Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Microbiol Spectr ; 11(1): e0209622, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36475917

RESUMEN

Bradyrhizobium guangxiense CCBAU53363 efficiently nodulates peanut but exhibits incompatible interaction with mung bean. By comparing the common nod region with those of other peanut bradyrhizobia efficiently nodulating these two hosts, distinctive characteristics with a single nodD isoform (nodD1) and a truncated nolA were identified. However, the regulatory roles of NodD1 and NolA and their coordination in legume-bradyrhizobial interactions remain largely unknown in terms of explaining the contrasting symbiotic compatibility. Here, we report that nolA was important for CCBAU53363 symbiosis with peanut but restricted nodulation on mung bean, while nodD1 was dispensable for CCBAU53363 symbiosis with peanut but essential for nodulation on mung bean. Moreover, nolA exerted a cumulative contribution with nodD1 to efficient symbiosis with peanut. Additionally, mutants lacking nolA delayed nodulation on peanut, and both nolA and nodD1 were required for competitive nodule colonization. It is noteworth that most of the nodulation genes and type III secretion system (T3SS)-related genes were significantly downregulated in a strain 53ΔnodD1nolA mutant compared to wild-type strain CCBAU53363, and the downregulated nodulation genes also had a greater impact than T3SS-related genes on the symbiotic defect of 53ΔnodD1nolA on peanut, which was supported by a more severe symbiotic defect induced by 53ΔnodC than that with the 53ΔnodD1nopP, 53ΔnodD1rhcJ, and 53ΔnodD1ttsI mutants. NolA did not regulate nod gene expression but did regulate the T3SS effector gene nopP in an indirect way. Meanwhile, nolA, nodW, and some T3SS-related genes besides nopP were also demonstrated as new "repressors" that seriously impaired CCBAU53363 symbiosis with mung bean. Taken together, the roles and essentiality of nolA and nodD1 in modulating symbiotic compatibility are sophisticated and host dependent. IMPORTANCE The main findings of this study were that we clarified that the roles and essentiality of nodD1 and nolA are host dependent. Importantly, for the first time, NolA was found to positively regulate T3SS effector gene nopP to mediate incompatibility on mung bean. Additionally, NolA does not regulate nod genes, which are activated by NodD1. nolA exerts a cumulative effect with nodD1 on CCBAU53363 symbiosis with peanut. These findings shed new light on our understanding of coordinated regulation of NodD1 and NolA in peanut bradyrhizobia with different hosts.


Asunto(s)
Fabaceae , Vigna , Arachis/metabolismo , Simbiosis , Proteínas Bacterianas/genética
2.
Front Plant Sci ; 14: 1322435, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38186594

RESUMEN

Introduction: The establishment of the rhizobium-legume nitrogen-fixing symbiosis relies on the interchange of molecular signals between the two symbionts. We have previously studied by RNA-seq the effect of the symbiotic regulators NodD1, SyrM, and TtsI on the expression of the symbiotic genes (the nod regulon) of Sinorhizobium fredii HH103 upon treatment with the isoflavone genistein. In this work we have further investigated this regulatory network by incorporating new RNA-seq data of HH103 mutants in two other regulatory genes, nodD2 and nolR. Both genes code for global regulators with a predominant repressor effect on the nod regulon, although NodD2 acts as an activator of a small number of HH103 symbiotic genes. Methods: By combining RNA-seq data, qPCR experiments, and b-galactosidase assays of HH103 mutants harbouring a lacZ gene inserted into a regulatory gene, we have analysed the regulatory relations between the nodD1, nodD2, nolR, syrM, and ttsI genes, confirming previous data and discovering previously unknown relations. Results and discussion: Previously we showed that HH103 mutants in the nodD2, nolR, syrM, or ttsI genes gain effective nodulation with Lotus japonicus, a model legume, although with different symbiotic performances. Here we show that the combinations of mutations in these genes led, in most cases, to a decrease in symbiotic effectiveness, although all of them retained the ability to induce the formation of nitrogen-fixing nodules. In fact, the nodD2, nolR, and syrM single and double mutants share a set of Nod factors, either overproduced by them or not generated by the wild-type strain, that might be responsible for gaining effective nodulation with L. japonicus.

3.
Microorganisms ; 10(1)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35056588

RESUMEN

Rhizobial NodD proteins and appropriate flavonoids induce rhizobial nodulation gene expression. In this study, we show that the nodD1 gene of Sinorhizobium fredii HH103, but not the nodD2 gene, can restore the nodulation capacity of a double nodD1/nodD2 mutant of Rhizobium tropici CIAT 899 in bean plants (Phaseolus vulgaris). S. fredii HH103 only induces pseudonodules in beans. We have also studied whether the mutation of different symbiotic regulatory genes may affect the symbiotic interaction of HH103 with beans: ttsI (the positive regulator of the symbiotic type 3 protein secretion system), and nodD2, nolR and syrM (all of them controlling the level of Nod factor production). Inactivation of either nodD2, nolR or syrM, but not that of ttsI, affected positively the symbiotic behavior of HH103 with beans, leading to the formation of colonized nodules. Acetylene reduction assays showed certain levels of nitrogenase activity that were higher in the case of the nodD2 and nolR mutants. Similar results have been previously obtained by our group with the model legume Lotus japonicus. Hence, the results obtained in the present work confirm that repression of Nod factor production, provided by either NodD2, NolR or SyrM, prevents HH103 to effectively nodulate several putative host plants.

4.
Microbiol Res ; 237: 126488, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32408049

RESUMEN

The symbiosis of soybean with Bradyrhizobium diazoefficiens USDA110, which always competes with other rhizobia in the field, is of great agronomic and environmental importance. Herein, a dual-luciferase reporter assay was utilized to monitor the dynamics of two dominant bradyrhizobia infecting roots of soybean. More explicitly, luciferase-tagged B. diazoefficiens USDA110 (USDA110-FLuc) and Bradyrhizobium elkanii USDA 94 (USDA94-RLuc) were designed, co-inoculated into soybean seeds, and observed for their colonization in root nodules by bioluminescence imaging. The results showed that USDA110-FLuc initiated infection earlier than USDA94-RLuc, but its occupancy in the nodules decreased as the plant grew. A nodulation test showed that nodD1 mutant USDA110 strains, including CRISPR engineered mutants, were less competitive than wild type. I constructed siRNAs to knockdown nodD1 at different target sites and transformed them into the bacteria. Surprisingly, although siRNAs - with 3' end target sites - were able to repress up to 65% of nodD1 expression, the profiling of total RNAs with a bioanalyzer revealed that 23S/16S-rRNA ratios of siRNA-transformed and wild type USDA110 strains were similar, but lower than that of nodD1 mutant. In short, the current work - while reporting the competitiveness of B. diazoefficiens USDA110 in early occupancy of soybean nodules and the gene nodD1 as a key determinant of this infection - gives an insight on siRNA silencing in microbes, and demonstrates a highly efficient imaging approach that could entail many new avenues for many biological research fields.


Asunto(s)
Proteínas Bacterianas/genética , Bradyrhizobium/genética , Glycine max/microbiología , Nodulación de la Raíz de la Planta , Sistemas CRISPR-Cas , Colorantes Fluorescentes/análisis , Genes Bacterianos , Luciferasas de Renilla , Fijación del Nitrógeno/genética , Desarrollo de la Planta , Raíces de Plantas/microbiología , ARN Interferente Pequeño , Microbiología del Suelo , Simbiosis , Transformación Bacteriana
5.
Genet. mol. biol ; 40(3): 703-716, July-Sept. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-892430

RESUMEN

Abstract A successful symbiotic relationship between soybean [Glycine max (L.) Merr.] and Bradyrhizobium species requires expression of the bacterial structural nod genes that encode for the synthesis of lipochitooligosaccharide nodulation signal molecules, known as Nod factors (NFs). Bradyrhizobium diazoefficiens USDA 110 possesses a wide nodulation gene repertoire that allows NF assembly and modification, with transcription of the nodYABCSUIJnolMNOnodZ operon depending upon specific activators, i.e., products of regulatory nod genes that are responsive to signaling molecules such as flavonoid compounds exuded by host plant roots. Central to this regulatory circuit of nod gene expression are NodD proteins, members of the LysR-type regulator family. In this study, publicly available Bradyrhizobium elkanii sequenced genomes were compared with the closely related B. diazoefficiens USDA 110 reference genome to determine the similarities between those genomes, especially with regards to the nod operon and nod regulon. Bioinformatics analyses revealed a correlation between functional mechanisms and key elements that play an essential role in the regulation of nod gene expression. These analyses also revealed new genomic features that had not been clearly explored before, some of which were unique for some B. elkanii genomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA