Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1435674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139376

RESUMEN

Halogenated organic compounds are persistent pollutants that pose a serious threat to human health and the safety of ecosystems. Cobamides are essential cofactors for reductive dehalogenases (RDase) in organohalide-respiring bacteria (OHRB), which catalyze the dehalogenation process. This review systematically summarizes the impact of cobamides on organohalide respiration. The catalytic processes of cobamide in dehalogenation processes are also discussed. Additionally, we examine OHRB, which cannot synthesize cobamide and must obtain it from the environment through a salvage pathway; the co-culture with cobamide producer is more beneficial and possible. This review aims to help readers better understand the importance and function of cobamides in reductive dehalogenation. The presented information can aid in the development of bioremediation strategies.

2.
J Hazard Mater ; 452: 131243, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989787

RESUMEN

In situ bioremediation using organohalide-respiring bacteria (OHRB) is a prospective method for the removal of persistent halogenated organic pollutants from groundwater, as OHRB can utilize H2 or organic compounds produced by carbon source materials as electron donors for cell growth through organohalide respiration. However, few previous studies have determined the suitability of different carbon source materials to the metabolic mechanism of reductive dehalogenation from the perspective of electron transfer. The focus of this critical review was to reveal the interactions and relationships between carbon source materials and functional microbes, in terms of the electron transfer mechanism. Furthermore, this review illustrates some innovative strategies that have used the physiological characteristics of OHRB to guide the optimization of carbon source materials, improving the abundance of indigenous dehalogenated bacteria and enhancing electron transfer efficiency. Finally, it is proposed that future research should combine multi-omics analysis with machine learning (ML) to guide the design of effective carbon source materials and optimize current dehalogenation bioremediation strategies to reduce the cost and footprint of practical groundwater bioremediation applications.


Asunto(s)
Carbono , Agua Subterránea , Transporte de Electrón , Carbono/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental
3.
Environ Pollut ; 325: 121443, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921661

RESUMEN

1,2-Dichloroethane (1,2-DCA) is a ubiquitous volatile halogenated organic pollutant in groundwater and soil, which poses a serious threat to the ecosystem and human health. Microbial reductive dechlorination has been recognized as an environmentally-friendly strategy for the remediation of sites contaminated with 1,2-DCA. In this study, we obtained an anaerobic microbiota derived from 1,2-DCA contaminated groundwater, which was able to sustainably convert 1,2-DCA into non-toxic ethylene with an average dechlorination rate of 30.70 ± 11.06 µM d-1 (N = 6). The microbial community profile demonstrated that the relative abundance of Dehalococcoides species increased from 0.53 ± 0.08% to 44.68 ± 3.61% in parallel with the dechlorination of 1,2-DCA. Quantitative PCR results showed that the Dehalococcoides species 16S rRNA gene increased from 2.40 ± 1.71 × 108 copies∙mL-1 culture to 4.07 ± 2.45 × 108 copies∙mL-1 culture after dechlorinating 110.69 ± 30.61 µmol of 1,2-DCA with a growth yield of 1.55 ± 0.93 × 108 cells per µmol Cl- released (N = 6), suggesting that Dehalococcoides species used 1,2-DCA for organohalide respiration to maintain cell growth. Notably, the relative abundances of Methanobacterium sp. (p = 0.0618) and Desulfovibrio sp. (p = 0.0001995) also increased significantly during the dechlorination of 1,2-DCA and were clustered in the same module with Dehalococcoides species in the co-occurrence network. These results hinted that Dehalococcoides species, the obligate organohalide-respiring bacterium, exhibited potential symbiotic relationships with Methanobacterium and Desulfovibrio species. This study illustrates the importance of microbial interactions within functional microbiota and provides a promising microbial resource for in situ bioremediation in sites contaminated with 1,2-DCA.


Asunto(s)
Chloroflexi , Dehalococcoides , Humanos , Dehalococcoides/genética , ARN Ribosómico 16S/genética , Ecosistema , Biodegradación Ambiental , Etilenos , Chloroflexi/genética
4.
FEMS Microbiol Ecol ; 98(7)2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35665806

RESUMEN

Microbial communities that support respiration of halogenated organic contaminants by Dehalococcoides sp. facilitate full-scale bioremediation of chlorinated ethenes and demonstrate the potential to aid in bioremediation of halogenated aromatics like polychlorinated biphenyls (PCBs). However, it remains unclear if Dehalococcoides-containing microbial community dynamics observed in sediment-free systems quantitatively resemble that of sediment environments. To evaluate that possibility we assembled, annotated, and analyzed a Dehalococcoides sp. metagenome-assembled genome (MAG) from PCB-contaminated sediments. Phylogenetic analysis of reductive dehalogenase gene (rdhA) sequences within the MAG revealed that pcbA1 and pcbA4/5-like rdhA were absent, while several candidate PCB dehalogenase genes and potentially novel rdhA sequences were identified. Using a compositional comparative metagenomics approach, we quantified Dehalococcoides-containing microbial community structure shifts in response to halogenated organics and the presence of sediments. Functional level analysis revealed significantly greater abundances of genes associated with cobamide remodeling and horizontal gene transfer in tetrachloroethene-fed cultures as compared to halogenated aromatic-exposed consortia with or without sediments, despite little evidence of statistically significant differences in microbial community taxonomic structure. Our findings support the use of a generalizable comparative metagenomics workflow to evaluate Dehalococcoides-containing consortia in sediments and sediment-free environments to eludicate functions and microbial interactions that facilitate bioremediation of halogenated organic contaminants.


Asunto(s)
Chloroflexi , Bifenilos Policlorados , Biodegradación Ambiental , Chloroflexi/química , Chloroflexi/genética , Dehalococcoides , Halogenación , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA