From the 88 ethyl acetate fractions evaluated, 14.7 % inhibited C. gloeosporioidesand 11.3 %inhibited D. phaseolorum. One fungal isolate displaying an active fraction was selected for chemical investigation. The fungus identified as Neopestalotiopsissp., produced a compound that was active against D. phaseolorum, with a MIC of 312 μg mL-1(1,695.3 μM). The compound was identified by mass spectrometry and 1H NMR as the known compound fumiquinone B. The results highlight that the endophytes are capable of producing compounds that may be used to control plant pathogens. The compound fumiquinone B is reported for the first time as an antifungal agent against D. phaseolorum, a relevant plant pathogen worldwide. This is also the first report of the production of fumiquinone B by the genus Neopestalotiopsis.


Asunto(s)
Antifúngicos/metabolismo , Hongos/inmunología
5.
Fitoterapia ; 103: 106-12, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25818228

RESUMEN

Four new tetramic acid analogues neopestalotins A-D (1-4), one new furanone derivative neopestalotin E (6), and the known compound hymenosetin have been isolated from the solid cultures of the plant endophytic fungus Neopestalotiopsis sp. The structures of the new compounds were determined mainly by nuclear magnetic resonance (NMR) experiments. The absolute configurations of 1 and 2 were assigned by circular dichroism (CD) data, whereas those of 3 and 4 were deduced by a combination of CD and heteronuclear long range coupling (HETLOC) data. Compound 2 showed modest antimicrobial activity against the Gram-positive bacteria, Bacillus subtilis, Staphylococcus aureus col, and Streptococcus pneumoniae.


Asunto(s)
Acetatos/aislamiento & purificación , Antibacterianos/farmacología , Ascomicetos/química , Pirrolidinonas/farmacología , Acetatos/farmacología , Antibacterianos/aislamiento & purificación , Bacillus subtilis/efectos de los fármacos , Endófitos/química , Furanos/aislamiento & purificación , Furanos/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pirrolidinonas/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos , Streptococcus pneumoniae/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA