Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.340
Filtrar
1.
Environ Pollut ; 358: 124500, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964641

RESUMEN

Oxygen vacancy-rich ß-Bi2O3/Bi2O2SiO3 (BO/BOS) Z-Scheme heterojunction was prepared by hydrothermal method-assisted calcination. Under visible light, ß-Bi2O3/Bi2O2SiO3 photocatalyst demonstrated superior photocatalytic efficacy in degrading antibiotics and antibiotic-resistant Escherichia coli (AR E. coli) compared to individual ß-Bi2O3 and Bi2O2SiO3. The experimental results showed that BO/BOS-450 sample possessed the best photocatalytic activity against tetracycline (2 h, 80.8%), amoxicillin (4 h, 57.9%) and AR E. coli (3 h, 107.43 CFU·mL-1). BO/BOS-450 sample showed 91.8% electrostatic capture of AR E. coli in the bacterial capture experiment. In the antibiotic-resistant genes (ARGs) degradation experiment, BO/BOS-450 sample was able to bring the log10 (Ct/C0) value of tetA to -3.49 after 2 h. Oxygen vacancies (OVs) were verified through HR-TEM, XPS and EPR analyses. ESR experiments aligned with the quenching experiment results, confirming that the crucial active species were ‧O2- and h+ during photocatalytic sterilization. A small-scale sewage treatment equipment was designed for the effective removal of ARB from real water samples.

2.
Sci Rep ; 14(1): 15609, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971809

RESUMEN

The study investigates the impact of Phase Change Material (PCM) and nano Phase Change Materials (NPCM) on solar still performance. PCM and a blend of NPCM are placed within 12 copper tubes submerged in 1 mm of water to enhance productivity. Thermal performance is assessed across four major scenarios with a fixed water level of 1 mm in the basin. These scenarios include the conventional still, equipped with 12 empty copper rods and 142 g of PCM in each tube, as well as stills with NPCM Samples 1 and 2. Sample 1 contains 0.75% nanoparticle concentration plus 142 g of PCM in the first 6 tubes, while Sample 2 features 2% nanoparticle concentration plus 142 g of PCM in the subsequent 6 tubes. Aluminum oxide (Al2O3) nanoparticles ranging in size from 20 to 30 nm are utilized, with paraffin wax (PW) serving as the latent heat storage (LHS) medium due to its 62 °C melting temperature. The experiments are conducted under the local weather conditions of Vaddeswaram, Vijayawada, India (Latitude-80.6480 °E, Longitude-16.5062 °N). A differential scanning calorimeter (DSC) is utilized to examine the thermal properties, including the melting point and latent heat fusion, of the NPCM compositions. Results demonstrate that the addition of nanoparticles enhances both the specific heat capacity and latent heat of fusion (LHF) in PCM through several mechanisms, including facilitating nucleation, improving energy absorption during phase change, and modifying crystallization behavior within the phase change material. Productivity and efficiency measurements reveal significant improvements: case 1 achieves 2.66 units of daily production and 46.23% efficiency, while cases 2, 3, and 4 yield 3.17, 3.58, and 4.27 units of daily production, respectively. Notably, the utilization of NPCM results in a 60.37% increase overall productivity and a 68.29% improvement in overall efficiency.

3.
J Food Sci ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980985

RESUMEN

Phenylpropanoid metabolism plays an important role in cantaloupe ripening and senescence, but the mechanism of ozone regulation on phenylpropanoid metabolism remains unclear. This study investigated how ozone treatment modulates the levels of secondary metabolites associated with phenylpropanoid metabolism, the related enzyme activities, and gene expression in cantaloupe. Treating cantaloupes with 15 mg/m3 of ozone after precooling can help maintain postharvest hardness. This treatment also enhances the production and accumulation of secondary metabolites, such as total phenols, flavonoids, and lignin. These metabolites are essential components of the phenylpropanoid metabolic pathway, activating enzymes like phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4CL, chalcone synthase, and chalcone isomerase. The results of the transcriptional expression patterns showed that differential gene expression related to phenylpropanoid metabolism in the peel of ozone-treated cantaloupes was primarily observed during the middle and late storage stages. In contrast, the pulp exhibited significant differential gene expression mainly during the early storage stage. Furthermore, it was observed that the level of gene expression in the peel was generally higher than that in the pulp. The correlation between the relative amount of gene changes in cantaloupe, activity of selected enzymes, and concentration of secondary metabolites could be accompanied by positive regulation of the phenylpropanoid metabolic pathway. Therefore, ozone stress induction positively enhances the biosynthesis of flavonoids in cantaloupes, leading to an increased accumulation of secondary metabolites. Additionally, it also improves the postharvest storage quality of cantaloupes.

4.
Magn Reson Chem ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38946056

RESUMEN

The defect models of the orthorhombical and tetragonal Cu2+ centers in Pb[Zr0.54Ti0.46]O3 are attributed to Cu2+ ions occupying the sixfold coordinated octahedral Ti4+ site with and without charge compensation, respectively. The electron paramagnetic resonance (EPR) g factors gi (i = x, y, z) of the Cu2+ centers in Pb[Zr0.54Ti0.46]O3 are theoretically studied by using the perturbation formulas of a 3d9 ion under orthorhombically and tetragonally elongated octahedra. Based on the calculation, the impurity off-center displacements are about 0.253 and 0.162 Å for the orthorhombical and tetragonal Cu2+ centers, respectively. Meanwhile, the planar Cu2+-O2- bonds are found to experience the relative variation ΔR (≈0.102 Å) along the a- and b-axes for the orthorhombical Cu2+ center due to the Jahn-Teller (JT) effect. The theoretical EPR g factors based on the above local structures agree well with the observed values.

5.
ACS Nano ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946316

RESUMEN

Advancing the high-voltage stability of the O3-type layered cathodes for sodium-ion batteries is critical to boost their progress in energy storage applications. However, this type of cathode often suffers from intricate phase transition and structural degradation at high voltages (i.e., >4.0 V vs Na+/Na), resulting in rapid capacity decay. Here, we present a Li/Ti cosubstitution strategy to modify the electronic configuration of oxygen elements in the O3-type layered oxide cathode. This deliberate modulation simultaneously mitigates the phase transitions and counteracts the weakening of the shielding effect resulting from the extraction of sodium ions, thus enhancing the electrostatic bonding within the TM layer and inducing and optimizing the O3-OP2 phase transition occurring in the voltage range of 2.0-4.3 V. Consequently, the cosubstituted NaLi1/9Ni1/3Mn4/9Ti1/9O2 exhibits an astounding capacity of 161.2 mAh g-1 in the voltage range of 2.0-4.3 V at 1C, and stable cycling up to 100 cycles has been achieved. This work shows the impact mechanism of element substitution on interlayer forces and phase transitions, providing a crucial reference for the optimization of O3-type materials.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38968574

RESUMEN

Bismuth oxide (Bi2O3) materials are considered as great promising anodes for aqueous batteries on account of the high capacity as well as wide potential plateau. Nevertheless, the low conductivity and severe volumetric change of Bi2O3 in the course of cycling are the main limiting factors for their application in energy-storage systems. Herein, we propose and design unique hierarchical heterostructures constructed by Bi2O3 and Bi2S3 nanosheets (NSs) manufactured immediately on the surface of carbon nanotube fibers (CNTFs). The Bi2O3-Bi2S3 (BO-BS) exhibits enhanced conductivity and increased stability in comparison with pure Bi2O3 and Bi2S3. The BO-BS NSs/CNTF electrode indicates exceptional rate capability and cycling stability, while creating a high reversible capacity of 0.68 mAh cm-2 at 4 mA cm-2, as anticipated. Additionally, the quasi-solid-state fibrous aqueous Ni//Bi battery that was built with the BO-BS NSs/CNTF anode delivers an exceptional cycling stability of 52.7% capacity retention after 4000 cycles at 80 mA cm-2, an ultrahigh capacity of 0.35 mAh cm-2 at 4 mA cm-2, and a high energy density of 340.1 mWh cm-3 at 880 mW cm-3. This work demonstrates the potential of constructing hierarchical heterostructures of bismuth-based materials for high-performance aqueous Ni//Bi batteries and other energy-storage devices.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124680, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38963950

RESUMEN

The present work focuses on the investigation of the thermal stability and structural integrity of amorphous alumina coatings intended for use as protective coatings on cladding tubes in Generation IV nuclear reactors, specifically in the Lead-cooled Fast Reactor (LFR) type. High-temperature Raman spectroscopy and high-temperature X-ray diffraction analyses were carried out up to 1050 °C on a 5 µm coating deposited by the pulsed laser deposition (PLD) technique on a 316L steel substrate. The experiments involved the in-situ examination of structural changes in the material under increasing temperature, along with ex-situ Raman imaging of the surface and cross-section of the coating after thermal treatments of different lengths. As it was expected, the presence of α-alumina was detected with the addition of other polymorphs, γ- and θ-Al2O3, found in the material after longer high-temperature exposure. The use of two structural analysis methods and two lasers excitation wavelengths with Raman spectroscopy allowed us to detect all the mentioned phases despite different mode activity. Alumina analysis was based on the emission spectra, while substrate oxidation products were identified through the structural bands. The experiments depicted a dependence of the phase composition of oxidation products and alumina's degree of crystallization on the length of the treatment. Nevertheless, the observed structural changes did not occur rapidly, and the coating's integrity remained intact. Moreover, oxidation signs occurred locally at temperatures exceeding the LFR reactor's working temperature, confirming the material's great potential as a protective coating in the operational conditions of LFR nuclear reactors.

8.
Chemosphere ; : 142756, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964721

RESUMEN

In this study, a co-catalytic route was explored to enhance the photo-ozone catalytic degradation of volatile organic compounds (VOCs). NiCo2O4 was loaded onto the surface of CeO2 nanoparticles to create a composite catalyst (10%NiCo2O4/CeO2). The integration of NiCo2O4 onto CeO2 enhanced the interaction between the catalyst and toluene, a representative VOC, resulting in significantly increased toluene adsorption without a corresponding increase in specific surface area. This integration also improved the utilization of charge carriers and conversion of ozone to O2-. Under visible light irradiation, H2O accumulated charge carriers at 10%NiCo2O4/CeO2's surface, facilitating both ozone utilization and toluene adsorption. Another benefit of NiCo2O4 loading was its ability to enhance the conversion efficiency of solar energy. Consequently, the toluene removal and mineralization efficiencies of 10%NiCo2O4/CeO2 were enhanced by 182% and 309% compared to CeO2, and by 201% and 357% compared to NiCo2O4, respectively. Overall, this study demonstrated a novel co-catalyst design strategy for enhancing the photo-ozone catalytic degradation of VOCs.

9.
J Environ Manage ; 366: 121686, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971057

RESUMEN

In this paper, we reported a facile and clean strategy to prepare the flake-like Ag2O/Fe2O3 bimetallic p-n heterojunction composites for photodegradation organic pollutants. The surface morphology, crystal structure, chemical composition and optical properties of Ag2O/Fe2O3 were characterized by SEM, high-resolution TEM images with EDX spectra, XRD, XPS, FT-IR and UV-vis DRS spectra respectively. The formation of Ag2O/Fe2O3 p-n heterojunction facilitated the interfacial transfer of electrons as well as the separation of charge carries. Hence, the as-synthesized Ag2O/Fe2O3-3 composites exhibited ultra-high photocatalytic activity. Under the experimental conditions of catalyst dosage of 0.4 mg mL-1 and irradiation time of 60 min, the degradation conversion rate of rhodamine B reached 96.1 %, which was 5.0 and 2.8 times of pure phase Ag2O and Fe2O3, respectively. Meanwhile, the degradation performance of Ag2O/Fe2O3-3 was not limited by pH, and it can achieve high degradation efficiency under 3-11. In addition, Ag2O/Fe2O3-3 also showed superb degradation ability for other common anionic dyes, cationic dyes and antibiotics. XPS and FT-IR spectra showed that Ag2O/Fe2O3-3 retained a carbon skeleton that facilitated electron transport and light absorption conversion. And the analyses of quenching experiment and EPR demonstrated •O2-, •OH and h+ were crucial reactive oxidant species contributing to the rapid organic pollutant degradation. This work provides new insights into obtaining p-n photocatalysts heterojunction with excellent catalytic activity for removing organic pollutants from wastewater.

10.
Sci Total Environ ; : 174405, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960186

RESUMEN

In this study, the chemical mechanisms of O3 and nitrate formation as well as the control strategy were investigated based on extensive observations in Tai'an city in the NCP and an observation-constrained box model. The results showed that O3 pollution was severe with the maximum hourly O3 concentration reaching 150 ppb. Higher O3 concentration was typically accompanied by higher PM2.5 concentrations, which could be ascribed to the common precursors of VOCs and NOx. The modeled averaged peak concentrations of OH, HO2, and RO2 were relatively higher compared to previous observations, indicating strong atmospheric oxidation capacity in the study area. The ROx production rate increased from 2.8 ppb h-1 to 5 ppb h-1 from the clean case to the heavily polluted case and was dominated by HONO photolysis, followed by HCHO photolysis. The contribution of radical-self combination to radical termination gradually exceeded NO2 + OH from clean to polluted cases, indicating that O3 formation shifted to a more NOx-limited regime. The O3 production rate increased from 14 ppb h-1 to 22 ppb h-1 from clean to heavily polluted cases. The relative incremental reactivity (RIR) results showed that VOCs and NOx had comparable RIR values during most days, which suggested that decreasing VOCs or NOx was both effective in alleviating O3 pollution. In addition, HCHO, with the largest RIR value, made important contribution to O3 production. The Empirical Kinetic Modeling Approach (EKMA) revealed that synergistic control of O3 and nitrate can be achieved by decreasing both NOx and VOCs emissions (e.g., alkenes) with the ratio of 3:1. This study emphasized the importance of NOx abatement for the synergistic control of O3 and nitrate pollution in the Tai'an area as the sustained emissions control has shifted the O3 and nitrate formation to a more NOx-limited regime.

11.
Environ Monit Assess ; 196(7): 603, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850374

RESUMEN

Ground-level ozone (O3) pollution has emerged as a significant concern impacting air quality in urban agglomerations, primarily driven by meteorological conditions and social-economic factors. However, previous studies have neglected to comprehensively reveal the spatial distribution and driving mechanism of O3 pollution. Based on the O3 monitoring data of 41 cities in the Yangtze River Delta (YRD) from 2014 to 2021, a comprehensive analysis framework of spatial analysis-spatial econometric regression was constructed to reveal the driving mechanism of O3 pollution. The results revealed the following: (1) O3 concentrations in the YRD exhibited a general increasing and then decreasing trend, indicating an improvement in pollution levels. The areas with higher O3 concentration are mainly the cities concentrated in central and southern Jiangsu, Shanghai, and northern Zhejiang. (2) The change of O3 concentration and distribution is the result of various factors. The effect of urbanization on O3 concentrations followed an inverted U-shaped curve, which implies that achieving higher quality urbanization is essential for effectively controlling urban O3 pollution. Traffic conditions and energy consumption have significant direct positive influences on O3 concentrations and spatial spillover effects. The indirect pollution contribution, considering economic weight, accounted for about 35%. Thus, addressing overall regional energy consumption and implementing traffic source regulations are crucial paths for O3 pollution control in the YRD. (3) Meteorological conditions play a certain role in regulating the O3 concentration. Higher wind speed will promote the diffusion of O3 and increase the O3 concentration in the surrounding city. These findings provide valuable insights for designing effective policies to improve air quality and mitigate ozone pollution in urban agglomeration area.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ciudades , Monitoreo del Ambiente , Ozono , Ozono/análisis , China , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Ríos/química , Urbanización , Análisis Espacial
12.
J Colloid Interface Sci ; 673: 26-36, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38870665

RESUMEN

Sb-based materials are considered as promising anode materials for sodium-ion batteries (SIBs) due to their excellent sodium storage capacities and suitable potentials. However, the Sb-based anodes usually suffer from intense volume expansion and severe pulverization during the alloying-dealloying process, resulting in poor cycling performance. Herein, a composite anode with Sb/Sb2O3 nanoparticles embedded in N-doped porous carbon is prepared by the gas-solid dual template method. The volume change of the anode material is mitigated by the carbon layer enwrapping and the confinement of the porous structure. Nitrogen doping provides abundant sodium storage sites, thus enhancing the storage capacity of sodium ion. Furthermore, to gain the accurate kinetic interpretation of the electrochemical process, an ex-situ transmission electron microscope (TEM) characterization combined with distribution of relaxation times (DRT) is conducted. The Sb/Sb2O3@NPC-1.0 demonstrates excellent electrochemical performance, achieving 340.3 mAh g-1 at 1A g-1, and maintains a capacity of 86.7 % after 1000 cycles. This work paves the way for the practical application of SIBs with high-performance and long-life Sb-based anodes.

13.
Adv Sci (Weinh) ; : e2400174, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889298

RESUMEN

Perovskite oxides and organic-inorganic halide perovskite materials, with numerous fascinating features, have been subjected to extensive studies. Most of the properties of perovskite materials are dependence on their ferroelectricity that denoted by remanent polarization (Pr). Thus, the increase of Pr in perovskite films is mainly an effort in material physics. At present, commonplace improvement schemes, i.e., controlling material crystallinity, and post-annealing by using a high-temperature process, are normally used. However, a simpler and temporal strategy for Pr improvement is always unavailable to perovskite material researchers. In this study, an organic coating layer, low-temperature, and vacuum-free strategy is proposed to improve the Pr, directly increasing the Pr from 36 to 56 µC cm-2. Further study finds that the increased Pr originates from the suppression of the oxygen defects and Ti defects. This organic coating layer strategy for passivating the defects may open a new way for the preparation of higher-performance and cost-effective perovskite products, further improving its prospective for application in the electron devices field.

14.
Angew Chem Int Ed Engl ; : e202404330, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878199

RESUMEN

Enhancing the energy density of layered oxide cathode materials is of great significance for realizing high-performance sodium-ion batteries and promoting their commercial application. Lattice oxygen redox at high voltage usually enables a high capacity and energy density. But the structural degradation, severe voltage decay, and the resultant poor cycling performance caused by irreversible oxygen release seriously restrict the practical application. Herein we introduce a novel fence-type superstructure (2a × 3a type supercell) into O3-type layered cathode material Na0.9Li0.1Ni0.3Mn0.3Ti0.3O2 and achieve a stable cycling performance at a high voltage of 4.4 V. The fence-type superstructure effectively inhibits the formation of the vacancy clusters resulting from out-of-plane Li migration and in-plane transition metal migration at high voltage due to the wide d-spacing, thereby significantly reducing the irreversible release of lattice oxygen and greatly stabilizing the crystal structure. The cathode exhibits a high energy density of 545 Wh kg-1, a high rate capability (112.8 mAh g-1 at 5C) and a high cycling stability (85.8%@200 cycles with a high initial capacity of 148.6 mAh g-1 at 1C) accompanied by negligible voltage attenuation (98.5%@200 cycles). This strategy provides a distinct spacing effect of superstructure to design stable high-voltage layered cathode materials for Na-ion batteries.

15.
Water Res ; 260: 121907, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38878318

RESUMEN

The combination of ozone (O3) and ferrate (Fe(VI)) oxidation technology demonstrates substantial potential for practical applications, though it has been underreported, resulting in gaps in comprehensive activity assessments and thorough exploration of its mechanisms. This study reveals that the previous use of a borate buffer solution obscured certain synergistic reactions between O3 and Fe(VI), causing a reduction of activity by ∼40 % when oxidizing the electron-deficient pollutant atrazine. Consequently, we reassessed the activity and mechanisms using a buffer-salt-free O3/Fe(VI) system. Our findings showed that the hydroxyl radical (·OH) served as the predominant active species, responsible for an impressive 95.9 % of the oxidation activity against electron-deficient pollutants. Additional experiments demonstrated that the rapid production of neglected and really important superoxide radicals (·O2-) could facilitate the decomposition of O3 to generate ·OH and accelerate the reduction of Fe(VI) to Fe(V), reactivating O3 to produce ·OH anew. Intriguingly, as the reaction progressed, the initially depleted Fe(VI) was partially regenerated, stabilizing at over 50 %, highlighting the significant potential of this combined system. Moreover, this combined system could achieve a high mineralization efficiency of 80.4 % in treating actual coking wastewater, complemented by extensive toxicity assessments using Escherichia coli, wheat seeds, and zebrafish embryos, showcasing its robust application potential. This study revisits and amends previous research on the O3/Fe(VI) system, providing new insights into its activity and synergistic mechanisms. Such a combined technology has potential for the treatment of difficult-to-degrade industrial wastewater.

16.
Talanta ; 277: 126430, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38878510

RESUMEN

In the present work, we developed an aptasensor to determine chloramphenicol (CAP) based on the dual signal output of photoelectrochemistry (PEC) and colorimetry. The Fe3+-doped porous tungsten trioxide was prepared by sol-gel method and coated on the ITO conductive glass to form ITO/p-W(Fe)O3. After assembling the captured DNA (cDNA) and the aptamer of CAP (apt) successively, the constructed ITO/p-W(Fe)O3-cDNA/apt aptasensor exhibited excellent photocurrent response under visible light irradiation in the presence of glucose, which provided the feasibility for PEC measurement with high sensitivity. In the presence of CAP, the apt left the ITO/p-W(Fe)O3 surface and AuNPs linked on the probe DNA would be assembled on it, which led to the decrease of photocurrent. Thanks to the oxidase-mimic catalytic performance of AuNPs and the recycling catalytic hydrolysis by exonuclease I, the measurement signal of the aptasensor could be amplified significantly, and the photocurrent decrease of the aptasensor was linearly related to the concentration of CAP in the range of 1.0 pM-10.0 nM and low detection limit was 0.36 pM. Meanwhile, the H2O2 produced from catalytic oxidation of glucose could oxidize TMB to blue oxTMB under HRP catalysis, which absorbance at 652 nm was linearly related to the concentration of CAP in the range of 5.0 pM-10.0 nM and low detection limit was 1.72 pM. Therefore, an aptasensor that determine CAP in real samples was successfully constructed with good precision of the relative standard deviation less than 5.7 % for PEC method and 7.3 % for colorimetric method, which can meet the analysis needs in different scenarios.

17.
Polymers (Basel) ; 16(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891437

RESUMEN

Electronic devices play an increasingly vital role in modern society, and heat accumulation is a major concern during device development, which causes strong market demand for thermal conductivity materials and components. In this paper, a novel thermal conductive material consisting of polydimethylsiloxane (PDMS) and a binary filler system of h-BN platelets and Al2O3 nanoparticles was successfully fabricated using direct ink writing (DIW) 3D printing technology. The addictive manufacturing process not only endows the DIW-printed composites with various geometries but also promotes the construction of a 3D structural thermal conductive network through the shearing force during the printing process. Moreover, the integrity of the thermal conductive network can be optimized by filling the gaps between the BN platelets with Al2O3 particles. Resultingly, the configuration of the binary fillers is arranged by the shearing force during the DIW process, fabricating the thermal conductive network of oriented fillers. The DIW-printed BN/Al2O3/PDMS with 45 wt% thermal conductive binary filler can reach a thermal conductivity of 0.98 W/(m·K), higher than the 0.62 W/(m·K) of the control sample. In this study, a novel strategy for the thermal conductive performance improvement of composites based on DIW technology is successfully verified, paving a new way for thermal management.

18.
Environ Sci Technol ; 58(24): 10696-10705, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38845125

RESUMEN

Because ozone (O3) is a significant air pollutant, advanced O3 elimination technologies, particularly those under high-humidity conditions, have become an essential research focus. In this study, a nickel-iron layered double hydroxide (NiFe-LDH) was modified via intercalation with octanoate to develop an effective hydrophobic catalyst (NiFe-OAa-LDH) for O3 decomposition. The NiFe-OAa-LDH catalyst sustained its O3 decomposition rate of >98% for 48 h under conditions of 90% relative humidity, 840 L/(g·h) space velocity, and 100 ppm inlet O3 concentration. Moreover, it maintained a decomposition rate of 90% even when tested at a higher airflow rate of 2500 L/(g·h). Based on the changes induced by the Ni-OII to Ni-OIII bonds in NiFe-OAa-LDH during O3 treatment, catalytic O3 decomposition was proposed to occur in two stages. The first stage involved the reaction between the hydroxyl groups and O3, leading to the breakage of the O-H bonds, formation of NiOOH, and structural changes in the catalyst. This transformation resulted in the formation of abundant and stable hydrogen vacancies. According to density functional theory calculations, O3 can be effectively decomposed at the hydrogen vacancies with a low energy barrier during the second stage. This study provides new insights into O3 decomposition.


Asunto(s)
Hidróxidos , Ozono , Hidróxidos/química , Ozono/química , Níquel/química , Catálisis , Contaminantes Atmosféricos/química
19.
Life Sci ; 350: 122769, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848943

RESUMEN

The forkhead box protein O3 (FOXO3a) belongs to the subgroup O of the forkhead transcription factor family and plays an important role in regulating the aging process by participating in the regulation of various life processes, including cell cycle arrest, apoptosis, autophagy, oxidative stress, and DNA repair. The eye is an organ that is affected by aging earlier. However, the functional role and potential clinical applications of FOXO3a in age-related eye diseases have not received widespread attention and lacked comprehensive and clear clarification. In this review, we demonstrated the relationship between FOXO3a and visual system health, summarized the functional roles of FOXO3a in various eye diseases, and potential ocular-related therapies and drugs targeting FOXO3a in visual system diseases through a review and summary of relevant literature. This review indicates that FOXO3a is an important factor in maintaining the normal function of various tissues in the eye, and is closely related to the occurrence and development of ophthalmic-related diseases. Based on its vital role in the normal function of the visual system, FOXO3a has potential clinical application value in related ophthalmic diseases. At present, multiple molecules and drugs targeting FOXO3a have been reported to have the potential for the treatment of related ophthalmic diseases, but further clinical trials are needed. In conclusion, this review can facilitate us to grasp the role of FOXO3a in the visual system and provide new views and bases for the treatment strategy research of age-related eye diseases.


Asunto(s)
Envejecimiento , Oftalmopatías , Proteína Forkhead Box O3 , Humanos , Proteína Forkhead Box O3/metabolismo , Oftalmopatías/metabolismo , Oftalmopatías/tratamiento farmacológico , Animales , Envejecimiento/metabolismo , Longevidad
20.
Materials (Basel) ; 17(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893991

RESUMEN

This study investigates the effect of a high-temperature annealing process on the characteristics and performance of a memristor based on a Ag/Ga2O3/Pt structure. Through X-ray diffraction analysis, successful phase conversion from amorphous Ga2O3 to ß-Ga2O3 is confirmed, attributed to an increase in grain size and recrystallization induced by annealing. X-ray photoelectron spectroscopy analysis revealed a higher oxygen vacancy in annealed Ga2O3 thin films, which is crucial for conductive filament formation and charge transport in memristors. Films with abundant oxygen vacancies exhibit decreased set voltages and increased capacitance in a low-resistive state, enabling easy capacitance control depending on channel presence. In addition, an excellent memory device with a high on/off ratio can be implemented due to the reduction of leakage current due to recrystallization. Therefore, it is possible to manufacture a thin film suitable for a memristor by increasing the oxygen vacancy in the Ga2O3 film while improving the overall crystallinity through the annealing process. This study highlights the significance of annealing in modulating capacitance and high-resistive/low-resistive state properties of Ga2O3 memristors, contributing to optimizing device design and performance. This study underscores the significance of high-temperature annealing in improving the channel-switching characteristics of Ga2O3-based memristors, which is crucial for the development of low-power, high-efficiency memory device.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...