Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.156
Filtrar
1.
Anal Bioanal Chem ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093417

RESUMEN

Oat products have gained widespread recognition as a health food due to their rich and balanced nutritional profile and convenience. However, the unique matrix composition of oats, which differs significantly from other cereals, presents specific challenges for mycotoxin analysis. This study presents an ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method enhanced with an innovative egg white gel pretreatment for the simultaneous analysis of 13 regulated and unregulated trichothecenes in oats. The method demonstrated excellent performance with high accuracy (> 87.5%), repeatability (< 5.7%), and reproducibility (< 8.1%). Analysis of 100 commercial oat products revealed a concerning detection rate (78%) for at least one of the 11 trichothecenes investigated. Notably, deoxynivalenol, exceeding the standard limit in 2% of samples, exhibited the highest detection rate (62%). Additionally, concerning co-occurrence patterns and positive correlations were observed, highlighting potential synergistic effects. The first-time detection of unregulated mycotoxins (T-2 triol, 4,15-diacetoxyscirpenol, 15-acetoxyscirpenol, and neosolaniol) underscores the need for comprehensive monitoring. This method, while developed for oats, shows potential for broader application to other cereals, though further investigation and confirmation are necessary. These findings suggest a potentially underestimated risk of trichothecenes in oats, necessitating continuous monitoring to ensure consumer safety.

2.
Foods ; 13(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39123659

RESUMEN

Pollution of arable land with heavy metals is a worldwide problem. Cadmium (Cd) is a toxic metal that poses a severe threat to humans' and animals' health and lives. Plants can easily absorb Cd from the soil, and plant-based food is the main means of exposure to this hazardous element for humans and animals. Phytoremediation is a promising plant-based approach to removing heavy metals from the soil, and plant growth-promoting micro-organisms such as the fungi Trichoderma can enhance the ability of plants to accumulate metals. Inoculation of Avena sativa L. (oat) with Trichoderma viride enhances germination and seedling growth in the presence of Cd and, in this study, the growth of 6-month-old oat plants in Cd-contaminated soil was not increased by inoculation with T. viride, but a 1.7-fold increase in yield was observed. The content of Cd in oat shoots depended on the Cd content in the soil. Still, it was unaffected by the inoculation with T. viride. A. sativa metallothioneins (AsMTs) participate in plant-fungi interaction, however, their role in this study depended on MT type and Cd concentration. The inoculation of A. sativa with T. viride could be a promising approach to obtaining a high yield in Cd-contaminated soil without increasing the Cd content in the plant.

3.
Food Chem ; 460(Pt 3): 140787, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39128371

RESUMEN

This study aimed to optimize an alternative frozen dessert formulation using the response surface method (RSM). The formulation utilized oat-based milk substitute (OBMS) due to its desirable texture, sensory appeal, and nutritional benefits for vegans and lactose intolerant individuals. Xanthan gum (XG) was also incorporated to enhance the rheological properties of the dessert. With a coefficient of consistency of 192.58 Pa.s and a hysteresis field of 10,999 Pa/s, the ice cream formulation with the greatest rheological structure was discovered to be the combination of 20% oats, 0.5% xanthan gum (XG), and pasteurized at 65 °C. It also showed <10% melting in the first 10 min, confirming that it has a very stable structure. At the same pasteurization conditions and XG ratios, it was observed that rheological stability decreased with increasing oat milk addition. However, the shear thinning behavior of frozen dessert was improved by creating a more complex network structure with increasing XG concentration. The overrun values of the frozen desserts ranged from 21.55% to 34.63%, with the majority being statistically similar. The vegan frozen dessert formulation obtained with 40% oats, 0.37% XG and pasteurization at 60 °C showed a high level of sensory acceptance. This research contributes to the field of vegan food product development by providing innovative rheological and sensory alternatives to traditional frozen desserts using oats and XG.

4.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137936

RESUMEN

The ability of oats to reduce blood cholesterol is well established but there is increasing evidence that its health benefits extend well beyond that. The purpose of this review was to critically evaluate the state of the science of oats in relation to all-cause mortality, cardiovascular and diabetes risk and the effects of oats on blood lipids, blood glucose, blood pressure, weight management and gut health from meta-analyses and systematic reviews. Limited epidemiological data indicated a possible beneficial effect of oats on all-cause mortality and incident diabetes when high versus low oat consumers were compared, but its effect on cardiovascular events was not adequately discerned. Observational data also showed an inverse association between oat intake and blood cholesterol, blood pressure, body weight and obesity variables in different populations. Randomized controlled oat intervention studies demonstrated a significant reduction in postprandial blood glucose in both diabetic and non-diabetic subjects, fasting blood glucose in diabetic subjects, blood pressure in prehypertensive individuals, and body weight and adiposity in overweight individuals. Increased fecal bulk was observed but clinical data for a potential gut barrier effect is lacking. The mechanism of action of each health effect was reviewed. While beta-glucan viscosity was once considered the only mode of action, it is evident that the fermentation products of beta-glucan and the associated gut microbial changes, as well as other components in oats (i.e., avenanthramides etc.) also play an important role.

5.
J Food Sci ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138633

RESUMEN

This study investigated the use of microencapsulated Asiatic pennywort (Centella asiatica) (CA) as a functional ingredient to formulate a novel chocolate oat milk beverage. The main objectives of the study were to characterize and encapsulate bioactive components from CA and to determine the polyphenol content and sensory properties of the beverage. CA extract was microencapsulated using maltodextrin and gum Arabic as carriers and subsequently freeze-dried to produce microcapsules. Microencapsulated CA was incorporated into chocolate oat milk at varying concentrations. Polyphenol content of the beverages was quantified using liquid chromatography-mass spectrometry. Consumer acceptability and sensory perception of the beverages were evaluated through an acceptance test and a check-all-that-apply test, respectively, to assess the sensory characteristics of the chocolate oat milk beverage. CA fortified chocolate oat milk contained fourteen polyphenols. Increasing the concentration of microencapsulated CA led to an increase in the polyphenol content of the beverage. Among the identified polyphenols, asiatic acid and asiaticoside stood out as the unique and most abundant compounds in CA (p < 0.05). Additionally, the incorporation of cocoa powder into the beverage further contributed to the polyphenol content, introducing bioactive compounds such as benzoic acid, caffeic acid, catechin, chlorogenic acid, kaempferol, luteolin, madecassic acid, p-coumaric acid, and quercetin. Evaluation of consumer acceptability revealed that chocolate oat milk beverages containing 2% and 4% microencapsulated CA were liked by consumers. However, beverages with higher concentrations of CA were perceived as less acceptable, characterized by grassy, bitter, and earthy attributes. In conclusion, this study demonstrates the potential of microencapsulated CA as a functional ingredient in chocolate oat milk beverages. PRACTICAL APPLICATION: This study reveals new insights on the microencapsulation of bioactive compounds in CA, proposing its potential as a novel functional ingredient in food and beverage applications in Western markets. The study revealed microencapsulated CA retained polyphenols in CA including asiatic acid and asiaticoside responsible for its bioactive properties. Consumer perception of CA added to oat milk revealed that it can be added at an acceptable level of 4%; however, higher amounts can decrease consumer acceptability. As practitioners explore the incorporation of CA as a functional component in food products, it is crucial to explore preservation techniques for the sensitive bioactive components while balancing the optimal amount of CA to enhance overall consumer liking.

6.
Nutrients ; 16(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39125425

RESUMEN

Male infertility represents a significant public health concern. There is a negative impact of inflammatory bowel diseases (IBDs) on the male reproductive system. The aim of this study was to investigate whether oat beta-glucan (OBG) with different molar mass can modulate parameters of antioxidant defense and inflammatory response in the testes of adult Sprague-Dawley rats with TNBS-induced colitis and whether the OBG intervention can modulate the inflammatory response in association with the RAS system. Results: higher testicular superoxide dismutase (SOD), glutathione reductase (GR) activities and glutathione (GSH) concentration, and lower testosterone (T) level and glutathione peroxidase (GPx) activity, were observed in rats with colitis than in healthy control ones. TNBS-induced colitis resulted in decreased the angiotensin 1-7 (ANG 1-7) level in the testes of rats fed with low-molar mass OBG compared to control animals. Conclusions: although colitis induced moderate pro-oxidant changes in the gonads, it seems plausible that dietary intervention with different fractions of oat beta-glucans mass may support the maintenance of reproductive homeostasis via the stimulation of the local antioxidant defense system.


Asunto(s)
Antioxidantes , Avena , Colitis , Ratas Sprague-Dawley , Testículo , beta-Glucanos , Animales , Masculino , beta-Glucanos/farmacología , beta-Glucanos/administración & dosificación , Testículo/metabolismo , Testículo/efectos de los fármacos , Antioxidantes/metabolismo , Avena/química , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/dietoterapia , Ratas , Angiotensina I/metabolismo , Ácido Trinitrobencenosulfónico , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Fragmentos de Péptidos/metabolismo , Glutatión/metabolismo , Testosterona/sangre , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo
7.
Food Chem ; 460(Pt 3): 140766, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126946

RESUMEN

Vitamin B12 deficiency poses significant health risks, especially among populations with limited access to animal-based foods. This study explores the utilisation of cereal bran by-products, wheat (WB) and oat bran (OB), as substrates for in situ vitamin B12 fortification through solid-state fermentation (SSF) using Propionibacterium freudenreichii. The impact of various precursors addition, including riboflavin, cobalt, nicotinamide and DMBI on vitamin B12 production, along with changes in microbial growth, chemical profiles, and vitamin B12 yields during fermentation was evaluated. Results showed that WB and OB possess favourable constituents for microbial growth and vitamin B12 synthesis. The substrates supplemented with riboflavin, cobalt, and DMBI demonstrated enhanced B12 production. In addition, pH levels are essential in microbial viability and cobalamin biosynthesis. Monosaccharides and organic acids play a crucial role, with maltose showing a strong positive association with B12 production in OB, while in WB, citric acid exhibits significant correlations with various factors.

8.
J Agric Food Chem ; 72(32): 17847-17857, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39088794

RESUMEN

The mechanisms of insecticide resistance are complex. Recent studies have revealed a novel mechanism involving the chemosensory system in insecticide resistance. However, the specific binding mechanism between olfactory-related genes and insecticides needs to be clarified. In this study, the binding mechanism between pyrethroid insecticide deltamethrin and RpCSP6 from Rhopalosiphum padi was investigated by using computational and multiple experimental methods. RpCSP6 was expressed in different tissues and developmental stages of R. padi and can be induced by deltamethrin. Knockdown of RpCSP6 significantly increased the susceptibility of R. padi to deltamethrin. The binding affinity of RpCSP6 to 24 commonly used insecticides was measured. Seven key residues were found to steadily interact with deltamethrin, indicating their significance in the binding affinity to the insecticide. Our research provided insights for effectively analyzing the binding mechanism of insect CSPs with insecticides, facilitating the development of new and effective insecticides that target insect CSPs.


Asunto(s)
Proteínas de Insectos , Resistencia a los Insecticidas , Insecticidas , Nitrilos , Piretrinas , Piretrinas/metabolismo , Piretrinas/farmacología , Nitrilos/metabolismo , Nitrilos/farmacología , Nitrilos/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Insecticidas/farmacología , Insecticidas/metabolismo , Insecticidas/química , Resistencia a los Insecticidas/genética , Animales , Unión Proteica
9.
Mol Genet Metab ; 143(1-2): 108542, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39053126

RESUMEN

Gyrate atrophy of the choroid and retina (GACR) is caused by pathogenic biallelic variants in the gene encoding ornithine-δ-aminotransferase (OAT), and is characterized by progressive vision loss leading to blindness. OAT is a pyridoxal-5'-phosphate (PLP) dependent enzyme that is mainly involved in ornithine catabolism, and patients with a deficiency develop profound hyperornithinemia. Therapy is aimed at lowering ornithine levels through dietary arginine restriction and, in some cases, through enhancement of OAT activity via supraphysiological dosages of pyridoxine. In this study, we aimed to extend diagnostic practices in GACR by extensively characterizing the consequences of pathogenic variants on the enzymatic function of OAT, both at the level of the enzyme itself as well as the flux through the ornithine degradative pathway. In addition, we developed an in vitro pyridoxine responsiveness assay. We identified 14 different pathogenic variants, of which one variant was present in all patients of Dutch ancestry (p.(Gly353Asp)). In most patients the enzymatic activity of OAT as well as the rate of [14C]-ornithine flux was below the limit of quantification (LOQ). Apart from our positive control, only one patient cell line showed responsiveness to pyridoxine in vitro, which is in line with the reported in vivo pyridoxine responsiveness in this patient. None of the patients harboring the p.(Gly353Asp) substitution were responsive to pyridoxine in vivo or in vitro. In silico analysis and small-scale expression experiments showed that this variant causes a folding defect, leading to increased aggregation properties that could not be rescued by PLP. Using these results, we developed a diagnostic pipeline for new patients suspected of having GACR. Adding OAT enzymatic analyses and in vitro pyridoxine responsiveness to diagnostic practices will not only increase knowledge on the consequences of pathogenic variants in OAT, but will also enable expectation management for therapeutic modalities, thus eventually improving clinical care.

10.
Microorganisms ; 12(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39065243

RESUMEN

The transformation of oat brewery waste (OBW) into livestock feed could be a potential replacement for the expensive concentrate and one of the effective approaches for avoiding health hazards due to the accumulation of oat brewery waste in the environment. To explore the potential of OBW as a methane (CH4) mitigating agent, an in vitro study was undertaken to investigate the effect of graded replacement of concentrate with OBW on CH4 production, microbiota, feed fermentation, and CAZymes. A total of five treatments with variable proportions of OBW were formulated. The results indicated a linear decrease in the total gas production and a 38-52% decrease in CH4 production with a 60 and 100% replacement of concentrate with OBW. The inclusion of OBW also affected the abundance of microbes such as Firmicutes, Euryarchaeota, Methanobrevibacter, and protozoa numbers. This study demonstrated that OBW can partially replace the concentrate and effectively mitigate CH4 production; however, the concurrent decrease in fermentation cautioned for the partial replacement of concentrate with OBW at an appropriate level at which the fermentation remains unaffected while decreasing CH4 production. Therefore, waste from oat breweries can contribute to curtailing the accumulation of greenhouse gases (GHGs) in the atmosphere.

11.
Foods ; 13(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39063369

RESUMEN

This study aimed to maximise the content of water-soluble protein (WSP) and ß-glucan (BG) in oat drink (OD) products by optimising the duration of treatment with neutral (NP) and acidic (AP) proteases. Additionally, it investigated the correlation between changes in the OD's nutritional profile and its rheological and sensory properties. After initial treatment with α-amylase, the OD samples were divided into two groups, i.e., one treated with NP and the other with AP for 30, 60, 120, and 180 min. The samples were then analysed for their WSP and BG contents. Samples with an optimised treatment duration were evaluated for their rheological and sensory properties. The OD sample treated with AP for 60 min exhibited the highest ß-glucan (0.52 g/100 mL) and WSP (1.56 g/100 mL) contents, improved storage stability, and the lowest sedimentation rate (2.13%/h), compared to the control OD sample. However, sensorially, this sample was characterised by a sticky, gluey mouthfeel and was less acceptable as a drinkable product. This study demonstrated the potential effect of protease treatment on enhancing the nutritional value and stability of OD products, although further studies are necessary to improve the sensory properties of these drinks.

12.
Foods ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998551

RESUMEN

The current research examined the impact of different concentrations of oat beta-glucan (OG) on the in vitro digestibility of fava bean starch (FS). Our pasting analysis demonstrated that OG effectively decreased the viscosity and regrowth of FS, suppressing its in situ regrowth while enhancing the in vitro pasting temperature. Moreover, OG markedly diminished amylose leaching and minimized the particle size of the pasted starch. Rheological and textural evaluations demonstrated that OG markedly diminished the viscoelasticity of the starch and softened the gel strength of the composite system. Structural analysis revealed that hydrogen bonding is the primary interaction in the FS-OG system, indicating that OG interacts with amylose through hydrogen bonding, thereby delaying starch pasting and enhancing the gelatinization characteristics of FS gels. Notably, the incorporation of OG resulted in a reduction in the levels of rapidly digestible starch (RDS) and slowly digestible starch (SDS) in FS, accompanied by a notable increase in resistant starch (RS) content, from 21.30% to 31.82%. This study offers crucial insights for the application of OG in starch-based functional foods.

13.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000033

RESUMEN

Membrane transporters interact not only with endogenous substrates but are also engaged in the transport of xenobiotics, including drugs. While the coordinated function of uptake (solute carrier family-SLC and SLCO) and efflux (ATP-binding cassette family-ABC, multidrug and toxic compound extrusion family-MATE) transporter system allows vectorial drug transport, efflux carriers alone achieve barrier functions. The modulation of transport functions was proved to be effective in the treatment strategies of various pathological states. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are the drugs most widely applied in clinical practice, especially in the treatment of diabetes mellitus and heart failure. Sodium taurocholate co-transporting polypeptide (NTCP) serves as virus particles (HBV/HDV) carrier, and inhibition of its function is applied in the treatment of hepatitis B and hepatitis D by myrcludex B. Inherited cholestatic diseases, such as Alagille syndrome (ALGS) and progressive familial intrahepatic cholestasis (PFIC) can be treated by odevixibat and maralixibat, which inhibit activity of apical sodium-dependent bile salt transporter (ASBT). Probenecid can be considered to increase uric acid excretion in the urine mainly via the inhibition of urate transporter 1 (URAT1), and due to pharmacokinetic interactions involving organic anion transporters 1 and 3 (OAT1 and OAT3), it modifies renal excretion of penicillins or ciprofloxacin as well as nephrotoxicity of cidofovir. This review discusses clinically approved drugs that affect membrane/drug transporter function.


Asunto(s)
Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Animales , Transportador 2 de Sodio-Glucosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo
14.
Plant Physiol Biochem ; 214: 108890, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38950462

RESUMEN

Drought stress affects plant photosynthesis, leading to a reduction in the quality and yield of crop production. Non-foliar organs play a complementary role in photosynthesis during plant growth and development and are important sources of energy. However, there are limited studies on the performance of non-foliar organs under drought stress. The photosynthetic-responsive differences of oat spikelet organs (glumes, lemmas and paleas) and flag leaves to drought stress during the grain-filling stage were examined. Under drought stress, photosynthetic performance of glume is more stable. Intercellular CO2 concentration (Ci), chlorophyll b, maximum photochemical efficiency of photosystem II. (Fv/Fm), and electron transport rate (ETR) were significantly higher in the glume compared to the flag leaf. The transcriptome data revealed that stable expression of the RCCR gene under drought stress was the main reason for maintaining higher chlorophyll content in the glume. Additionally, no differential expression genes (DEGs) related to Photosystem Ⅰ (PSI) reaction centers were found, and drought stress primarily affects the Photosystem II (PSII) reaction center. In spikelets, the CP43 and CP47 subunits of PSII and the AtpB subunit of ATP synthase were increased on the thylakoid membrane, contributing to photosynthetic stabilisation of spikelets as a means of supplementing the limited photosynthesis of the leaves under drought stress. The results enhanced understanding of the photosynthetic performance of oat spikelet during the grain-filling stage, and also provided an important basis on improving the photosynthetic capacity of non-foliar organs for the selection and breeding new oat varieties with high yield and better drought resistance.


Asunto(s)
Avena , Sequías , Fotosíntesis , Complejo de Proteína del Fotosistema II , Fotosíntesis/fisiología , Avena/genética , Avena/metabolismo , Avena/crecimiento & desarrollo , Avena/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Complejo de Proteína del Fotosistema I/metabolismo , Grano Comestible/fisiología , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
15.
Ultrason Sonochem ; 109: 106989, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39059252

RESUMEN

The aim of this study is to optimize the extraction process of oat saponins (Os) and to evaluate their antioxidant potential. Single factor experiment, response surface optimization design, and orthogonal test were employed to optimize the process of ultrasonic-assisted extraction of Os, and the optimal extraction conditions were as followed: ethanol volume fraction of 80 %, material-solvent ratio of 1:14, ultrasonic power of 400 W, ultrasonic time of 25 min, extraction temperature of 60℃, extraction time of 180 min, and the extraction rate of Os was 0.317 %±0.105 %. Using the method, the crude extract of Os was prepared and its abilities of scavenging radicals in vitro and inhibiting protein oxidation in pork were determined, with ascorbic acid (Vc) as the control. Results revealed that the scavenging ability of Os against DPPH radical, hydroxyl radical (·OH) and superoxide anion (O2-) increased with the concentration of Os. Interestingly, the scavenging abilities of Os against DPPH and O2- were far lower than that of Vc, but its scavenging ability against ·OH was very close to that of Vc, reaching 84.59 % and 96.33 %, respectively. Furthermore, the experiments of pork storage and Fenton oxidation system showed that Os with 0.09-0.72 mg/mL could reduce the production of carbonyl (8.49 %-50.05 %) and the oxidation of total sulfhydryl (1.29 %-25.86 %), and effectively inhibit the oxidation of protein in pork by 7.82 %-22.53 %. The results of this study will provide a theoretical basis for the application of oat saponins as a natural anti-protein oxidant in meat processing and storage.

16.
Bioresour Bioprocess ; 11(1): 73, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052177

RESUMEN

Human immortal keratinocyte cells (HaCaT) are induced with UVB to establish an injury model. This model is utilized to investigate whether oat bran fermentation broth (OBF) has a reparative effect on skin inflammation and damage to the skin barrier caused by UVB irradiation. The results show that compared with unfermented oat bran (OB), OBF exhibits higher structural homogeneity, increased molecular weight size, active substances content, and in vitro antioxidant activity. OBF has a scavenging effect on excess reactive oxygen species (ROS) and increases the intracellular levels of antioxidant enzymes. It was found that OBF has a stronger inhibitory effect on the release of inflammatory factors than OB. It increases the synthesis of AQP3 and FLG proteins while decreasing the secretion of KLK-7. OBF can inhibit the transcription level of inflammatory factors by suppressing the JAK/STAT signaling pathway. Safety experiments demonstrate that OBF has a high safety profile.

17.
Pharm Res ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044045

RESUMEN

PURPOSE: The aim of this study was to examine the ability of sunscreen active ingredients to inhibit in vitro drug metabolism via cytochrome P450 (CYP) enzymes and drug uptake transporters. METHODS: Metabolism assays with human liver microsomes were conducted for CYP2C9, CYP2D6 and CYP3A4 using probe substrates warfarin, bufuralol and midazolam, respectively. Uptake transporter assays with transfected cell lines were conducted for OAT3, OCT2 and OATP1B1 with probe substrates estrone-3-sulfate, metformin and rosuvastatin, respectively. Six sunscreen active ingredients, avobenzone, enzacamene, oxybenzone, octinoxate, trolamine, and homosalate, were evaluated up to their aqueous solubility limits in the assays. RESULTS: None of the sunscreen active ingredients inhibited CYP2D6 or CYP3A4 activities in the microsomes at concentration ranges up to tenfold higher than their known clinical total plasma levels. Only enzacamene, oxybenzone and trolamine were found to be inhibitory to CYP2C9 activity with IC50 values of 14.76, 22.46 and 154.7 µM, respectively. Avobenzone, enzacamene, homosalate and octinoxate were not inhibitory to the uptake transporters at the evaluated concentrations. Oxybenzone was inhibitory to OAT3 and OCT2 with IC50 values of 39.93 and 42.77 µM, respectively. Trolamine also inhibited uptake in OAT3 and OCT2 transfected cells with IC50 values of 448.1 and 1376 µM, respectively. CONCLUSIONS: Although enzacamene, oxybenzone and trolamine inhibited CYP2C9 and the renal transporters OAT3 and OCT2 in vitro, their IC50 values exceeded total plasma levels found in clinical studies. Therefore, it is unlikely that these sunscreen active ingredients in sunscreen products will inhibit the metabolism or transport of co-administered drugs in consumers.

18.
J Colloid Interface Sci ; 674: 663-676, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950465

RESUMEN

HYPOTHESIS: Engineering plant-based microgel particles (MPs) at a molecular scale is meaningful to prepare functional fat analogues. We hypothesize that oat protein isolate (OPI) and κ-carrageenan (CA) have synergy in MPs formation, using MPs with controllable structure, and further to fabricate fat analogues with adjustable characteristics is feasible. Their digestion fate will also be possibly modulated by interfacial coatings. EXPERIMENTS: OPI-based conjugated MPs with tunable rigidities by changing crosslinking densities were designed. The relationship between microgel structures, and emulsion gel properties was explored through spectroscopy, microstructure, rheology and tribology. The delivery to lycopene, as well as inhibiting digestion behaviors of fat analogues was evaluated in a simulated gastro-intestinal tract. FINDINGS: The rigidity of conjugated MPs could be tailored to optimize the performance of fat analogues. OPI-1 %CA MPs could stabilize emulsions up to 95 % oil fraction with fine texture. Tribological behaviors had a dependence on microgel elasticity and interfacial coatings, medium hard MP-stabilized emulsion was less disrupted without coalescence after oral processing. Digestion was delayed by denser and harder MPs by softening the interfacial particle layer or limiting lipase accessibility. Softer conjugated MPs possessed better flexibility and were broken down more easily leading to a higher rate of lipid digestion.


Asunto(s)
Avena , Carragenina , Digestión , Microgeles , Tamaño de la Partícula , Carragenina/química , Avena/química , Microgeles/química , Proteínas de Plantas/química , Emulsiones/química , Propiedades de Superficie , Reología , Grasas/química , Grasas/metabolismo
19.
Int J Biol Macromol ; 274(Pt 1): 133295, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914398

RESUMEN

The stability and bioavailability of green tea polyphenols, crucial for their health benefits, are compromised by environmental sensitivity, limiting their use in functional foods and supplements. This study introduces a novel water-in-oil-in-water double emulsion technique with microwave-assisted extraction, significantly enhancing the stability and bioavailability of these compounds. The primary objective of this study was to assess the effectiveness of several encapsulating agents, such as gum Arabic as control and native and modified starches, in improving encapsulated substances' stability and release control. Native and modified starches were chosen for their outstanding film-forming properties, improving encapsulation efficiency and protecting bioactive compounds from oxidative degradation. The combination of maltodextrin and tapioca starch improved phenolic content retention, giving 46.25 ± 2.63 mg/g in tapioca starch microcapsules (GTTA) and 41.73 ± 3.24 mg/g in gum arabic microcapsules (GTGA). Besides the control, modified starches also had the most potent antioxidant activity, with a 45 % inhibition (inh%) in the DPPH analysis. Oat oil was utilized for its superior viscosity and nutritional profile, boosting emulsion stability and providing the integrity of the encapsulated polyphenols, as indicated by the microcapsules' narrow span index (1.30 ± 0.002). The microcapsules' thermal behavior and structural integrity were confirmed using advanced methods such as Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared Spectroscopy (FT-IR). This study highlights the critical role of choosing appropriate wall materials and extraction techniques. It sets a new standard for microencapsulation applications in the food industry, paving the way for future innovations.


Asunto(s)
Antioxidantes , Composición de Medicamentos , Emulsiones , Polifenoles , Almidón , , Emulsiones/química , Polifenoles/química , Almidón/química , Té/química , Antioxidantes/química , Aceites de Plantas/química , Avena/química , Goma Arábiga/química , Cápsulas , Viscosidad , Polisacáridos
20.
Genes (Basel) ; 15(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38927630

RESUMEN

LONP1 is the principal AAA+ unfoldase and bulk protease in the mitochondrial matrix, so its deletion causes embryonic lethality. The AAA+ unfoldase CLPX and the peptidase CLPP also act in the matrix, especially during stress periods, but their substrates are poorly defined. Mammalian CLPP deletion triggers infertility, deafness, growth retardation, and cGAS-STING-activated cytosolic innate immunity. CLPX mutations impair heme biosynthesis and heavy metal homeostasis. CLPP and CLPX are conserved from bacteria to humans, despite their secondary role in proteolysis. Based on recent proteomic-metabolomic evidence from knockout mice and patient cells, we propose that CLPP acts on phase-separated ribonucleoprotein granules and CLPX on multi-enzyme condensates as first-aid systems near the inner mitochondrial membrane. Trimming within assemblies, CLPP rescues stalled processes in mitoribosomes, mitochondrial RNA granules and nucleoids, and the D-foci-mediated degradation of toxic double-stranded mtRNA/mtDNA. Unfolding multi-enzyme condensates, CLPX maximizes PLP-dependent delta-transamination and rescues malformed nascent peptides. Overall, their actions occur in granules with multivalent or hydrophobic interactions, separated from the aqueous phase. Thus, the role of CLPXP in the matrix is compartment-selective, as other mitochondrial peptidases: MPPs at precursor import pores, m-AAA and i-AAA at either IMM face, PARL within the IMM, and OMA1/HTRA2 in the intermembrane space.


Asunto(s)
Endopeptidasa Clp , Hemo , Ratones Noqueados , Mitocondrias , Proteínas Mitocondriales , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/genética , Animales , Ratones , Mitocondrias/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Hemo/metabolismo , Biosíntesis de Proteínas , Humanos , Membranas Mitocondriales/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA