Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 824
Filtrar
1.
J Pharm Sci ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218154

RESUMEN

Erosion of biodegradable polymeric excipients, such as polylactic acid (PLA) and polylactic-co-glycolic acid (PLGA), is generally characterized by microbalance for the remaining mass of PLA and/or PLGA and Gel Permeation Chromatography (GPC) for molecular weight (MW) decrease. For polymer erosion studies of intravitreal sustained release brimonidine implants, however, both microbalance and GPC present several challenges. Mass loss measurement by microbalance does not have specificity for excipient polymers and drug substances. Accuracy of the remaining mass by weighing could also be low due to sample mass loss through retrieval-drying steps, especially at later drug release (DR) time points. When measuring the decrease of polymer MW by GPC, trace amounts of polymeric degradants (oligomers and/or monomers) trapped inside the implants during DR tests may not be measurable due to sensitivity limitations of the GPC detector and column MW range. Previous efforts to measure remained PLGA weight of dexamethasone micro-implants using qNMR with external calibration have been performed, however, these measurements do not account for chemical structure changes (i.e. LA to GA ratio changes from time zero) of PLGA implants during drug release tests. Here, a qNMR method with an internal standard was developed to monitor the following changes in micro-implants during drug release tests: 1. The remaining overall PLA/PLGA mass. 2. The remaining lactic acid (LA), glycolic acid (GA) unit and PLGA's lauryl ester end group percentages. 3. The trace content of PLA/PLGA oligomers as degradants retained in the implants. Unlike microbalance analysis, qNMR has both specificity for drug substance, excipient polymer, and accuracy due to minimal implant loss during sample preparation. Compared to the overall PLA/PLGA remaining mass generally monitored in erosion studies, the percentage of remaining LA, GA, and the ester end group provide more information about the microstructure change (such as hydrophobicity) of PLA/PLGA. Additionally, the qNMR method can complement GPC methods by measuring the change of remaining PLA and PLGA oligomer concentrations in brimonidine implants, with tenfold less sample and no MW cutoff. The qNMR method can be used as a sensitive tool for both polymer excipient characterization and kinetics studies of brimonidine implant erosion.

2.
ChemSusChem ; : e202401033, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222403

RESUMEN

Cathodic Electro Fermentation (CEF) is an innovative approach to manage the spectrum of products deriving from anaerobic fermentation. Herein, mixed microbial culture fermentation using a ternary mixture containing labelled 13C glucose and non-labelled acetate and ethanol was studied to identify the role of polarization on the metabolic pathways of glucose fermentation. CEF at an applied potential of -700 mV (vs. SHE, Standard Hydrogen Electrode) enhanced the production yield of acetate, propionate, and butyrate (0.90 ± 0.10, 0.22 ± 0.03, and 0.34 ± 0.05 mol/mol; respectively) compared to control tests performed at open circuit potential (OCP) (0.54 ± 0.09, 0.15 ± 0.04 and, 0.21 ± 0.001 mol/mol, respectively). Results indicate that CEF affected the 13C labelled fermented product levels and their fractional 13C enrichments, allowing to establish metabolic pathway models. This work demonstrates that, under cathodic polarization, the abundance of both fully 13C labelled propionate and butyrate isotopomers increased compared to control tests. The effect of CEF is mainly due to intermediates initially produced from the glucose metabolic transformation in the presence of non-labelled acetate and ethanol as external substrates. These findings represent a significant advancement in current knowledge of CEF, which offers a promising tool to control mixed cultures bioprocesses.

3.
Biomolecules ; 14(9)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39334902

RESUMEN

NMR utilization in fragment-based drug discovery requires techniques to detect weakly binding fragments and to subsequently identify cooperatively binding fragments. Such cooperatively binding fragments can then be optimized or linked in order to develop viable drug candidates. Similarly, ligands or substrates that bind macromolecules (including enzymes) in competition with the endogenous ligand or substrate are valuable probes of macromolecular chemistry and function. The lengthy and costly process of identifying competitive or cooperative binding can be streamlined by coupling computational biochemistry and spectroscopy tools. The Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP) method, previously developed by Snyder and co-workers, detects weakly binding ligands by analyzing pairs of diffusion spectra, obtained in the absence and the presence of a protein. We extended the CoLD-CoP method to analyze spectra pairs (each in the presence of a protein) with or without a critical ligand, to detect both competitive and cooperative binding.


Asunto(s)
Unión Proteica , Ligandos , Unión Competitiva , Proteínas/química , Proteínas/metabolismo , Descubrimiento de Drogas/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Espectroscopía de Resonancia Magnética/métodos
4.
J Biol Chem ; 300(10): 107746, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236875

RESUMEN

Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases. Cardiolipin, the signature phospholipid of the mitochondrion, affects proper cristae morphology, bioenergetic functions, and metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in tafazzin are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impacts metabolic flux through the TCA cycle and associated yeast pathways. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a WT strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through twelve metabolites. Several of the metabolites were specific to yeast pathways including branched chain amino acids and fusel alcohol synthesis. While most metabolites showed similar kinetics among the different strains, mevalonate concentrations were significantly increased in Δtaz1 mitochondria. Additionally, the kinetic profiles of α-ketoglutarate, as well as NAD+ and NADH measured in separate experiments, displayed significantly lower concentrations for Δtaz1 and Δcrd1 mitochondria at most time points. Taken together, the results show how cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.

5.
Int J Biol Macromol ; 280(Pt 4): 136074, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341314

RESUMEN

Zika virus (ZIKV) is an emergent flavivirus that represents a global public health concern due to its association with severe neurological disorders. NS2B is a multifunctional viral membrane protein primarily used to regulate viral protease activity and is crucial for virus replication, making it an appealing target for antiviral drugs. This study presents the structural elucidation of full-length ZIKV NS2B in sodium dodecyl sulfate (SDS) micelles using solution nuclear magnetic resonance experimental data and RosettaMP. The protein structure has four transmembrane α-helices, two amphipathic α-helices, and a ß-hairpin in the hydrophilic region. NS2B presented secondary and tertiary stability in different concentrations of SDS. Furthermore, we studied the dynamics of NS2B in SDS micelles through relaxation parameters and paramagnetic relaxation enhancement experiments. The findings were consistent with the structural calculations. Our work will be essential in understanding the role of NS2B in viral replication and screening for inhibitors against ZIKV.

6.
Pharmaceuticals (Basel) ; 17(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39204086

RESUMEN

The process of synthesizing radionuclide-coupled drugs, especially shutdown technology that links bipotent chelators with biomolecules, utilizes traditional coupling reactions, including emerging click chemistry; these reactions involve different drawbacks, such as complex and cumbersome reaction steps, long reaction times, and the use of catalysts at various pH values, which can negatively impact the effects of the chelating agent. To address the above problems in this study, This research designed a novel bipotent chelator coupled with peptides. In the present study, dichloromethane was used as a solvent, and the reaction was conducted at room temperature for 12 h. A one-step ring-opening method was employed to introduce the coupling functional group of tridentate amide acid. The coupling materials consisted of the amino active site of the peptide and diethylene glycol anhydride. In this paper, this study explored the reactions between different equivalents of acid anhydride coupled to the peptide (peptide sequence: HLRKLRKR) and determined that the maximum conversion of the peptide feedstock was 87%. To determine the selectivity of the reaction sites in this polypeptide, This study identified the peptide sequence at the reaction site using nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS). For the selected peptide, the first reactive site was on the terminal amino group, followed by the amino group on the tetra- and hepta-lysine side chains. The tridentate amic acid framework functions as a chelating agent, capable of binding a range of lanthanide ions. This significantly reduces and optimizes the time and cost associated with synthesizing radionuclide-coupled drugs.

7.
J Pharm Sci ; 113(10): 3065-3077, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122184

RESUMEN

A variable or non-stoichiometric hydrate of GDC-4379 was developed into a formulated capsule with a 1% drug loading. The water content of this hydrate varied from 0-0.7 moles over the relative humidity (RH) range of 0-98% (25°C). Since a variable state of hydration coupled with rapid equilibration of lattice water with the environmental RH can lead to challenges in formulation development, an analytical method to directly and accurately determine the state of hydration of the active in such a low dose formulation was deemed necessary. Owing to its high selectivity and fast acquisition times, 19F solid-state NMR was effectively utilized to directly determine the lattice water content of the active in the formulated capsule. By correlating Δδ, the chemical shift difference between the isotropic peaks, with the relative humidity and ultimately the lattice water content, the state of hydration of GDC-4379 in the formulated capsule was experimentally determined as 0.63 moles of water/mole of anhydrate.


Asunto(s)
Humedad , Espectroscopía de Resonancia Magnética , Agua , Espectroscopía de Resonancia Magnética/métodos , Agua/química , Cápsulas/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Flúor/química
8.
J Gen Appl Microbiol ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085095

RESUMEN

We have successfully isolated two novel compounds, 24R005A (1, C13H14O4) and 24R005B (2, C13H13ClO4), from Streptomyces sp. 24R005, using fish (anchovy) powder as a medium. In this study, we evaluated the use of fish (anchovy) powder as a fermentation material for producing bioactive compounds. Spectroscopic analyses revealed that the two compounds share a common skeletal structure. However, each compound contains unique branched side chains. Furthermore, compounds 1 and 2 exhibit moderate radical-scavenging activity for 1,1-diphenyl-2-picrylhydrazyl (DPPH), with ED50 values of 200 and 130 µM, respectively.

9.
Colloids Surf B Biointerfaces ; 242: 114071, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39002202

RESUMEN

Disc-like lipid nanoparticles stabilized by saponin biosurfactants display fascinating properties, including their temperature-driven re-organization. ß-Aescin, a saponin from seed extract of the horse chestnut tree, shows strong interactions with lipid membranes and has gained interest due to its beneficial therapeutic implications as well as its ability to decompose continuous lipid membranes into size-tuneable discoidal nanoparticles. Here, we characterize lipid nanoparticles formed by aescin and the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine. We present site-resolved insights into central molecular interactions and their modulations by temperature and aescin content. Using the membrane protein bacteriorhodopsin, we additionally demonstrate that, under defined conditions, aescin-lipid discs can accommodate medium-sized transmembrane proteins. Our data reveal the general capability of this fascinating system to generate size-tuneable aescin-lipid-protein particles, opening the road for further applications in biochemical, biophysical and structural studies.


Asunto(s)
Escina , Nanopartículas , Tamaño de la Partícula , Nanopartículas/química , Escina/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Temperatura , Dimiristoilfosfatidilcolina/química , Estabilidad Proteica , Liposomas
10.
J Biol Chem ; 300(8): 107551, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002671

RESUMEN

Isoforms of microtubule-associated protein 2 (MAP2) differ from their homolog Tau in the sequence and interactions of the N-terminal region. Binding of the N-terminal region of MAP2c (N-MAP2c) to the dimerization/docking domains of the regulatory subunit RIIα of cAMP-dependent protein kinase (RIIDD2) and to the Src-homology domain 2 (SH2) of growth factor receptor-bound protein 2 (Grb2) have been described long time ago. However, the structural features of the complexes remained unknown due to the disordered nature of MAP2. Here, we provide structural description of the complexes. We have solved solution structure of N-MAP2c in complex with RIIDD2, confirming formation of an amphiphilic α-helix of MAP2c upon binding, defining orientation of the α-helix in the complex and showing that its binding register differs from previous predictions. Using chemical shift mapping, we characterized the binding interface of SH2-Grb2 and rat MAP2c phosphorylated by the tyrosine kinase Fyn in their complex and proposed a model explaining differences between SH2-Grb2 complexes with rat MAP2c and phosphopeptides with a Grb2-specific sequence. The results provide the structural basis of a potential role of MAP2 in regulating cAMP-dependent phosphorylation cascade via interactions with RIIDD2 and Ras signaling pathway via interactions with SH2-Grb2.


Asunto(s)
Proteína Adaptadora GRB2 , Proteínas Asociadas a Microtúbulos , Unión Proteica , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/química , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Humanos , Transducción de Señal , Animales , Dominios Homologos src , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Proto-Oncogénicas c-fyn/química , Proteínas Proto-Oncogénicas c-fyn/genética , Dominios Proteicos
11.
J Biol Chem ; 300(9): 107606, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059491

RESUMEN

Transcription factors are challenging to target with small-molecule inhibitors due to their structural plasticity and lack of catalytic sites. Notable exceptions include naturally ligand-regulated transcription factors, including our prior work with the hypoxia-inducible factor (HIF)-2 transcription factor, showing that small-molecule binding within an internal pocket of the HIF-2α Per-Aryl hydrocarbon Receptor Nuclear Translocator (ARNT)-Sim (PAS)-B domain can disrupt its interactions with its dimerization partner, ARNT. Here, we explore the feasibility of targeting small molecules to the analogous ARNT PAS-B domain itself, potentially opening a promising route to modulate several ARNT-mediated signaling pathways. Using solution NMR fragment screening, we previously identified several compounds that bind ARNT PAS-B and, in certain cases, antagonize ARNT association with the transforming acidic coiled-coil containing protein 3 transcriptional coactivator. However, these ligands have only modest binding affinities, complicating characterization of their binding sites. We address this challenge by combining NMR, molecular dynamics simulations, and ensemble docking to identify ligand-binding "hotspots" on and within the ARNT PAS-B domain. Our data indicate that the two ARNT/transforming acidic coiled-coil containing protein 3 inhibitors, KG-548 and KG-655, bind to a ß-sheet surface implicated in both HIF-2 dimerization and coactivator recruitment. Furthermore, while KG-548 binds exclusively to the ß-sheet surface, KG-655 can additionally bind within a water-accessible internal cavity in ARNT PAS-B. Finally, KG-279, while not a coactivator inhibitor, exemplifies ligands that preferentially bind only to the internal cavity. All three ligands promoted ARNT PAS-B homodimerization, albeit to varying degrees. Taken together, our findings provide a comprehensive overview of ARNT PAS-B ligand-binding sites and may guide the development of more potent coactivator inhibitors for cellular and functional studies.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/química , Translocador Nuclear del Receptor de Aril Hidrocarburo/antagonistas & inhibidores , Humanos , Ligandos , Sitios de Unión , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Dominios Proteicos , Unión Proteica , Multimerización de Proteína , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química
12.
Drug Test Anal ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039910

RESUMEN

A number of synthetic cannabinoids have been appearing in the recreational drug market for more than a decade. Recent additions are so-called semi-synthetic cannabinoids, and they structurally closely resemble the main psychoactive component of cannabis, Δ9-tetrahydrocannabinol. Knowledge of new (semi-)synthetic cannabinoids is essential to help identify them in authentic forensic case samples. Therefore, the aim of the study was to examine two commercially available electronic cigarette liquid products claiming to contain cannabinoids and characterize the structures of the main compounds. The liquid products were analyzed by gas chromatography-mass spectrometry (GC-MS), GC-quadrupole time-of-flight mass spectrometry (GC-QTOF-MS), and liquid chromatography-high-resolution mass spectrometry (LC-HRMS). In product A, typical cannabinoids (cannabidiol, cannabigerol, and cannabinol) and terpenes (α-caryophyllene and ß-caryophyllene) were identified by comparison with reference materials. An unknown peak was isolated by semi-preparative high-performance LC, analyzed by nuclear magnetic resonance (NMR) spectroscopy, and identified to be Δ9-tetrahydrocannabihexol acetate (Δ9-THCH-O). To the authors' knowledge, this is the first report of the identification of Δ9-THCH-O in commercially available products. Another compound estimated as cannabihexol acetate was also detected. In product B, cannabidiol, cannabinol, α-caryophyllene, and ß-caryophyllene were identified, while two unknown peaks were estimated as tetrahydrocannabidiol isomers. Despite products A and B being labeled to contain "60% HHCPM" and "80% 10-OH-HHC," respectively, no such compounds were detected. The findings of this study could help detect Δ9-THCH-O in case samples and highlight the need to keep monitoring commercial products to identify new drugs, while warning that the package labels cannot be trusted.

13.
Methods Enzymol ; 700: 295-328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38971604

RESUMEN

The specific spatial and temporal distribution of lipids in membranes play a crucial role in determining the biochemical and biophysical properties of the system. In nature, the asymmetric distribution of lipids is a dynamic process with ATP-dependent lipid transporters maintaining asymmetry, and passive transbilayer diffusion, that is, flip-flop, counteracting it. In this chapter, two probe-free techniques, 1H NMR and time-resolved small angle neutron scattering, are described in detail as methods of investigating lipid flip-flop rates in synthetic liposomes that have been generated with an asymmetric bilayer composition.


Asunto(s)
Membrana Dobles de Lípidos , Liposomas , Difracción de Neutrones , Dispersión del Ángulo Pequeño , Liposomas/química , Membrana Dobles de Lípidos/química , Difracción de Neutrones/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos
14.
bioRxiv ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38948727

RESUMEN

Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases including cancer, cardiopathy, neurodegeneration, and heritable pathologies such as Barth syndrome. Cardiolipin, the signature phospholipid of the mitochondrion promotes proper cristae morphology, bioenergetic functions, and directly affects metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in the tafazzin gene are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impact metabolic flux through the tricarboxylic acid cycle and associated pathways in yeast. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a wild-type strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin, and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through about twelve metabolites. Several of the identified metabolites were specific to yeast pathways, including branched chain amino acids and fusel alcohol synthesis. Most metabolites showed similar kinetics amongst the different strains but mevalonate and α-ketoglutarate, as well as the NAD+/NADH couple measured in separate nuclear magnetic resonance experiments, showed pronounced differences. Taken together, the results show that cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.

15.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915483

RESUMEN

Intrinsically disordered protein regions (IDRs) are well-established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, SERF. At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 TAR RNA (TAR) with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.

16.
J Biol Chem ; 300(7): 107457, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866324

RESUMEN

AT-rich interacting domain (ARID)-containing proteins, Arids, are a heterogeneous DNA-binding protein family involved in transcription regulation and chromatin processing. For the member Arid5a, no exact DNA-binding preference has been experimentally defined so far. Additionally, the protein binds to mRNA motifs for transcript stabilization, supposedly through the DNA-binding ARID domain. To date, however, no unbiased RNA motif definition and clear dissection of nucleic acid-binding through the ARID domain have been undertaken. Using NMR-centered biochemistry, we here define the Arid5a DNA preference. Further, high-throughput in vitro binding reveals a consensus RNA-binding motif engaged by the core ARID domain. Finally, transcriptome-wide binding (iCLIP2) reveals that Arid5a has a weak preference for (A)U-rich regions in pre-mRNA transcripts of factors related to RNA processing. We find that the intrinsically disordered regions flanking the ARID domain modulate the specificity and affinity of DNA binding, while they appear crucial for RNA interactions. Ultimately, our data suggest that Arid5a uses its extended ARID domain for bifunctional gene regulation and that the involvement of IDR extensions is a more general feature of Arids in interacting with different nucleic acids at the chromatin-mRNA interface.


Asunto(s)
Proteínas de Unión al ADN , ADN , Factores de Transcripción , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , ADN/metabolismo , ADN/química , ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/química , Dominios Proteicos , Regulación de la Expresión Génica , Unión Proteica , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN/metabolismo , ARN/química , ARN/genética
17.
J Biol Chem ; 300(8): 107497, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925329

RESUMEN

Activation of G proteins through nucleotide exchange initiates intracellular signaling cascades essential for life processes. Under normal conditions, nucleotide exchange is regulated by the formation of G protein-G protein-coupled receptor complexes. Single point mutations in the Gα subunit of G proteins bypass this interaction, leading to loss of function or constitutive gain of function, which is closely linked with the onset of multiple diseases. Despite the recognized significance of Gα mutations in disease pathology, structural information for most variants is lacking, potentially due to inherent protein dynamics that pose challenges for crystallography. To address this, we leveraged an integrative spectroscopic and computational approach to structurally characterize seven of the most frequently observed and clinically relevant mutations in the stimulatory Gα subunit, GαS. A previously proposed allosteric model of Gα activation linked structural changes in the nucleotide-binding pocket with functionally important changes in interactions between switch regions. We investigated this allosteric connection in GαS by integrating data from variable temperature CD spectroscopy, which measured changes in global protein structure and stability, and molecular dynamics simulations, which observed changes in interaction networks between GαS switch regions. Additionally, saturation-transfer difference NMR spectroscopy was applied to observe changes in nucleotide interactions with residues within the nucleotide binding site. These data have enabled testing of predictions regarding how mutations in GαS result in loss or gain of function and evaluation of proposed structural mechanisms. The integration of experimental and computational data allowed us to propose a more nuanced classification of mechanisms underlying GαS gain-of-function and loss-of-function mutations.


Asunto(s)
Simulación de Dinámica Molecular , Humanos , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Mutación , Regulación Alostérica
18.
BioTech (Basel) ; 13(2)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38804293

RESUMEN

A myogenetic oligodeoxynucleotide (myoDN), iSN04 (5'-AGA TTA GGG TGA GGG TGA-3'), is a single-stranded 18-base telomeric DNA that serves as an anti-nucleolin aptamer and induces myogenic differentiation, which is expected to be a nucleic acid drug for the prevention of disease-associated muscle wasting. To improve the drug efficacy and synthesis cost of myoDN, shortening the sequence while maintaining its structure-based function is a major challenge. Here, we report the novel 12-base non-telomeric myoDN, iMyo01 (5'-TTG GGT GGG GAA-3'), which has comparable myogenic activity to iSN04. iMyo01 as well as iSN04 promoted myotube formation of primary-cultured human myoblasts with upregulation of myogenic gene expression. Both iMyo01 and iSN04 interacted with nucleolin, but iMyo01 did not bind to berberine, the isoquinoline alkaloid that stabilizes iSN04. Nuclear magnetic resonance revealed that iMyo01 forms a G-quadruplex structure despite its short sequence. Native polyacrylamide gel electrophoresis and a computational molecular dynamics simulation indicated that iMyo01 forms a homodimer to generate a G-quadruplex. These results provide new insights into the aptamer truncation technology that preserves aptamer conformation and bioactivity for the development of efficient nucleic acid drugs.

19.
J Agric Food Chem ; 72(21): 12281-12294, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747520

RESUMEN

This study investigated the effect of AgNPs and AgNO3, at concentrations equivalent, on the production of primary and secondary metabolites on transgenic soybean plants through an NMR-based metabolomics. The plants were cultivated in a germination chamber following three different treatments: T0 (addition of water), T1 (addition of AgNPs), and T2 (addition of AgNO3). Physiological characteristics, anatomical analyses through microscopic structures, and metabolic profile studies were carried out to establish the effect of abiotic stress on these parameters in soybean plants. Analysis of the 1H NMR spectra revealed the presence of amino acids, organic acids, sugars, and polyphenols. The metabolic profiles of plants with AgNP and AgNO3 were qualitatively similar to the metabolic profile of the control group, suggesting that the application of silver does not affect secondary metabolites. From the PCA, it was possible to differentiate the three treatments applied, mainly based on the content of fatty acids, pinitol, choline, and betaine.


Asunto(s)
Glycine max , Espectroscopía de Resonancia Magnética , Metabolómica , Nanopartículas del Metal , Plantas Modificadas Genéticamente , Plata , Glycine max/metabolismo , Glycine max/genética , Glycine max/química , Glycine max/efectos de los fármacos , Glycine max/crecimiento & desarrollo , Plata/metabolismo , Plata/química , Nanopartículas del Metal/química , Espectroscopía de Resonancia Magnética/métodos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/química , Aminoácidos/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/química
20.
Sci Rep ; 14(1): 11252, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755227

RESUMEN

This study employs ab initio calculations based on density functional theory (DFT) to investigate the structural properties, 1H-NMR spectra, and vibrational spectra of methane sulfonic acid (MSA) at low degree of hydration. The findings reveal that energetically stable structures are formed by small clusters consisting of one or two MSA molecules (m = 1 and 2) and one or two water molecules in (MSA)m·(H2O)n (m = 1-2 and n = 1-5).These stable structures arise from the formation of strong cyclic hydrogen bonds between the proton of the hydroxyl (OH) group in MSA and the water molecules. However, clusters containing three or more water molecules (n > 2) exhibit proton transfer from MSA to water, resulting in the formation of ion-pairs composed of CH3SO3- and H3O+species. The measured 1H-NMR spectra demonstrate the presence of hydrogen-bonded interactions between MSA and water, with a single MSA molecule interacting with water molecules. This interaction model accurately represents the hydrogen bonding network, as supported by the agreement between the experimental and calculated NMR chemical shift results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA