Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(12): 3902-3919, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35320616

RESUMEN

Although the role of livestock in future food systems is debated, animal proteins are unlikely to completely disappear from our diet. Grasslands are a key source of primary productivity for livestock, and feed-food competition is often limited on such land. Previous research on the potential for sustainable grazing has focused on restricted geographical areas or does not consider inter-annual changes in grazing opportunities. Here, we developed a robust method to estimate trends and interannual variability (IV) in global livestock carrying capacity (number of grazing animals a piece of land can support) over 2001-2015, as well as relative stocking density (the reported livestock distribution relative to the estimated carrying capacity [CC]) in 2010. We first estimated the aboveground biomass that is available for grazers on global grasslands based on the MODIS Net Primary Production product. This was then used to calculate livestock carrying capacities using slopes, forest cover, and animal forage requirements as restrictions. We found that globally, CC decreased on 27% of total grasslands area, mostly in Europe and southeastern Brazil, while it increased on 15% of grasslands, particularly in Sudano-Sahel and some parts of South America. In 2010, livestock forage requirements exceeded forage availability in northwestern Europe, and southern and eastern Asia. Although our findings imply some opportunities to increase grazing pressures in cold regions, Central Africa, and Australia, the high IV or low biomass supply might prevent considerable increases in stocking densities. The approach and derived open access data sets can feed into global food system modelling, support conservation efforts to reduce land degradation associated with overgrazing, and help identify undergrazed areas for targeted sustainable intensification efforts or rewilding purposes.


Asunto(s)
Conservación de los Recursos Naturales , Ganado , Animales , Biomasa , Brasil , Pradera
2.
Sci Total Environ ; 705: 135717, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31838428

RESUMEN

The semi-arid region of Northeast Brazil (NEB) experiences severe droughts during El Niño Southern Oscillation (ENSO) years, with major impacts on the dynamics of the native vegetation (Caatinga). However, the effect of these droughts on carbon cycling is not well understood. Here, a numerical model is used to investigate the influence of variations in Pacific and Atlantic sea surface temperatures (SST) on drought and carbon dynamics of the Caatinga during past ENSO events. We demonstrate that precipitation reductions in the Caatinga have a strong influence on vegetation dynamics, with net primary production (NPP) remaining low throughout the droughts. Furthermore, the Caatinga acts as a carbon sink, even in years of severe drought. However, net ecosystem exchange (NEE) is lower in years of low NPP rates, resulting in long periods with limited ecosystem activity. The SST patterns indicate that extreme vegetation changes in the Caatinga are associated with the combination of ENSO events and North Atlantic SST warming.


Asunto(s)
El Niño Oscilación del Sur , Bosques , Brasil , Océano Pacífico
3.
Ecology ; 100(3): e02589, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30801709

RESUMEN

Forest dynamics and tree species composition vary substantially between Paleotropical and Neotropical forests, but these broad biogeographic regions are treated uniformly in many land models. To assess whether these regional differences translate into variation in productivity and carbon (C) storage, we compiled a database of climate, tree stem growth, litterfall, aboveground net primary production (ANPP), and aboveground biomass across tropical rainforest sites spanning 33 countries throughout Central and South America, Asia, and Australasia, but excluding Africa due to a paucity of available data. Though the sum of litterfall and stem growth (ANPP) did not differ between regions, both stem growth and the ratio of stem growth to litterfall were higher in Paleotropical forests compared to Neotropical forests across the full observed range of ANPP. Greater C allocation to woody growth likely explains the much larger aboveground biomass estimates in Paleotropical forests (~29%, or ~80 Mg DW/ha, greater than in the Neotropics). Climate was similar in Paleo- and Neotropical forests, thus the observed differences in C likely reflect differences in the evolutionary history of species and forest structure and function between regions. Our analysis suggests that Paleotropical forests, which can be dominated by tall-statured Dipterocarpaceae species, may be disproportionate hotspots for aboveground C storage. Land models typically treat these distinct tropical forests with differential structures as a single functional unit, but our findings suggest that this may overlook critical biogeographic variation in C storage potential among regions.


Asunto(s)
Bosques , Clima Tropical , África , Asia , Biomasa , Carbono/análisis , América del Sur , Árboles
4.
Artículo en Inglés | MEDLINE | ID: mdl-30297475

RESUMEN

Meteorological extreme events such as El Niño events are expected to affect tropical forest net primary production (NPP) and woody growth, but there has been no large-scale empirical validation of this expectation. We collected a large high-temporal resolution dataset (for 1-13 years depending upon location) of more than 172 000 stem growth measurements using dendrometer bands from across 14 regions spanning Amazonia, Africa and Borneo in order to test how much month-to-month variation in stand-level woody growth of adult tree stems (NPPstem) can be explained by seasonal variation and interannual meteorological anomalies. A key finding is that woody growth responds differently to meteorological variation between tropical forests with a dry season (where monthly rainfall is less than 100 mm), and aseasonal wet forests lacking a consistent dry season. In seasonal tropical forests, a high degree of variation in woody growth can be predicted from seasonal variation in temperature, vapour pressure deficit, in addition to anomalies of soil water deficit and shortwave radiation. The variation of aseasonal wet forest woody growth is best predicted by the anomalies of vapour pressure deficit, water deficit and shortwave radiation. In total, we predict the total live woody production of the global tropical forest biome to be 2.16 Pg C yr-1, with an interannual range 1.96-2.26 Pg C yr-1 between 1996-2016, and with the sharpest declines during the strong El Niño events of 1997/8 and 2015/6. There is high geographical variation in hotspots of El Niño-associated impacts, with weak impacts in Africa, and strongly negative impacts in parts of Southeast Asia and extensive regions across central and eastern Amazonia. Overall, there is high correlation (r = -0.75) between the annual anomaly of tropical forest woody growth and the annual mean of the El Niño 3.4 index, driven mainly by strong correlations with anomalies of soil water deficit, vapour pressure deficit and shortwave radiation.This article is part of the discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Asunto(s)
El Niño Oscilación del Sur , Bosques , Árboles/crecimiento & desarrollo , Clima Tropical , África , Borneo , Brasil , Sequías , Estaciones del Año
5.
Oecologia ; 115(1-2): 17-25, 1998 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28308449

RESUMEN

In the Patagonian steppe, years with above-average precipitation (wet years) are characterized by the occurrence of large rainfall events. The objective of this paper was to analyze the ability of shrubs and grasses to use these large events. Shrubs absorb water from the lower layers, grasses from the upper layers, intercepting water that would otherwise reach the layers exploited by shrubs. We hypothesized that both life-forms could use the large rainfalls and that the response of shrubs could be more affected by the presence of grasses than vice versa. We performed a field experiment using a factorial combination of water addition and life-form removal, and repeated it during the warm season of three successive years. The response variables were leaf growth, and soil and plant water potential. Grasses always responded to experimental large rainfall events, and their response was greater in dry than in wet years. Shrubs only used large rainfalls in the driest year, when the soil water potential in the deep layers was low. The presence or absence of one life-form did not modify the response of the other. The magnitude of the increase in soil water potential was much higher in dry than in humid years, suggesting an explanation for the differences among years in the magnitude of the response of shrubs and grasses. We propose that the generally reported poor response of deep-rooted shrubs to summer rainfalls could be because (1) the water is insufficient to reach deep soil layers, (2) the plants are in a dormant phenological status, and/or (3) deep soil layers have a high water potential. The two last situations may result in high deep-drainage losses, one of the most likely explanations for the elsewhere-reported low response of aboveground net primary production to precipitation during wet years.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA