Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1435701, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044828

RESUMEN

Ceramides generated by the activity of the neutral sphingomyelinase 2 (nSMase2) play a pivotal role in stress responses in mammalian cells. Dysregulation of sphingolipid metabolism has been implicated in numerous inflammation-related pathologies. However, its influence on inflammatory cytokine-induced signaling is yet incompletely understood. Here, we used proximity labeling to explore the plasma membrane proximal protein network of nSMase2 and TNFα-induced changes thereof. We established Jurkat cells stably expressing nSMase2 C-terminally fused to the engineered ascorbate peroxidase 2 (APEX2). Removal of excess biotin phenol substantially improved streptavidin-based affinity purification of biotinylated proteins. Using our optimized protocol, we determined nSMase2-proximal biotinylated proteins and their changes within the first 5 min of TNFα stimulation by quantitative mass spectrometry. We observed significant dynamic changes in the nSMase2 microenvironment in response to TNFα stimulation consistent with rapid remodeling of protein networks. Our data confirmed known nSMase2 interactors and revealed that the recruitment of most proteins depended on nSMase2 enzymatic activity. We measured significant enrichment of proteins related to vesicle-mediated transport, including proteins of recycling endosomes, trans-Golgi network, and exocytic vesicles in the proximitome of enzymatically active nSMase2 within the first minutes of TNFα stimulation. Hence, the nSMase2 proximal network and its TNFα-induced changes provide a valuable resource for further investigations into the involvement of nSMase2 in the early signaling pathways triggered by TNFα.


Asunto(s)
Esfingomielina Fosfodiesterasa , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Células Jurkat , Esfingomielina Fosfodiesterasa/metabolismo , Transducción de Señal , Membrana Celular/metabolismo
2.
Biochem Biophys Res Commun ; 504(3): 602-607, 2018 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-29654757

RESUMEN

It has been known for decades that the regulation of sphingolipids (SLs) is essential for the proper function of many cellular processes. However, a complete understanding of these processes has been complicated by the structural diversity of these lipids. A well-characterized metabolic pathway is responsible for homeostatic maintenance of hundreds of distinct SL species. This pathway is perturbed in a number of pathological processes, resulting in derangement of the "sphingolipidome." Recently, advances in mass spectrometry (MS) techniques have made it possible to characterize the sphingolipidome in large-scale clinical studies, allowing for the identification of specific SL molecules that mediate pathological processes and/or may serve as biomarkers. This manuscript provides an overview of the functions of SLs, and reviews previous studies that have used MS techniques to identify changes to the sphingolipidome in non-metabolic diseases.


Asunto(s)
Metabolismo de los Lípidos , Redes y Vías Metabólicas , Metabolómica/métodos , Esfingolípidos/análisis , Cromatografía Liquida , Estudios de Cohortes , Humanos , Espectrometría de Masas , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Esfingolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA