Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 172250, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599404

RESUMEN

Understanding the geochemistry and contamination of rivers affected by anthropogenic activities is paramount to water resources management. The Asopos river basin in central Greece is facing environmental quality deterioration threats due to industrial, urban and agricultural activities. Here, the geochemistry of river sediments and adjacent soil in terms of major and trace elements (Al, Ca, Mg, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and the geochemical composition of surface water in terms of major ions, trace elements and nutrients along the Asopos river basin were determined. In addition, this study characterized potential nitrate sources through the analysis of stable isotope composition of NO3- (δ15Ν-ΝΟ3- and δ18Ο-ΝΟ3-). Results indicated that specific chemical constituents including nutrients (NO2-, NH4+, PO43-) and major ions (Na+, Cl-) were highest in the urban, industrialized and downstream areas. On the other hand, nitrate (NO3-) concentration in river water (median 7.9 mg/L) showed a decreasing trend from the upstream agricultural sites to the urban area and even more in the downstream of the urban area sites. Ionic ratios (NO3-/Cl-) and δ15Ν-ΝΟ3- values (range from +10.2 ‰ to +15.7 ‰), complemented with a Bayesian isotope mixing model, clearly showed the influence of organic wastes from septic systems and industries operating in the urban area on river nitrate geochemistry. The interpretation of geochemical data of soil and river sediment samples demonstrated the strong influence of local geology on Cr, Fe, Mn and Ni content, with isolated samples showing elevated concentrations of Cd, Cu, Pb and Zn, mostly within the industrialized urban environment. The calculation of enrichment factors based on the national background concentrations provided limited insights into the origin of geogenic metals. Overall, this study highlighted the need for a more holistic approach to assess the impact of the geological background and anthropogenic activities on river waters and sediments.

2.
Sci Total Environ ; 901: 166455, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37607634

RESUMEN

The Pinios River Basin (PRB) is the most intensively cultivated area in Greece, which hosts numerous industries and other anthropogenic activities. The analysis of water samples collected monthly for ∼1 ½ years in eight monitoring sites in the PRB revealed nitrate pollution of organic origin extending from upstream to downstream and occurring throughout the year, masking the signal from the application of synthetic fertilizers. Nitrate concentrations reached up to 3.6 mg/l as NO3--N, without exceeding the drinking water threshold of ∼11.0 mg/l (as NO3--N). However, the water quality status was "poor" or "bad" in ∼50 % of the samples based on a local index, which considers the potential impact of nitrate on aquatic biological communities. The δ15Ν-ΝΟ3- and δ18O-NO3- values ranged from +4.4 ‰ to +20.3 ‰ and from -0.5 ‰ to +14.4 ‰, respectively. The application of a Bayesian model showed that the proportional contribution of organic pollution from industries, animal breeding facilities and manure fertilizers exceeded 70 % in most river sites with an overall uncertainty of ∼0.3 (UI90 index). The δ18O-NO3- and its relationship with δ18O-H2O revealed N-cycling and mixing processes, which were difficult to identify apart from the uptake of nutrients by phytoplankton during the growing season and metabolic activities. The strong correlation of δ15Ν-ΝΟ3- values with a Land Use Index (LUI) and a Point Source Index (PSI) highlighted not only the role of non-point nitrate sources but also of point sources of nitrate pollution on water quality degradation, which are usually overlooked. The nitrification of organic wastes is the dominant nitrate source in most rivers in Europe. The systematic monitoring of rivers for nitrate isotopes will help improve the understanding of N-cycling and the impact of these pollutants on ecosystems and better inform policies for protection measures so to achieve good ecological status.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Nitratos/análisis , Fertilizantes/análisis , Teorema de Bayes , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Contaminación del Agua/análisis , China
3.
J Environ Manage ; 337: 117751, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36933532

RESUMEN

Karst groundwater provides drinking water for a quarter of Earth's population. However, in intensive agricultural regions worldwide, karst water is commonly polluted by nitrate (NO3-), particularly in the valley depression areas with well hydrological connectivity. The valley depression aquifers are particularly vulnerable to anthropogenic pollution because their pipes and sinkholes respond quickly to rainfall events and anthropogenic inputs. Identifying nitrate sources and transport paths in the valley depression areas is key to understanding the nitrogen cycle and effectively preventing and controlling NO3- pollution. This study collected high-resolution samples at four sites including one surface stream-SS, two sinkholes-SH and reservoir-Re, during the wet season in the headwater sub-catchment. The chemical component concentrations and stable isotopes (δ15N-NO3- and δ18O-NO3-) were analyzed. The stable isotope analysis model in R language (SIAR) was used to quantitatively analyze the contribution rate of NO3- sources. The results showed that the down section site (Re) has the highest [NO3--N], followed by SH and the lowest SS. The sources calculation of SIAR demonstrated that, during the non-rainfall period, soil organic nitrogen was the primary source of the down section site, followed by fertilizer and the upper reaches sinkholes. During the rainfall period, fertilizer was the primary source of the down section site, followed by soil organic nitrogen and from upper reaches sinkholes. Rainfall events accelerated fertilizer-leaching into the groundwater. Slight denitrification may have occurred at the sampling sites but the assimilation of Re and SH could not occur. In conclusion, agricultural activities were still the primary influencing factor of [NO3--N] in the study area. Therefore, the focus of NO3- prevention and control in the valley depression areas should consider the methods and timing of fertilization and the spatial distribution of sinkholes. To reduce nitrogen flux in the valley depression area, effective management policy should consider, e.g., prolongation of water residence time by wetland, and blocking nitrogen loss paths by sinkholes.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Nitratos/análisis , Fertilizantes/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Suelo , China
4.
Sci Total Environ ; 871: 162026, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36754334

RESUMEN

Groundwater and rivers in Chinese cities suffer from severe nitrate pollution. The accurate identification of nitrate sources throughout aquatic systems is key to the water nitrate pollution management. This study investigated nitrogen components of groundwater for twelve years and analyzed the sources of nitrate in the aquatic system based on dual isotopes (δ15N-NO3- and δ18O-NO3-) in the city of Nanjing, a core city of the Yangtze River Delta region, China. Our results showed that the ratio of nitrate to the sum of ammonia and nitrate in groundwater show an increasing trend during 2010-2021. The nitrate concentration was positively correlated with the proportion of cultivated land and negatively correlated with the proportion of forest land in the buffer zone. The relationship between Cl- and NO3-/ Cl- showed that agriculture and sewage sources increased during 2010-2015, sewage sources increased during 2016-2018, agriculture sources increased during 2019-2021. Manure and sewage were the primary sources of groundwater nitrate (72 %). There was no significant difference between the developed land (78 %), cultivated land (69 %), and aquaculture area (72 %). This indicates that dense population and intensive aquaculture in the suburbs have a significant impact on nitrate pollution. The contributions of manure and sewage to the fluvial nitrate sources in the lower reaches of the Qinhuai River Basin were 61 %. The non-point sources, including groundwater N (39 %) and soil N (35 %), were 74 % over the upper reaches. This study highlights the necessity of developing different N pollution management strategies for different parts of highly urbanized watersheds and considers groundwater restoration and soil nitrogen management as momentous, long-term tasks.

5.
Water Res ; 230: 119470, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621274

RESUMEN

Dissolved organic matter (DOM) in river watersheds dynamically changes based on its source during a monsoon period with storm event. However, the variations in DOM in urban and rural river watersheds that are dominated by point and non-point sources have not been adequately explored to date. We developed an innovative approach to reveal DOM sources in complex river watershed systems during pre-monsoon, monsoon, and post-monsoon periods using end-member mixing analysis (EMMA) by combining multi-isotope values (δ13C-DOC, δ15N-NO3 and δ18O-NO3) and spectroscopic indices (fluorescence index [FI], biological index [BIX], humification index [HIX], and specific UV absorbance [SUVA]). Several potential end-members of DOM sources were collected from watersheds, including top-soils, groundwater, plant group (fallen leaves, riparian plants, suspended algae), and different effluents (cattle and pig livestock, agricultural land, urban, industry facility, swine treatment facility and wastewater treatment facility). Concentrations of dissolved organic carbon, dissolved organic nitrogen, NO3-N, and NH4-N increased during the monsoon period with an increase in the input of anthropogenic DOM, which have higher HIX values owing to the flushing effect. The results of EMMA indicate that soil and agricultural effluents accounted for a substantial contribution of anthropogenic DOM at varying rates based on seasons. We also found that results of EMMA based on combining spectroscopic indices and δ13C-DOC isotope values were more accurate in tracing DOM sources with respect to land-use characteristics compared to applying only spectroscopic indices. The positive relationship between FI, BIX and δ15N-NO3 were revealed that nitrate would be decomposed from DOM affected by intensive agricultural activities. In addition, consistent with the EMMA results, the molecular composition of the DOM was clearly evidenced by a large number of CHON formulas, accounting for over 50% of the total characterized compounds, including pesticides and pharmaceuticals used in agriculture farmland and livestock. Our results clearly demonstrated that EMMA based on combing multi-stable isotopes and spectroscopic indices could be trace the DOM source, which is important for understanding changes in the DOM quality, and application of nitrate isotopes and molecular analysis supports in-depth interpretation. This study provides easy and intuitive techniques for the estimation of the relative impacts of DOM sources in complex river watersheds, which can be verified in various ways rather than relying on a single technique approach.


Asunto(s)
Materia Orgánica Disuelta , Ríos , Animales , Bovinos , Porcinos , Ríos/química , Nitratos/análisis , Análisis Espectral , Suelo , Compuestos Orgánicos/análisis , Isótopos/análisis
6.
Sci Total Environ ; 864: 161026, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549543

RESUMEN

Stable nitrate isotopes (δ15N-NO3 and δ18O-NO3) in conjunction with stable water isotopes (δ18O-H2O and δD-H2O) were used to identify nitrogen (N) sources and N-biogeochemical transformation in tap water sources sampled from 11 water purification plants across South Korea. The raw water sources are taken from rivers within the water supply basins, which indicates the quality of tap water is highly dependent on surrounding the land use type. We estimated the proportional contribution of the various N sources (AD: atmospheric deposition; SN: soil nitrogen; CF: chemical fertilizer; M&S: manure/sewage) using Bayesian Mixing Model. As a result, the contribution of N sources exhibited large seasonal and spatial differences, which were related to the type of land use in the water supply basins. Commonly, the M&S and SN were the dominant N source during the dry and wet seasons in almost regions, respectively. However, in the regions with high N loading ratios from urban and industrial sources, the M&S was the dominant N source during both the wet and dry seasons. In addition, the regions were characterized by high NO3- concentrations due to the decreased dilution effect of precipitation during the dry seasons. In contrast, the SN was the dominant N source in the regions with high N loading ratios from agricultural areas during both the wet and dry seasons. The NO3--N concentration during the wet season was significantly higher than those during the dry season in these regions due to the input of non-point sources with high concentrations. Meanwhile, denitrification and nitrification were observed in the watersheds. It is important to understand the isotope fractionation due to N-biogeochemical transformation for considering the potential misinterpretations of the origin and fate NO3-. Collectively, our findings provide a basis on N source control strategies to ensure tap water quality in complex land use areas.

7.
Sci Total Environ ; 858(Pt 1): 159763, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309271

RESUMEN

The Atalanti basin is an intensively cultivated area in central Greece, facing groundwater quality deterioration threats due to natural and anthropogenic-related contamination sources. A combination of statistical and hydrogeochemical techniques, and stable isotope compositions (δ2H-H2O and δ18Ο-Η2Ο, δ15Ν-ΝΟ3- and δ18Ο-ΝΟ3-, δ34S-SO42- and δ18O-SO42-) were applied to elucidate the origin of salinity and nitrate contamination, and shed light on the potential associations between geogenic Cr(VI) and NO3- sources and transformations. Nitrate and Cr(VI) concentrations reached up to 337 mg L-1 and 76.1 µg L-1, respectively, exceeding WHO threshold values in places. The cluster of samples with the high salinity was mostly influenced by irrigation return flow and marine aerosols, and less by seawater intrusion, as evidenced by the ionic ratios (e.g., Na+/Cl-) and the stable isotopes of oxygen and hydrogen in water, and sulphur and oxygen in sulphates. The δ15Ν-ΝΟ3- and δ18O-NO3- values ranged from +2.0 ‰ to +14.5 ‰ and + 0.3 ‰ to +11.0 ‰, respectively. We found that the dominant sources of NO3- in groundwater were fertilizers in the central part of the area and sewage waste in the northern part around the residential area of Livanates. The occurrence of denitrification was evident in the northern part of the basin, where the DO levels were lowest (≤ 2.2 mg L-1), whereas nitrification of NH4+-fertilizers prevailed in the central part. Elevated Cr(VI) values (≥ 20 µg/l) were associated with the lowest deviation of the measured from the theoretical nitrification δ18Ο-NO3- values, whereas the lowest Cr(VI) values were observed in the denitrified water samples. Our isotope findings revealed the strong influence of redox conditions on the biogeochemical transformations of N species and the mobilization of Cr(VI) that will help improve the understanding of the fate of these contaminants from the unsaturated zone to the groundwater in areas of agricultural and urban land use.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Nitratos/análisis , Fertilizantes , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Isótopos de Nitrógeno/análisis , Agua Subterránea/química , Oxígeno , Agua
8.
Environ Sci Pollut Res Int ; 30(2): 4245-4257, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35965301

RESUMEN

Human activities and climate change input more reactive nitrogen into alpine lakes. Alpine saline lakes are usually located in endorheic watersheds at high-altitude areas, with no other drainage methods than evaporation, and are prone to accumulate nutrients. Meanwhile, alpine saline lakes are usually oligotrophic and sensitive to reactive nitrogen inputs, and even modest reactive nitrogen inputs may have significant effects on them, such as eutrophication. Nitrate is the main form of reactive nitrogen in lakes; therefore, clarifying the sources and transformations of nitrate in alpine saline lakes is important to prevent or mitigate eutrophication in alpine saline lakes. In this study, the sources and transformations of nitrate in Qixiangcuo Lake and its inflow rivers in the northern Tibetan Plateau were identified using dual nitrate isotopes and hydrochemistry. The results show that (1) the ranges of NO3- concentrations, δ15N - NO3-, and δ18O - NO3- values were 3.6 ~ 26.1 µg/L, - 10.5 to + 6.0‰, and - 10.4 to + 9.2‰ in Qixiangcuo Lake and 194.4 ~ 728.1 µg/L, + 5.8 ~ + 8.8‰, and - 1.9 to + 2.4‰ in its inflow rivers, respectively. The NO3- concentrations and δ15N - NO3- values were significantly lower in Qixiangcuo Lake than in its inflow rivers (P < 0.05). (2) The main sources of nitrate in both surface water and bottom water of Qixiangcuo Lake were ammonium in atmospheric deposition (mean probability estimate (MPE) 41.0% and 32.2%, respectively) and livestock manure (MPE 28.9% and 21.7%, respectively). The main sources of nitrate in the inflow rivers of Qixiangcuo Lake were domestic sewage (MPE 35.7%) and livestock manure (MPE 29.6%). (3) The main nitrogen transformation process in Qixiangcuo Lake was nitrification. The conservative mixing of multiple sources controlled the nitrate concentration and isotopic composition of Qixiangcuo Lake. Improvement in grazing area planning and the installation of sewage treatment facilities are effective measures to prevent eutrophication in Qixiangcuo Lake and its inflow rivers.


Asunto(s)
Nitratos , Contaminantes Químicos del Agua , Humanos , Isótopos de Nitrógeno/análisis , Nitratos/análisis , Aguas del Alcantarillado , Lagos/química , Estiércol , Tibet , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Nitrógeno/análisis , Ríos/química , Agua , China
9.
Ecotoxicol Environ Saf ; 249: 114434, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38321656

RESUMEN

Nitrate pollution in groundwater is a global environmental concern. As a result, accurate identification of potential sources for such pollution is of critical significance to the effective control of groundwater quality. In this study, forty-nine shallow groundwater samples were collected from the Huaibei mining area. Hydro-chemical characterization, geospatial analysis technique, dual nitrate isotopes (δ15N-NO3- and δ18O-NO3-), Bayesian model and health risk assessment model were adopted for exploring the conditions, sources, proportion, and potential health risks of nitrate pollution for the first time in the study area. The results showed that the nitrate concentration ranged from 0.00 to 293.21 mg/L, and that 18.37% groundwater samples exceeded the standard of drinking water in China (GB 5749-2006). Based on the dual isotopic values of nitrate, it could be concluded that nitrification was dominated migration and transformation process of nitrogen. The results of Bayesian model showed that the proportional contributions of the potential nitrate pollution sources in shallow groundwater were manure and sewage (M&S) (39.54 %), NH4+ in fertilizer and precipitation (NHF&P) (34.93 %), soil nitrogen (SN) (14.89 %), and NO3- in atmospheric deposition (NAD) (10.64 %). The health risk assessment indicated that non-carcinogenic risks posed by NO3--N was higher for children than adults. The primary exposure pathway was oral ingestion. Monte Carlo simulation were applied to evaluate model uncertainty. The probabilities of non-carcinogenic risks were up to 12.54 % for children and 5.22 % for adults. In order to protect water quality and drinking water safety, it was suggested that effective nitrate reduction strategies and better management practices can be implemented.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Niño , Humanos , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Teorema de Bayes , Agua Potable/análisis , Método de Montecarlo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Agua Subterránea/química , China , Calidad del Agua
10.
Environ Sci Technol ; 56(13): 9335-9345, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35731141

RESUMEN

Excess nitrate (NO3-) loading in terrestrial and aquatic ecosystems can result in critical environmental and health issues. NO3--rich groundwater has been recorded in the Guanzhong Plain in the Yellow River Basin of China for over 1000 years. To assess the sources and fate of NO3- in the vadose zone and groundwater, numerous samples were collected via borehole drilling and field surveys, followed by analysis and stable NO3- isotope quantification. The results demonstrated that the NO3- concentration in 38% of the groundwater samples exceeded the limit set by the World Health Organization. The total NO3- stock in the 0-10 m soil profile of the orchards was 3.7 times higher than that of the croplands, suggesting that the cropland-to-orchard transition aggravated NO3- accumulation in the deep vadose zone. Based on a Bayesian mixing model applied to stable NO3- isotopes (δ15N and δ18O), NO3- accumulation in the vadose zone was predominantly from manure and sewage N (MN, 27-54%), soil N (SN, 0-64%), and chemical N fertilizer (FN, 4-46%). MN was, by far, the greatest contributor to groundwater NO3- (58-82%). The results also indicated that groundwater NO3- was mainly associated with the soil and hydrogeochemical characteristics, whereas no relationship with modern agricultural activities was observed, likely due to the time delay in the thick vadose zone. The estimated residence time of NO3- in the vadose zone varied from decades to centuries; however, NO3- might reach the aquifer in the near future in areas with recent FN loading, especially those under cropland-to-orchard transition or where the vadose zone is relatively thin. This study suggests that future agricultural land-use transitions from croplands to orchards should be promoted with caution in areas with shallow vadose zones and coarse soil texture.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Teorema de Bayes , China , Ecosistema , Monitoreo del Ambiente/métodos , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Suelo , Contaminantes Químicos del Agua/análisis
11.
J Environ Manage ; 316: 115265, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35576711

RESUMEN

Researchers have long been committed to identify nitrate sources in groundwater and to develop an advanced technique for its remediation because better apply remediation solution and management of water quality is highly dependent on the identification of the NO3- sources contamination in water. In this review, we systematically introduce nitrate source tracking tools used over the past ten years including dual isotope and multi isotope techniques, water chemistry profile, Bayesian mixing model, microbial tracers and land use/cover data. These techniques can be combined and exploited to track the source of NO3- as mineral or organic fertilizer, sewage, or atmospheric deposition. These available data have significant implications for making an appropriate measures and decisions by water managers. A continuous remediation strategy of groundwater was among the main management strategies that need to be applied in the contaminated area. Nitrate removal from groundwater can be accomplished using either separation or reduction based process. The application of these processes to nitrate removal is discussed in this review and some novel methods were presented for the first time. Moreover, the advantages and limitations of each approach are critically summarized and based on our own understanding of the subject some solutions to overcomes their drawbacks are recommended. Advanced techniques are capable to attain significantly higher nitrate and other co-contaminants removal from groundwater. However, the challenges of by-products generation and high energy consumption need to be addressed in implementing these technologies for groundwater remediation for potable use.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Teorema de Bayes , Monitoreo del Ambiente/métodos , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Óxidos de Nitrógeno , Contaminantes Químicos del Agua/análisis
12.
Sci Total Environ ; 838(Pt 1): 155680, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35525348

RESUMEN

Urban storm runoff, as the primary transport medium for nutrients entering urban rivers, contributes to urban water contamination. Accurate source identification is critical for controlling water pollution. Although some studies have used nitrate isotopic composition (δ15N-NO3- and δ18O-NO3-) to identify nitrate (NO3--N) in urban storm runoff, the relatively low frequency of collecting samples in surface runoff within a single functional area hinders the understanding of spatial variations and dynamic process of NO3--N sources over the runoff process. This study investigated the nitrogen (N) concentrations and analyzed dynamic changes of NO3--N sources in surface runoff in different urban functional areas, drainage pipeline runoff, and channels during the complete runoff process in Wuxi, east China. The results showed that N concentrations in pipeline runoff and channels were higher than those in surface runoff, indicating that high concentration of N pollutants were accumulated in drainage pipelines. Information of δ15N-NO3- and δ18O-NO3- suggested that the main NO3--N source varied between runoff stages. NO3--N contribution from atmospheric deposition decreased in the order: surface runoff (57%) > residential pipeline runoff (25%) > channels (14%), while the opposite trend was observed for the contributions from sewage, increasing from 10%, 26% to 39%. In urban storm runoff, more sewage, fertilizers, and soil N were carried into the surface runoff after 30% of cumulative runoff ratio and carried into pipeline runoff in the initial 25% of cumulative runoff ratio in the residential area. As the first attempt to identify nitrate sources over the cumulative runoff in different urban functional areas, this work expands our understanding of the primary nitrate source in urban storm runoff. The findings provide important insights for developing strategies to mitigate non-point source water pollution.


Asunto(s)
Nitratos , Contaminantes Químicos del Agua , Teorema de Bayes , China , Monitoreo del Ambiente/métodos , Nitratos/análisis , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Isótopos de Oxígeno/análisis , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis
13.
Mar Pollut Bull ; 177: 113486, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35279546

RESUMEN

Although internal decomposition of organic matter (OM) in the Kuroshio Subsurface Water (KSSW) is a crucial factor for hypoxia formation in the East China Sea (ECS), the seasonal source and contributions of this OM remain debated. This study applied datasets collected in June and October 2015 to discuss these issues qualitatively and quantitatively. According to the variations in several parameters along the KSSW route, N2 fixation signals related to decomposed OM were apparent in the southern ECS during June, while terrestrial input signals were revealed in the northern ECS during June and most of the ECS during October. The terrestrial input contributed 47% of the decomposed OM near the historic hypoxic area in June, indicating that the terrestrial and marine sources contributed almost equally to the development of ECS hypoxia. These results provide vital information for understanding the mechanism of hypoxia formation driven by eutrophication and oceanic circulation.


Asunto(s)
Eutrofización , Agua , China , Humanos , Hipoxia , Océanos y Mares
14.
Water Res ; 214: 118205, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35220064

RESUMEN

Internal water storage (IWS), a below-grade saturated layer, is a bioretention design component created by adjusting the underdrain outlet elevation. Anaerobic conditions and the presence of a carbon source in IWS facilitates denitrification. Yet it remains unclear how underdrain height within the IWS impacts nitrate (NO3-) removal. This study applied synthetic stormwater with NO3- to three laboratory columns with underdrains located at the bottom, middle, or top of a 32 cm thick gravel-woodchip IWS. Under steady state conditions, underdrain nitrogen removal demonstrated a positive linear relationship with increasing hydraulic residence time (HRT). For a 1 cm/h hydraulic loading rate (HLR), nitrogen removal efficiency increased from 52 to 99% as underdrain height moved from the top to the bottom. Despite identical IWS thickness across columns, immobilize zones below the middle and top underdrains limited the steady state nitrogen removal. Dual isotopes in NO3- also indicated denitrification occurred in mobile zones and showed little or no denitrification in immobile zones due to limited mass transport. Transient flow conditions were applied, to mimic storms, followed by dry conditions. Lower effluent nitrogen concentrations and mass fluxes were observed from the bottom underdrain across the range of HLRs tested (1 to 5 cm/h) but performance of all three underdrains converged after the application of one pore volume. The top underdrain enhanced mixing between new incoming low-DOC stormwater and old IWS water with high-DOC which minimized effluent DOC concentrations. NO3- isotope enrichment factors indicated denitrification during transient flow for all three underdrain heights and enrichment increased for the 5 cm/h HLR. For sites with narrow IWS geometries (width to depth ratio < 1), optimal underdrain height is likely located between the bottom and top of the IWS to promote mixing with old IWS water high in DOC and sustain denitrification during storms.

15.
Environ Pollut ; 298: 118852, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35033617

RESUMEN

Groundwater nitrate (NO3-) pollution is a worldwide environmental problem. Therefore, identification and partitioning of its potential sources are of great importance for effective control of groundwater quality. The current study was carried out to identify the potential sources of groundwater NO3- pollution and determine their apportionment in different land use/land cover (LULC) types in a traditional agricultural area, Weining Plain, in Northwest China. Multiple hydrochemical indices, as well as dual NO3- isotopes (δ15N-NO3 and δ18O-NO3), were used to investigate the groundwater quality and its influencing factors. LULC patterns of the study area were first determined by interpreting remote sensing image data collected from the Sentinel-2 satellite, then the Bayesian stable isotope mixing model (MixSIAR) was used to estimate proportional contributions of the potential sources to groundwater NO3- concentrations. Groundwater quality in the study area was influenced by both natural and anthropogenic factors, with anthropological impact being more important. The results of LULC revealed that the irrigated land is the dominant LULC type in the plain, covering an area of 576.6 km2 (57.18% of the total surface study area of the plain). On the other hand, the results of the NO3- isotopes suggested that manure and sewage (M&S), as well as soil nitrogen (SN), were the major contributors to groundwater NO3-. Moreover, the results obtained from the MixSIAR model showed that the mean proportional contributions of M&S to groundwater NO3- were 55.5, 43.4, 21.4, and 78.7% in the forest, irrigated, paddy, and urban lands, respectively. While SN showed mean proportional contributions of 29.9, 43.4, 61.5, and 12.7% in the forest, irrigated, paddy, and urban lands, respectively. The current study provides valuable information for local authorities to support sustainable groundwater management in the study region.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Teorema de Bayes , China , Monitoreo del Ambiente , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis
16.
Environ Pollut ; 299: 118822, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35016981

RESUMEN

Nitrate pollution in oxygenated karst aquifers is common due to nitrification and anthropogenic inputs. However, the shift of nitrogen sources influenced by enhanced rural tourism activities and land use changes are not well understood. In this study, hydrochemistry and dual nitrate isotopes of water samples from a rural karst basin in Chongqing, southwestern China were employed to investigate the nitrate fate and its decadal change during the periods from 2007-2008 and 2017-2019. The results showed that δ15N-NO3 and δ18O-NO3 values at the groundwater basin resurgence averaged 9 ± 3.4‰ and 2.5 ± 3.4‰, respectively, with a mean NO3- concentration of 19.7 ± 5.4 mg/L in 2017-2019, clearly exceeding natural background levels. The dual isotope results suggested that nitrification occurred at the sampled sites. From 2007-2008 to 2017-2019, the mean δ15N-NO3 values from the primary sink point and the resurgence of the underground river water samples increased from -0.2 ± 2.1 to 11.2 ± 4.8‰, 4.2 ± 0.9 to 9.0 ± 3.4‰, respectively. A Bayesian mixing model in R (MixSIAR) based on the isotopes revealed that soil organic nitrogen, and manure and sewage proportions for the groundwater increased by 34% and 23%, respectively, while chemical fertilizer and atmospheric precipitation proportions decreased by 32% and 25%, respectively. These decadal changes resulted from reforestation practices and enhanced rural tourism activities in the basin, which were evidenced by the change of land use patterns. The elevated nitrogen load from the rapid development of rural tourism is likely to increase this contamination in the near future if the infrastructure cannot meet the demands. The results from this study could contribute to minimizing environmental health risks in drinking water when rural tourism activities are increasing.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Teorema de Bayes , China , Monitoreo del Ambiente/métodos , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis
17.
J Hazard Mater ; 417: 126103, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-34229392

RESUMEN

Over the past few decades, the La Paz aquifer system in Baja California Sur, Mexico, has been under severe pressure due to overexploitation for urban water supply and agriculture; this has caused seawater intrusion and deterioration in groundwater quality. Previous studies on the La Paz aquifer have focused mainly on seawater intrusion, resulting in limited information on nitrate and sulfate pollution. Therefore, pollution sources have not yet been identified sufficiently. In this study, an approach combining hydrochemical tools, multi-isotopes (δ2HH2O, δ18OH2O, δ15NNO3, δ18ONO3, δ34SSO4, δ18OSO4), and a Bayesian isotope mixing model was used to estimate the contribution of different nitrate and sulfate sources to groundwater. Results from the MixSIAR model revealed that seawater intrusion and soil-derived sulfates were the predominant sources of groundwater sulfate, with contributions of ~43.0% (UI90 = 0.29) and ~42.0% (UI90 = 0.38), respectively. Similarly, soil organic nitrogen (~81.5%, UI90 = 0.41) and urban sewage (~12.1%, UI90 = 0.25) were the primary contributors of nitrate pollution in groundwater. The dominant biogeochemical transformation for NO3- was nitrification. Denitrification and sulfate reduction were discarded due to the aerobic conditions in the study area. These results indicate that dual-isotope sulfate analysis combined with MixSIAR models is a powerful tool for estimating the contributions of sulfate sources (including seawater-derived sulfate) in the groundwater of coastal aquifer systems affected by seawater intrusion.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Teorema de Bayes , Monitoreo del Ambiente , México , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Agua de Mar , Sulfatos , Contaminantes Químicos del Agua/análisis
18.
J Contam Hydrol ; 241: 103813, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33906024

RESUMEN

Nitrate contamination of groundwater remains a major concern despite all the measures and efforts undertaken over the last decades to protect water resources. We focused on a small catchment in Brittany (France) facing nitrate pollution with concentrations over the European drinking water standard of 50 mg.L-1. This is a common situation in catchments where - supposedly effective - measures were applied for reducing the transfer of N to groundwater. At the scale of this small (~100 ha) basement aquifer, nitrate concentrations are very heterogeneous in the groundwater, sampled up to 15-20 m below the soil surface in several observation wells (hereafter referred as piezometers) and up to 110 m deep in a borehole drilled through a faulted area near the Spring (outlet of the catchment). We used complementary and robust approaches for exploring and constraining the driving parameters of nitrate transfer and distribution in groundwater. Detailed geological work and a geophysical electrical resistivity tomography survey identified the lithologies, tectonic structures and weathering layers. This highlighted a complex geological structure with several compartments delimited by faults, as well as the highly variable thickness of the weathered layer. It also illustrated the heterogeneity of the hydrosystem, some compartments appearing to be disconnected from the general groundwater flow. This was confirmed by geochemical analyses and by the mean apparent groundwater residence time based on CFCs-SF6 and noble-gas analyses, locally revealing old and nitrate-free groundwater, and very old water with a recharge temperature below than the current average temperature in the area, reflecting water dating back to the last period of glaciation (-19 to -17 ky). Nitrate isotopes clearly showed denitrification processes in a few piezometers, which was generally supported by microbiology and molecular biology results. This highlighted the presence of functional genes involved in denitrification as well as a capacity of the groundwater microbial community to denitrify when in situ conditions are favourable. This type of combined approach - covering chemistry, isotopic methods, dissolved gases, microbiological activity, geophysics and hydrogeology - appears to be indispensable for implementing the most relevant programme of measures and for accurately assessing their effectiveness, notably by considering the timeframe between implementation of the measures and their impact on groundwater quality.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Isótopos , Nitratos/análisis , Contaminantes Químicos del Agua/análisis
19.
Water Res ; 191: 116814, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33461081

RESUMEN

Time lags between anthropogenic nitrogen inputs and their impacts to nitrate levels cause a misunderstanding for sources and subsequently misguide the groundwater management.We investigated the hydrochemical data of groundwater samples (n = 172 from 49 wells) with chlorofluorocarbons (CFCs)-based groundwater age dating and stable N (δ15N) and O isotopes (δ18O) of nitrate to assess the legacy effect of livestock farming to groundwater in an agricultural area where intensive livestock farming started in the 1970s and illegal dumping of manure wastewater in a lava cave was revealed in 2015. Approximately 90% of the groundwater samples had nitrate concentrations exceeding the natural threshold (5.5 mg/L NO3-) for nitrate contamination and 34% exceeded the World Health Organization's guideline for drinking water quality (44.3 mg/L), indicating severe nitrate contamination. The δ15NNO3 values (5.5 to 24.3‰) in groundwater exceeding the threshold of nitrate showed that livestock manure was a major nitrate source, while ammonium fertilizer also seemed influential given the δ15NNO3 values in the overlapping fields of N sources. Factor analysis of hydrochemical data also supported nitrate contamination by manure as well as by plant farming in the study area. Based on the spatial distribution of nitrate levels and δ15NNO3, livestock farming affected nitrate contamination by illegal manure dumping in the leakage cave. According to a Bayesian mixing model, the contribution of manure wastewater was 33.5 to 81.8% as of 2015-2018, with the rest from fertilizers. Meanwhile, the groundwater ages showed negative correlations with both nitrate levels (r = -0.90) and δ15NNO3 values (r = -0.74) on a log scale, consistent with the increasing N release from livestock farming since the 1960s. In particular, the median value of δ15NNO3 rapidly increased to 9.2‰ in groundwater recharged between the late 1970s and early 1990s when N production exponentially increased, implying a significant effect of livestock farming after the 1980s. Groundwater quality is expected to deteriorate over the next several decades based on the groundwater ages (> 23.5 years), the increased N production from livestock farming, and the legacy effect of N. Long-term groundwater management plans (> 25 years) are required to decrease N loads in the study area, because it takes time for management practices to take effect. The study results are a good reference for groundwater management in regions with a source shift to livestock farming under intensive livestock production systems. Moreover, the chronological study using historical N production, groundwater age data, and dual nitrate isotopes can be applied to other regions with multiple N sources and their shifting for identifying sources and estimating time lags.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Agricultura , Animales , Teorema de Bayes , Monitoreo del Ambiente , Ganado , Nitratos/análisis , Isótopos de Nitrógeno/análisis , República de Corea , Agua , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
20.
Sci Total Environ ; 741: 140374, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32886971

RESUMEN

Nitrate (NO3-) is one of the most widespread contaminants in groundwater primarily due to agricultural activities utilizing N-containing fertilizers and the presence of animal wastes. Hydrochemical and nitrate isotope data (δ15N-NO3- and δ18O-NO3-) from the unconfined aquifer in the urban area of Del Campillo city and its surrounding rural area with different land-use types, i.e. individual sanitation systems, agricultural areas and livestock breeding facilities, were generated to investigate the impact of nitrogen pollution sources and to assess N-biogeochemical processes. The Principal Component Analysis of hydrochemical and isotopic data were used to compare the factors that control the groundwater quality and particularly the nitrate concentrations in the urban and the rural area. The results showed that nitrate pollution in the urban area of Del Campillo city originated mainly from the on-site sanitation systems and/or animal domestic wastes, whereas in the rural area nitrate pollution was mostly attributed to a combination of urea-based fertilizers and manure from livestock breeding activities. The aquifer is under oxic to suboxic conditions in the rural area and becomes suboxic in the urban area where the higher supply of organic matter consumes oxygen. As a result, denitrification was more significant in the urban area compared to the rural area, as evidenced by the higher N and O isotope enrichment factor (ε). This work will be used to benchmark the current nitrate contamination status in the region and evaluate effective planning of environmental measures and remediation strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA