RESUMEN
This study investigates the potential of humic substances (HS) and graphene oxide (GO), as extracellular electron acceptors (EEA) for nitrification, aiming to explore alternatives to sustain this process in wastewater treatment systems. Experimental results demonstrate the conversion of ammonium to nitrate (up to 87 % of conversion) coupled to the reduction of either HS or GO by anaerobic consortia. Electron balance confirmed the contribution of HS and GO to ammonium oxidation. Tracer analysis in incubations performed with 15NH4+ demonstrated 15NO3- as the main product with a minor fraction ending as 29N2. Phylogenetic analysis identified Firmicutes, Euryarchaeota, and Chloroflexi as the microbial lineages potentially involved in anoxic nitrification linked to HS reduction. This study introduces a new avenue for research in which carbon-based materials with electron-accepting capacity may support the anoxic oxidation of ammonium, for instance in bioelectrochemical systems in which carbon-based anodes could support this novel process.
Asunto(s)
Carbono , Nitrificación , Carbono/química , Electrones , Grafito/química , Filogenia , Oxidación-Reducción , Compuestos de Amonio/metabolismo , Anaerobiosis , Nitratos/metabolismo , Bacterias/metabolismoRESUMEN
Microbial communities respond to changes in environmental conditions; however, how compositional shifts affect ecosystem processes is still not well-understood and it is often assumed that different microbial communities will function equally under similar environmental conditions. We evaluated this assumption of functional redundancy using biological soil crusts (BSCs) from two arid ecosystems in Mexico with contrasting climate conditions (hot and cold deserts) following an experimental approach both in the field (reciprocal transplants) and in laboratory conditions (common garden), focusing on the community's composition and potential for nitrogen fixation. Potential of nitrogen fixation was assessed through the acetylene reduction assay. Community composition and diversity was determined with T-RFLPs of nifH gene, high throughput sequencing of 16S rRNA gene amplicons and metagenomic libraries. BSCs tended to show higher potential nitrogen fixation rates when experiencing temperatures more similar to their native environment. Moreover, changes in potential nitrogen fixation, taxonomic and functional community composition, and diversity often depended on an interactive effect of origin of the communities and the environment they experienced. We interpret our results as legacy effects that result from ecological specialization of the BSC communities to their native environment. Overall, we present evidence of nonfunctional redundancy of BSCs in terms of nitrogen fixation.
Asunto(s)
Cianobacterias , Microbiota , Ecosistema , Fijación del Nitrógeno , Cianobacterias/genética , Clima Desértico , Suelo , ARN Ribosómico 16S/genética , Microbiología del Suelo , Microbiota/genética , NitrógenoRESUMEN
Arid ecosystems cover â¼40% of the Earth's terrestrial surface and store a high proportion of the global nitrogen (N) pool. They are low-productivity, low-biomass, and polyextreme ecosystems, i.e., with (hyper)arid and (hyper)oligotrophic conditions and high surface UV irradiation and evapotranspiration. These polyextreme conditions severely limit the presence of macrofauna and -flora and, particularly, the growth and productivity of plant species. Therefore, it is generally recognized that much of the primary production (including N-input processes) and nutrient biogeochemical cycling (particularly N cycling) in these ecosystems are microbially mediated. Consequently, we present a comprehensive survey of the current state of knowledge of biotic and abiotic N-cycling processes of edaphic (i.e., open soil, biological soil crust, or plant-associated rhizosphere and rhizosheath) and hypo/endolithic refuge niches from drylands in general, including hot, cold, and polar desert ecosystems. We particularly focused on the microbially mediated biological nitrogen fixation, N mineralization, assimilatory and dissimilatory nitrate reduction, and nitrification N-input processes and the denitrification and anaerobic ammonium oxidation (anammox) N-loss processes. We note that the application of modern meta-omics and related methods has generated comprehensive data sets on the abundance, diversity, and ecology of the different N-cycling microbial guilds. However, it is worth mentioning that microbial N-cycling data from important deserts (e.g., Sahara) and quantitative rate data on N transformation processes from various desert niches are lacking or sparse. Filling this knowledge gap is particularly important, as climate change models often lack data on microbial activity and environmental microbial N-cycling communities can be key actors of climate change by producing or consuming nitrous oxide (N2O), a potent greenhouse gas.
Asunto(s)
Ecosistema , Microbiota , Nitrificación , Nitrógeno , Ciclo del Nitrógeno , Plantas , Suelo , Microbiología del SueloRESUMEN
The Brazilian savanna (Cerrado) has been extensively converted to croplands, pastures and forestry plantations, and the deforestation frontier continues expanding. Land conversion may cause critical changes in soil functioning, yet very little is still known about the impact of Cerrado conversion on nutrient cycling and soil fertility. Here, we addressed this knowledge gap by investigating the effects of the woodland cerrado (cerradão) conversion into pastures and Eucalyptus plantations on nitrogen availability and mineralization potential, considering a wide range of spatial and temporal variability due to soil depth, site conditions, and seasonal variation. For three sites in São Paulo state and each of the target land cover types, we assessed the total N and inorganic N (NH4-N and NO3-N) pools, potentially mineralizable nitrogen (PMN) and soil urease activity in the first 2 m of the soil profile. Cerrado conversion to either pastures or Eucalyptus plantations significantly reduced NH4-N, while NO3-N showed similar values in Cerrado and Eucalyptus and lower values in pastures. We found a consistent pattern of lower N mineralization in the uppermost soil layers associated to Cerrado conversion, with decreases in PMN rate and urease activity. The soil below 30 cm depth showed no relevant changes. Considering the first 30 cm of the soil profile, the reduction in the stocks of inorganic N (NH4-N + NO3-N) ranged from ~14% for the conversion to Eucalyptus to â½20% for the conversion to pasture. The impact of land conversion on N cycling surpassed the influence of the spatial (between-site) and seasonal variation. Overall, the results indicate a decline in available N and overall soil fertility due to Cerrado conversion, which could further increase N limitation in the Cerrado region, increase fertilization needs for future exploitation, and compromise the recovery of Cerrado in case of land abandonment or restoration.
Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Ecosistema , Monitoreo del Ambiente , Eucalyptus , Nitrógeno/análisis , Brasil , Agricultura Forestal , Bosques , Pradera , SueloRESUMEN
Anthropogenic nitrogen deposition is currently causing a more than twofold increase of reactive nitrogen input over large areas in the tropics. Elevated (15)N abundance (δ(15)N) in the growth rings of some tropical trees has been hypothesized to reflect an increased leaching of (15)N-depleted nitrate from the soil, following anthropogenic nitrogen deposition over the last decades. To find further evidence for altered nitrogen cycling in tropical forests, we measured long-term δ(15)N values in trees from Bolivia, Cameroon, and Thailand. We used two different sampling methods. In the first, wood samples were taken in a conventional way: from the pith to the bark across the stem of 28 large trees (the "radial" method). In the second, δ(15)N values were compared across a fixed diameter (the "fixed-diameter" method). We sampled 400 trees that differed widely in size, but measured δ(15)N in the stem around the same diameter (20 cm dbh) in all trees. As a result, the growth rings formed around this diameter differed in age and allowed a comparison of δ(15)N values over time with an explicit control for potential size-effects on δ(15)N values. We found a significant increase of tree-ring δ(15)N across the stem radius of large trees from Bolivia and Cameroon, but no change in tree-ring δ(15)N values over time was found in any of the study sites when controlling for tree size. This suggests that radial trends of δ(15)N values within trees reflect tree ontogeny (size development). However, for the trees from Cameroon and Thailand, a low statistical power in the fixed-diameter method prevents to conclude this with high certainty. For the trees from Bolivia, statistical power in the fixed-diameter method was high, showing that the temporal trend in tree-ring δ(15)N values in the radial method is primarily caused by tree ontogeny and unlikely by a change in nitrogen cycling. We therefore stress to account for tree size before tree-ring δ(15)N values can be properly interpreted.