Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Elife ; 122024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106189

RESUMEN

Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.


Asunto(s)
Retículo Endoplásmico , Esfingomielinas , Esfingomielinas/metabolismo , Esfingomielinas/biosíntesis , Humanos , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Multimerización de Proteína , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Técnicas de Inactivación de Genes , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis
2.
Environ Sci Technol ; 58(33): 14687-14697, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39115966

RESUMEN

As global change processes modify the extent and functions of terrestrial-aquatic interfaces, the variability of critical and dynamic transitional zones between wetlands and uplands increases. However, it is still unclear how fluctuating water levels at these dynamic boundaries alter groundwater biogeochemical cycling. Here, we used high-temporal resolution data along gradients from wetlands to uplands and during fluctuating water levels at freshwater coastal areas to capture spatiotemporal patterns of groundwater redox potential (Eh). We observed that topography influences groundwater Eh that is higher in uplands than in wetlands; however, the high variability within TAI zones challenged the establishment of distinct redox zonation. Declining water levels generally decreased Eh, but most locations exhibited significant Eh variability, which is associated with rare instances of short-term water level fluctuations, introducing oxygen. The Eh-oxygen relationship showed distinct hysteresis patterns, reflecting redox poising capacity at higher Eh, maintaining more oxidizing states longer than the dissolved oxygen presence. Surprisingly, we observed more frequent oxidizing states in transitional areas and wetlands than in uplands. We infer that occasional oxygen entering specific wetland-upland boundaries acts as critical biogeochemical control points. High-resolution data can capture such rare yet significant biogeochemical instances, supporting redox-informed models and advancing the predictability of climate change feedback.


Asunto(s)
Agua Subterránea , Oxidación-Reducción , Humedales , Agua Subterránea/química
3.
Bioresour Technol ; 409: 131243, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122128

RESUMEN

Understanding the effect of O2 on the accumulation characteristics of NO2--N and S0 in the sulfur autotrophic denitrification (DSSADN) system is crucial for enhancing the denitrification efficiency of partial nitrification-anammox using DSSADN. The results revealed that in an environment without O2 entry, the NO2--N accumulation efficiency (NiAE) and S0 accumulation efficiency (S0AE) of the DSSADN system reached 89.40 % and 93.41 %, respectively. Once system entered O2, ORP value kept increasing. When ORP increased to -59.9 mV (DO = 0.1 mg/L), soxB and nirK gene expression rose and as well NiAE and S0AE continuously decreased to 48.13 % and 29.35 %. When ORP was above 30.9 mV (DO >0.2 mg/L) but below 81.0 mV (DO<0.4 mg/L), narG gene expression reduced and the relatively high sqr gene expression allowed NiAE and S0AE remained at 45.08 % and 33.31 %. O2 promoted the synergistic effect of Thiobacillus and Azoarcus without the proliferation of nitrite oxidizing bacteria.


Asunto(s)
Procesos Autotróficos , Desnitrificación , Oxígeno , Azufre , Azufre/metabolismo , Oxígeno/metabolismo , Reactores Biológicos , Thiobacillus/metabolismo , Microbiota
4.
Transl Androl Urol ; 13(7): 1228-1238, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39100838

RESUMEN

Background: In the last few years, studies have initially confirmed the diagnostic significance of oxidation-reduction potential (ORP) in male infertility patients. In this article, we used meta-analysis to clarify the role of ORP in the diagnosis of male infertility. Methods: PubMed, Embase, Web of Science, and Cochrane Library were searched by computer for relevant published literature. Quality assessment of the included literature was performed by Quality Assessment of Diagnostic Accuracy Studies (QUADAS) scale. Heterogeneity analysis of included studies was conducted using Metadisc 1.4 and Stata 12.0, and effective models for quantitative synthesis were selected based on heterogeneity results; the sensitivity and specificity of the synthesis were obtained using the software, and in order to reduce the effects of heterogeneity and thresholds, the information of sensitivity and specificity was integrated. We used the subject receiver operating characteristic (SROC) curve, area under the curve (AUC) and Q* index for comprehensive evaluation. Results: Seven papers were eventually included in the study, and the results showed that ORP had a sensitivity of 0.81 [95% confidence interval (CI): 0.80-0.82] and specificity of 0.66 (95% CI: 0.63-0.69), an AUC of 0.8 and a Q* index of 0.74 for the diagnosis of male infertility. Conclusions: ORP has high sensitivity and specificity for diagnosing male infertility.

5.
J Agric Food Chem ; 72(26): 14769-14785, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912664

RESUMEN

Stigmasterol (ST), a phytosterol found in food, has various biological activities. However, the effect of ST on milk synthesis in dairy cows remains unclear. Therefore, bovine primary mammary epithelial cells (BMECs) were isolated, cultured, and treated with ST to determine the effect of ST on milk synthesis. The study revealed that 10 µM ST significantly increased milk synthesis in BMECs by activating the mammalian target of rapamycin (mTOR) signaling pathway. Further investigation revealed that this activation depends on the regulatory role of oxysterol binding protein 5 (ORP5). ST induces the translocation of ORP5 from the cytoplasm to the lysosome, interacts with the mTOR, recruits mTOR to target the lysosomal surface, and promotes the activation of the mTOR signaling pathway. Moreover, ST was found to increase ORP5 protein levels by inhibiting its degradation via the ubiquitin-proteasome pathway. Specifically, the E3 ubiquitin ligase membrane-associated cycle-CH-type finger 4 (MARCH4) promotes the ubiquitination and subsequent degradation of ORP5. ST mitigates the interaction between MARCH4 and ORP5, thereby enhancing the structural stability of ORP5 and reducing its ubiquitination. In summary, ST stabilizes ORP5 by inhibiting the interaction between MARCH4 and ORP5, thereby activating mTOR signaling pathway and enhancing milk synthesis.


Asunto(s)
Células Epiteliales , Glándulas Mamarias Animales , Leche , Transducción de Señal , Serina-Treonina Quinasas TOR , Ubiquitinación , Animales , Bovinos , Serina-Treonina Quinasas TOR/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Ubiquitinación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Femenino , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Leche/química , Leche/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética
6.
J Robot Surg ; 18(1): 248, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856862

RESUMEN

The purpose of this study was to conduct a comparative analysis of the perioperative outcomes associated with robot-assisted laparoscopic prostatectomy (RARP) versus open radical prostatectomy (ORP) in the obese population diagnosed with prostate cancer. We performed a comprehensive search in key databases such as PubMed, Embase, Web of Science, and the Cochrane Library, encompassing studies of all languages, with a final search date of April 2024. We also omitted articles that consisted of conference abstracts and content that was not pertinent to our study. The aggregated outcomes were evaluated utilizing the metrics of weighted mean differences (WMDs) and odds ratios (ORs). A sensitivity analysis was also integrated into our assessment. The meta-analysis was facilitated by employing Stata/MP version 18 software. Additionally, the study was duly registered with PROSPERO under the identifier: CRD 42024540216. This meta-analysis, which included five trials, shows that compared to ORP, RARP is associated with a reduced estimated blood loss (EBL) (WMD -445.77, 95%CI -866.08, -25.45; p = 0.038), a decreased transfusion rate (OR 0.17, 95%CI 0.13, 0.21; p < 0.001), and a diminished overall complication rate (OR 0.71, 95%CI 0.58, 0.86; p = 0.001). No statistically significant differences were found in operative time (OT) (WMD 1.88, 95%CI -46.53, 50.28; p = 0.939) or length of stay (LOS) (WMD -0.41, 95%CI -1.07, 0.25; p = 0.221). Among patients with obesity and prostate cancer, RARP demonstrates advantages over ORP by reducing estimated blood loss, transfusion requirements, and the incidence of complications. Notably, there were no significant differences in operative duration and hospital stay between the two surgical approaches. These findings suggest that RARP could be a preferable surgical option for obese individuals with prostate cancer.


Asunto(s)
Tiempo de Internación , Obesidad , Prostatectomía , Neoplasias de la Próstata , Procedimientos Quirúrgicos Robotizados , Humanos , Prostatectomía/métodos , Prostatectomía/efectos adversos , Procedimientos Quirúrgicos Robotizados/métodos , Masculino , Obesidad/complicaciones , Neoplasias de la Próstata/cirugía , Tiempo de Internación/estadística & datos numéricos , Resultado del Tratamiento , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Pérdida de Sangre Quirúrgica/estadística & datos numéricos , Laparoscopía/métodos , Tempo Operativo , Transfusión Sanguínea/estadística & datos numéricos
7.
Artículo en Inglés | MEDLINE | ID: mdl-38449111

RESUMEN

Driving fatigue is very likely to cause traffic accidents, seriously threatening the lives and properties of drivers. Therefore, accurate detection and effective mitigation of driving fatigue are crucial for ensuring the personal safety of drivers. This study proposes a method to relieve driving fatigue by properly reducing the temperature to stimulate the human sympathetic nerve. The method uses the intelligent cooling and blowing device on the car seat cushion to achieve cold stimulation of the sympathetic nerve of the driver by reducing the temperature of the driver's hip, back and neck, so as to increase the excitement of the sympathetic nerve, keep the driver alert and achieve the purpose of fighting driving fatigue. In view of the fact that the traditional fatigue detection method is easily affected by environmental factors and individual differences, this study uses the order recurrence plot (ORP) method to detect driving fatigue based on electroencephalogram (EEG) signals. The results show that ORP textures drawn by EEG signals of the two driving conditions (normal driving condition and sensory cold stimulation driving condition) are significantly different, and the quantization parameters determinism (DET) and average diagonal line length (DLL) values are significantly different. Cold stimulation of the subjects' hips, back and neck to alleviate driving fatigue was the best when the temperature was 21 °C. In addition, compared with the traditional methods of fatigue relief, the sensory cold stimulation method proposed in this study does not easily to produce tolerance and has no damage to the body.

8.
Mol Nutr Food Res ; 68(7): e2300739, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528314

RESUMEN

Age-related cognitive decline is primarily attributed to the progressive weakening of synaptic function and loss of synapses, while age-related gut microbial dysbiosis is known to impair synaptic plasticity and cognitive behavior by metabolic alterations. To improve the health of the elderly, the protective mechanisms of Oudemansiella raphanipes polysaccharide (ORP-1) against age-related cognitive decline are investigated. The results demonstrate that ORP-1 and its gut microbiota-derived metabolites SCFAs restore a healthy gut microbial population to handle age-related gut microbiota dysbiosis mainly by increasing the abundance of beneficial bacteria Dubosiella, Clostridiales, and Prevotellaceae and reducing the abundance of harmful bacteria Desulfovibrio, strengthen intestinal barrier integrity by abolishing age-related alterations of tight junction (TJ) and mucin 2 (MUC2) proteins expression, diminish age-dependent increase in circulating inflammatory factors, ameliorate cognitive decline by reversing memory- and synaptic plasticity-related proteins levels, and restrain hyperactivation of microglia-mediated synapse engulfment and neuroinflammation. These findings expand the understanding of prebiotic-microbiota-host interactions.


Asunto(s)
Agaricales , Eje Cerebro-Intestino , Disfunción Cognitiva , Humanos , Anciano , Disbiosis/metabolismo , Prebióticos , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/metabolismo
9.
Front Med (Lausanne) ; 11: 1357659, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510452

RESUMEN

Introduction: The new coronavirus disease, COVID-19, poses complex challenges exacerbated by several factors, with respiratory tissue lesions being notably significant among them. Consequently, there is a pressing need to identify informative biological markers that can indicate the severity of the disease. Several studies have highlighted the involvement of proteins such as APOA1, XPNPEP2, ORP150, CUBN, HCII, and CREB3L3 in these respiratory tissue lesions. However, there is a lack of information regarding antibodies to these proteins in the human body, which could potentially serve as valuable diagnostic markers for COVID-19. Simultaneously, it is relevant to select biological fluids that can be obtained without invasive procedures. Urine is one such fluid, but its effect on clinical laboratory analysis is not yet fully understood due to lack of study on its composition. Methods: Methods used in this study are as follows: total serum protein analysis; ELISA on moderate and severe COVID-19 patients' serum and urine; bioinformatic methods: ROC analysis, PCA, SVM. Results and discussion: The levels of antiAPOA1, antiXPNPEP2, antiORP150, antiCUBN, antiHCII, and antiCREB3L3 exhibit gradual fluctuations ranging from moderate to severe in both the serum and urine of COVID-19 patients. However, the diagnostic value of individual anti-protein antibodies is low, in both blood serum and urine. On the contrary, joint detection of these antibodies in patients' serum significantly increases the diagnostic value as demonstrated by the results of principal component analysis (PCA) and support vector machine (SVM). The non-linear regression model achieved an accuracy of 0.833. Furthermore, PCA aided in identifying serum protein markers that have the greatest impact on patient group discrimination. The study revealed that serum serves as a superior analyte for describing protein quantification due to its consistent composition and lack of organic salts and drug residues, which can otherwise affect protein stability.

10.
Sci Total Environ ; 927: 171961, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537820

RESUMEN

Groundwater is an essential source for drinking water production. Nitrate infiltration into groundwater due to over-fertilization can cause a potential risk for groundwater quality. Pyrite and other geogenic minerals can be oxidized and trace metals consequently released into water, e.g., nickel and uranium. To achieve a better understanding of the nitrate-induced mobilization of metals, this study investigated the release of antimony, arsenic, chromium, cobalt, molybdenum, uranium, and vanadium from three different reduced sediments after nitrate addition. The experiments were conducted as batch and soil column tests under oxygen-free conditions. In addition to the ORP, the pH value was a relevant driver for the metal mobilization due to pH dependent adsorption and ion exchange processes. Uranium concentrations in the water increased with increasing redox potential. Also, antimony and, to a lesser extent, molybdenum showed higher mobilization at higher ORP as well as at higher pH values. On the contrary, arsenic and cobalt was immobilized with increasing redox potential. Pourbaix diagrams demonstrated very complex species distributions even in synthetic water. The mobilization of trace metals is expected to be also influenced by the type of surrounding rocks and water quality parameters such as dissolved organic carbon.

11.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328115

RESUMEN

KRAS is a small GTPase, ubiquitously expressed in mammalian cells, that functions as a molecular switch to regulate cell proliferation and differentiation. Oncogenic mutations that render KRAS constitutively active occur frequently in human cancers. KRAS must localize to the plasma membrane (PM) for biological activity. KRAS PM binding is mediated by interactions of the KRAS membrane anchor with phosphatidylserine (PtdSer), therefore, depleting PM PtdSer content abrogates KRAS PM binding and oncogenic function. From a genome-wide siRNA screen to search for genes that regulate KRAS PM localization, we identified a set of phosphatidylinositol (PI) 3-phosphatase family members: myotubularin-related (MTMR) proteins 2, 3, 4 and 7. Here we show that knockdown of MTMR 2/3/4/7 expression disrupts KRAS PM interactions. The molecular mechanism involves depletion of PM PI 4-phosphate (PI4P) levels, which in turn disrupts the subcellular localization and operation of oxysterol-binding protein related protein (ORP) 5, a PtdSer lipid transfer protein that maintains PM PtdSer content. Concomitantly, silencing MTMR 2/3/4/7 expression elevates PM levels of PI3P and reduces PM and total cellular levels of PtdSer. In summary we propose that the PI 3-phosphatase activity provided by MTMR proteins is required to generate PM PI for the synthesis of PM PI4P, which in turn, promotes the PM localization of PtdSer and KRAS.

12.
J Cancer ; 15(5): 1169-1181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356709

RESUMEN

Background: The glucan extract of Oudemansiella raphanipes (Orp) has multiple biological properties, similar to extracts of other natural edible fungi. Drugs traditionally used in cancer treatment are associated with several drawbacks, such as side effects, induction of resistance, and poor prognosis, and many recent studies have focused on polysaccharides extracted from natural sources as alternatives. Our study focuses on the therapeutic role and molecular mechanism of action of Orp in breast cancer progression. Methods: MMTV-PyMT transgenic mice were used as the spontaneous breast cancer mice model. Immunoblotting, hematoxylin-eosin staining, immunohistochemistry, and immunofluorescence were used to evaluate the tumor behaviors in breast cancer. The inflammatory cell model was constructed using TNF-α. Macrophage activation and WNT/ß-catenin signaling were assayed using western blotting and immunofluorescence. Results: Orp management significantly inhibited tumor growth and promoted tumor cell apoptosis in MMTV-PyMT transgenic mice. Besides, the Orp challenge also attenuated the ability of breast tumors to metastasize into lung tissues. Mechanistically, Orp treatment restrained the polarization of M1 macrophages to M2 macrophages and suppressed WNT/ß-catenin signaling in mouse tumor tissues, which implied that Orp-mediated tumor inhibition partly occurred via regulating the inflammatory response. Findings from in vitro experiments confirmed that Orp inhibited the TNF-α-induced nuclear transportation of ß-catenin, thus preventing inflammation signaling and the expression of c-Myc in MCF-7 cells. Conclusion: Orp inhibits breast cancer growth and metastasis by regulating macrophage polarization and the WNT/ß-catenin signaling axis. The findings of this study suggest that Orp may be a promising therapeutic strategy for breast cancer.

13.
Chembiochem ; 25(6): e202300679, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38205937

RESUMEN

The connection between 3d (Cu) and 4d (Mo) via the "Mo-S-Cu" unit is called Mo-Cu antagonism. Biology offers case studies of such interactions in metalloproteins such as Mo/Cu-CO Dehydrogenases (Mo/Cu-CODH), and Mo/Cu Orange Protein (Mo/Cu-ORP). The CODH significantly maintains the CO level in the atmosphere below the toxic level by converting it to non-toxic CO2 for respiring organisms. Several models were synthesized to understand the structure-function relationship of these native enzymes. However, this interaction was first observed in ruminants, and they convert molybdate (MoO4 2- ) into tetrathiomolybdate (MoS4 2- ; TTM), reacting with cellular Cu to yield biological unavailable Mo/S/Cu cluster, then developing Cu-deficiency diseases. These findings inspire the use of TTM as a Cu-sequester drug, especially for treating Cu-dependent human diseases such as Wilson diseases (WD) and cancer. It is well known that a balanced Cu homeostasis is essential for a wide range of biological processes, but negative consequence leads to cell toxicity. Therefore, this review aims to connect the Mo-Cu antagonism in metalloproteins and anti-copper therapy.


Asunto(s)
Cobre , Metaloproteínas , Humanos , Cobre/metabolismo , Molibdeno/farmacología , Molibdeno/uso terapéutico
14.
FEMS Microbiol Lett ; 3712024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38167703

RESUMEN

Ralstonia eutropha is a facultative chemolithoautotrophic aerobic bacterium that grows using organic substrates or H2 and CO2. Hydrogenases (Hyds) are synthesized under lithoautotrophic, or energy-limited heterotrophic conditions and are used in enzyme fuel cells (EFC) as anodic catalysts. The effects of chemically synthesized gold nanoparticles (Au-NPs) on R. eutropha H16 growth, oxidation-reduction potential (ORP) kinetics, and H2-oxidizing Hyd activity were investigated in this study. Atomic force microscopy showed that thin, plate-shaped Au-NPs were in the nanoscale range with an average size of 5.68 nm. Compared with growth in medium without Au-NPs (control), the presence of Au-NPs stimulated growth, and resulted in a decrease in ORP to negative values. H2-oxidizing activity was not detected in the absence of Au-NPs, but activity was significantly induced (12 U/g CDW) after 24 h of growth with 18 ng/ml, increasing a further 4-fold after 72 h of growth. The results demonstrate that Au-NPs primarily influence the membrane-bound Hyd. In contrast to R. eutropha, Au-NPs had a negligible or negative effect on the growth, Hyd activity, and H2 production of Escherichia coli. The findings of this study offer new perspectives for the production of oxygen-tolerant Hyds and the development of EFCs.


Asunto(s)
Cupriavidus necator , Hidrogenasas , Nanopartículas del Metal , Procesos Heterotróficos , Hidrogenasas/metabolismo , Oro , Oxidación-Reducción
15.
Water Res ; 251: 121098, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38219686

RESUMEN

Manual flushing of building plumbing is commonly used to address water quality issues that arise from water stagnation. Autonomous flushing informed by sensors has the potential to aid in the management of building plumbing, but a number of knowledge gaps hinder its application. This study evaluates autonomous flushing of building plumbing with online sensor and actuator nodes deployed under kitchen sinks in five residential houses. Online oxidation-reduction potential (ORP) and temperature data were collected for nine weeks during the winter and summer in houses with both free chlorine and chloramine. ORP levels in houses with free chlorine residuals decreased after overnight stagnation. The overnight decrease in ORP was not observed when tap water was automatically flushed for five minutes at 6:00 h every morning. ORP levels in houses with chloramine residuals did not decrease consistently after overnight stagnation, and daily automated flushes did not have an observable effect on the ORP signals. Additional laboratory experiments were carried out to evaluate ORP signals during chlorine decay and after incremental changes in chlorine, as would be expected in building plumbing conditions. Results from the lab and field deployments suggest on-line ORP sensors may be used to detect free chlorine decay due to stagnating water, but are not as effective in detecting chloramine decay. However, field results also suggest ORP may not respond as expected on a timely manner after free chlorine or chloramine have been restored, hindering their applicability in developing control algorithms. In this paper we tested twice-daily five-minute automatic flushing and found that it counteracts water quality degradation associated with overnight stagnation in free chlorine systems. An automatic sensor-based flushing is proposed using online temperature sensor data to determine when flushing has reached water from the main. The results suggest that flushing informed by temperature sensors can reduce the flushing time by 46 % compared to the preset five-minute static flush.


Asunto(s)
Agua Potable , Ingeniería Sanitaria , Abastecimiento de Agua , Cloraminas , Cloro , Temperatura , Oxidación-Reducción
16.
Protein Cell ; 14(9): 653-667, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37707322

RESUMEN

Lipophagy, the selective engulfment of lipid droplets (LDs) by autophagosomes for lysosomal degradation, is critical to lipid and energy homeostasis. Here we show that the lipid transfer protein ORP8 is located on LDs and mediates the encapsulation of LDs by autophagosomal membranes. This function of ORP8 is independent of its lipid transporter activity and is achieved through direct interaction with phagophore-anchored LC3/GABARAPs. Upon lipophagy induction, ORP8 has increased localization on LDs and is phosphorylated by AMPK, thereby enhancing its affinity for LC3/GABARAPs. Deletion of ORP8 or interruption of ORP8-LC3/GABARAP interaction results in accumulation of LDs and increased intracellular triglyceride. Overexpression of ORP8 alleviates LD and triglyceride deposition in the liver of ob/ob mice, and Osbpl8-/- mice exhibit liver lipid clearance defects. Our results suggest that ORP8 is a lipophagy receptor that plays a key role in cellular lipid metabolism.


Asunto(s)
Autofagia , Gotas Lipídicas , Animales , Ratones , Autofagosomas , Homeostasis , Triglicéridos
17.
J Biol Chem ; 299(11): 105295, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37774976

RESUMEN

Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor complex. Twelve of these 28 interactions are supported by prior reports, and we have directly validated novel interactions with SEC22A, TMCO4, and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites, interactors included groups of microtubule/membrane-remodeling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase, and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We found that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Furthermore, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated or in which ORP2 expression is disrupted. Our data demonstrate that guanine nucleotide exchange factor-dependent Rab interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.


Asunto(s)
Biotinilación , Esteroles , Proteínas de Unión al GTP rab , Humanos , Colesterol/biosíntesis , Colesterol/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HeLa , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab3/metabolismo , Esteroles/biosíntesis , Esteroles/metabolismo , Células Cultivadas , Técnicas de Silenciamiento del Gen , Transporte de Proteínas/genética
18.
J Fungi (Basel) ; 9(8)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37623628

RESUMEN

The global environmental issue of arsenic (As) contamination in drinking water is a significant problem that requires attention. Therefore, the aim of this research was to address the application of a sustainable methodology for arsenic removal through mycoremediation aerated with micro-nanobubbles (MNBs), leading to bioscorodite (FeAsO4·2H2O) generation. To achieve this, the fungus Trichoderma atroviride was cultivated in a medium amended with 1 g/L of As(III) and 8.5 g/L of Fe(II) salts at 28 °C for 5 days in a tubular reactor equipped with an air MNBs diffuser (TR-MNBs). A control was performed using shaking flasks (SF) at 120 rpm. A reaction was conducted at 92 °C for 32 h for bioscorodite synthesis, followed by further characterization of crystals through Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray diffraction (XRD) analyses. At the end of the fungal growth in the TR-MNBs, the pH decreased to 2.7-3.0, and the oxidation-reduction potential (ORP) reached a value of 306 mV at 5 days. Arsenic decreased by 70%, attributed to possible adsorption through rapid complexation of oxidized As(V) with the exchangeable ferrihydrite ((Fe(III))4-5(OH,O)12), sites, and the fungal biomass. This mineral might be produced under oxidizing and acidic conditions, with a high iron concentration (As:Fe molar ratio = 0.14). The crystals produced in the reaction using the TR-MNBs culture broth and characterized by SEM, XRD, and FTIR revealed the morphology, pattern, and As-O-Fe vibration bands typical of bioscorodite and römerite (Fe(II)(Fe(III))2(SO4)4·14H2O). Arsenic reduction in SF was 30%, with slight characteristics of bioscorodite. Consequently, further research should include integrating the TR-MNBs system into a pilot plant for arsenic removal from contaminated water.

19.
Cells ; 12(15)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37566053

RESUMEN

ORPs are lipid-transport proteins belonging to the oxysterol-binding protein family. They facilitate the transfer of lipids between different intracellular membranes, such as the ER and plasma membrane. We have solved the crystal structure of the ORP8 lipid transport domain (ORD8). The ORD8 exhibited a ß-barrel fold composed of anti-parallel ß-strands, with three α-helices replacing ß-strands on one side. This mixed alpha-beta structure was consistent with previously solved structures of ORP2 and ORP3. A large cavity (≈1860 Å3) within the barrel was identified as the lipid-binding site. Although we were not able to obtain a lipid-bound structure, we used computer simulations based on our crystal structure to dock PS and PI4P molecules into the putative lipid-binding site of the ORD8. Comparative experiments between the short ORD8ΔLid (used for crystallography) and the full-length ORD8 (lid containing) revealed the lid's importance for stable lipid binding. Fluorescence assays revealed different transport efficiencies for PS and PI4P, with the lid slowing down transport and stabilizing cargo. Coarse-grained simulations highlighted surface-exposed regions and hydrophobic interactions facilitating lipid bilayer insertion. These findings enhance our comprehension of ORD8, its structure, and lipid transport mechanisms, as well as provide a structural basis for the design of potential inhibitors.


Asunto(s)
Proteínas Portadoras , Lípidos , Transporte Biológico , Proteínas Portadoras/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Lípidos/química
20.
Cell Stress Chaperones ; 28(4): 395-407, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37314629

RESUMEN

ORP5 is a transmembrane protein anchored to the endoplasmic reticulum, which mainly functions as a lipid transporter and has reportedly been linked to cancer. However, the specific mechanism of ORP5 action in cervical cancer (CC) is unclear. In this study, we found that ORP5 promotes the migration and invasive ability of CC cells in vitro and in vivo. In addition, ORP5 expression was linked to endoplasmic reticulum stress, and ORP5 encouraged CC metastasis by inhibiting endoplasmic reticulum stress. Mechanistically, ORP5 inhibited endoplasmic reticulum stress in CC cells by stimulating ubiquitination and proteasomal degradation of SREBP1 to reduce its expression. In conclusion, ORP5 promotes the malignant progression of CC by inhibiting endoplasmic reticulum stress, providing a therapeutic target and strategy for CC treatment.


Asunto(s)
Estrés del Retículo Endoplásmico , Invasividad Neoplásica , Receptores de Esteroides , Neoplasias del Cuello Uterino , Células HeLa , Humanos , Movimiento Celular , Neoplasias del Cuello Uterino/metabolismo , Ratones Endogámicos BALB C , Femenino , Animales , Ratones , Receptores de Esteroides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA