Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.879
Filtrar
1.
Rev. biol. trop ; 72(1): e54500, ene.-dic. 2024. graf
Artículo en Español | LILACS, SaludCR | ID: biblio-1559314

RESUMEN

Resumen Introducción: La melina (Gmelina arborea), es una especie de gran interés por su madera y propiedades medicinales. En Costa Rica, existen clones genéticamente superiores que se propagan sin el conocimiento de la edad ontogénica y fisiológica de los materiales. Objetivo: Evaluar la relación del contenido de fenoles y ligninas en hojas, peciolos, tallos y raíces de plantas con diferentes edades. Métodos: Los contenidos de fenoles y ligninas totales se determinaron mediante el método colorimétrico de Folin-Ciocalteu y el método de extracción alcalina, respectivamente. Para la investigación se eligieron plantas in vitro "año cero" y árboles de año y medio, cuatro, siete y 20 años. El muestreo se realizó en marzo y abril del 2021. Resultados: Se demostró que todas las partes de la planta analizadas contienen compuestos fenólicos y ligninas, independientemente de su edad. No hubo una correlación positiva entre la edad con el contenido de fenoles y ligninas para ninguna condición de desarrollo, pues los valores más altos no se obtuvieron en los árboles más longevos. Los extractos de hojas de las plantas in vitro y los árboles de siete años mostraron, respectivamente, los contenidos más altos de fenoles y ligninas para todas las condiciones (P < 0.05). Los valores promedio más bajos de compuestos fenólicos para todas las condiciones se obtuvieron en los árboles de cuatro años. Respecto a las ligninas, el contenido más bajo se presentó en las raíces más longevas, aunque la tendencia no se mantuvo para el resto de las partes de la planta. Conclusiones: La investigación muestra los primeros resultados del contenido de compuestos fenólicos y ligninas presentes en diferentes tejidos de una especie forestal de edades diferentes. Por lo tanto, son los primeros valores de referencia acerca del compromiso bioquímico para la síntesis fenólica según la edad y el estado de desarrollo específico de una planta leñosa.


Abstract Introduction: Melina (Gmelina arborea) is a tree species of great interest for its wood and medicinal properties. In Costa Rica, there are genetically superior clones that are propagated without knowledge of the ontogenic and physiological age of the materials. Objective: To evaluate how age influences the content of phenols and lignins in leaves, petioles, stems, and roots of melina plants. Methods: The total phenolic and lignins contents were determined using Folin-Ciocalteu colorimetric method and alkaline extraction method, respectively. Plants of five different ages were chosen for the investigation (in vitro plants "year 0" and trees of a year and a half, four, seven and 20 years). Sampling was done in March and April 2021. Results: All parts of the plant analyzed contain phenolic compounds and lignins, regardless of their age. There was no positive correlation between age and phenol and lignin content for any development condition, since the highest values were not obtained in the oldest trees. Leaf extracts from in vitro plants and seven-year-old trees showed, respectively, the highest phenol and lignin contents for all conditions (P < 0.05). The lowest average values of phenolic compounds for all conditions were obtained in four-year-old trees. Regarding lignins, the lowest content occurred in the oldest roots, although the trend was not maintained for the rest of the plant parts. Conclusions: This study provides the first results of the content of phenolic compounds and lignins present in different tissues of a forest species of different ages. Therefore, they are the first reference values about the biochemical commitment for phenolic synthesis according to the age and the specific developmental stage of a woody plant.


Asunto(s)
Fenoles/análisis , Árboles , Lignina/análisis , Muestreo , Lamiaceae , Fitoquímicos/análisis
2.
Elife ; 132024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259585

RESUMEN

The heterogeneity of the physical environment determines the cost of transport for animals, shaping their energy landscape. Animals respond to this energy landscape by adjusting their distribution and movement to maximize gains and reduce costs. Much of our knowledge about energy landscape dynamics focuses on factors external to the animal, particularly the spatio-temporal variations of the environment. However, an animal's internal state can significantly impact its ability to perceive and utilize available energy, creating a distinction between the 'fundamental' and the 'realized' energy landscapes. Here, we show that the realized energy landscape varies along the ontogenetic axis. Locomotor and cognitive capabilities of individuals change over time, especially during the early life stages. We investigate the development of the realized energy landscape in the Central European Alpine population of the golden eagle Aquila chrysaetos, a large predator that requires negotiating the atmospheric environment to achieve energy-efficient soaring flight. We quantified weekly energy landscapes using environmental features for 55 juvenile golden eagles, demonstrating that energetic costs of traversing the landscape decreased with age. Consequently, the potentially flyable area within the Alpine region increased 2170-fold during their first three years of independence. Our work contributes to a predictive understanding of animal movement by presenting ontogeny as a mechanism shaping the realized energy landscape.


Asunto(s)
Metabolismo Energético , Vuelo Animal , Águilas
3.
Zoology (Jena) ; 167: 126210, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39321517

RESUMEN

During early development, fishes undergo significant changes that influence external morphology and the functioning of internal organs and systems. This often results in gradual variation of the morphological traits of individuals across developmental stages. The investigation of larval and juvenile fish development and growth patterns has pertinent implications for the systematic and ecological elucidation of species. Bryconops gracilis is a medium-sized fish, omnivorous that inhabits lotic and lentic environments with acidic and transparent waters in the Amazon basin. In this study, the early development of B. gracilis is described, until recently a practically unknown species. In terms of development, we used morphological, meristic, and morphometric data to characterize the larvae and juveniles. The individuals were collected in the Curuá-Una River, Amazon basin, Brazil. Fifty-four specimens were examined. Samples include individuals with 3.39-21.79 mm SL. Yolk-sac larvae have two attachment organs on the dorsal surface of head and body. The larvae of B. gracilis are considered altricial, with a fusiform body, and the intestine reaches the median region of the body. Initially, the mouth is subterminal and becomes isognathic from the postflexion stage on. During the postflexion stage, the most relevant morphological changes occur (e.g., presence of all fins, mouth position similar to adults, increased body pigmentation), making individuals more specialized to explore new habitats and diets and maximize their chances of survival. Furthermore, vertebrae and myomeres are compared and assist with differentiating some Bryconops species at early life stages that occur in sympatry in the Amazon basin. Our results contribute to knowledge about the external morphology of neotropical freshwater fishes, enabling the identification of larvae and juveniles through traditional taxonomy and broadening the perspective on the ontogenetic study of the adipose fin in Characoidei.

4.
Anim Cogn ; 27(1): 61, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311933

RESUMEN

In human infants, the ability to show gaze alternations between an object of interest and another individual is considered fundamental to the development of complex social-cognitive abilities. Here we show that well-socialised dog puppies show gaze alternations in two contexts at an early age, 6-7 weeks. Thus, 69.4% of puppies in a novel object test and 45.59% of puppies during an unsolvable task alternated their gaze at least once between a person's face and the object. In both contexts, the frequency of gaze alternations was positively correlated with the duration of whimpering, supporting the communicative nature of puppies' gazing. Furthermore, the number of gaze alternations in the two contexts was correlated, indicating an underlying propensity for gazing at humans despite likely different motivations in the two contexts. Similar to humans, and unlike great apes or wolves, domestic dogs show gaze alternations from an early age if they are well-socialised. They appear to have a genetic preparedness to communicate with humans via gaze alternations early in ontogeny, but they may need close contact with humans for this ability to emerge, highlighting the interactive effects of domestication and environmental factors on behavioural development in dogs.


Asunto(s)
Fijación Ocular , Animales , Perros , Masculino , Femenino , Humanos , Comunicación Animal , Conducta Social
5.
IBRO Neurosci Rep ; 17: 263-279, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39310269

RESUMEN

Introduction: About 15-20 % of babies that suffer perinatal asphyxia die and around 25 % of the survivors exhibit permanent neural outcomes. Minimization of this global health problem has been warranted. This study investigated if the offspring of pregnant female rats allowed to spontaneously exercise on running wheels along a 11-day pregnancy period were protected for somatic and neurodevelopmental disturbs that usually follow neonatal anoxia. Methods: spontaneous exercise was applied to female rats which were housed in cages allowing free access to running wheels along a 11-day pregnancy period. Their offspring were submitted to anoxia 24-36 h after birth. Somatic and sensory-motor development of the pups were recorded until postnatal day 21 (P21). Myelin basic protein (MBP)-stained areas of sensory and motor cortices were measured at P21. Neuronal nuclei (NeuN)-immunopositive cells and synapsin-I levels in hippocampal formation were estimated at P21 and P75. Results: gestational exercise and / or neonatal anoxia increased the weight and the size of the pups. In addition, gestational exercise accelerated somatic and sensory-motor development of the pups and protected them against neonatal-anoxia-induced delay in development. Further, neonatal anoxia reduced MBP stained area in the secondary motor cortex and decreased hippocampal neuronal estimates and synapsin-I levels at P21; gestational exercise prevented these effects. Therefore, spontaneous exercise along pregnancy is a valuable strategy to prevent neonatal-anoxia-induced disturbs in the offspring. Conclusion: spontaneous gestational running wheel exercise protects against neonatal anoxia-induced disturbs in the offspring, including (1) physical and neurobehavioral developmental impairments, and (2) hippocampal and cortical changes. Thus, spontaneous exercise during pregnancy may represent a valuable strategy to prevent disturbs which usually follow neonatal anoxia.

6.
Genome Biol Evol ; 16(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39255072

RESUMEN

Understanding the proximate and ultimate causes of phenotypic variation is fundamental in evolutionary research, as such variation provides the substrate for selection to act upon. Although trait variation can arise due to selection, the importance of neutral processes is sometimes understudied. We presented the first reference-quality genome of the Red Diamond Rattlesnake (Crotalus ruber) and used range-wide 'omic data to estimate the degree to which neutral and adaptive evolutionary processes shaped venom evolution. We characterized population structure and found substantial genetic differentiation across two populations, each with distinct demographic histories. We identified significant differentiation in venom expression across age classes with substantially reduced but discernible differentiation across populations. We then used conditional redundancy analysis to test whether venom expression variation was best predicted by neutral divergence patterns or geographically variable (a)biotic factors. Snake size was the most significant predictor of venom variation, with environment, prey availability, and neutral sequence variation also identified as significant factors, though to a lesser degree. By directly including neutrality in the model, our results confidently highlight the predominant, yet not singular, role of life history in shaping venom evolution.


Asunto(s)
Venenos de Crotálidos , Crotalus , Evolución Molecular , Crotalus/genética , Animales , Venenos de Crotálidos/genética , Genoma , Evolución Biológica , Variación Genética , Selección Genética , Serpientes Venenosas
7.
R Soc Open Sci ; 11(9): 240765, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39263457

RESUMEN

Comparative neuroanatomical studies have long debated the role of development in the evolution of novel and disparate brain morphologies. Historically, these studies have emphasized whether evolutionary shifts along conserved or distinct developmental allometric trends cause changes in brain morphologies. However, the degree to which interspecific differences between variably sized taxa originate through modifying developmental allometry remains largely untested. Taxa with disparate brain shapes and sizes thus allow for investigation into how developmental trends contribute to neuroanatomical diversification. Here, we examine a developmental series of large-bodied ratite birds (approx. 60-140 kg). We use three-dimensional geometric morphometrics on cephalic endocasts of common ostriches, emus and southern cassowaries and compare their developmental trajectories with those of the more modestly sized domestic chicken, previously shown to be in the same allometric grade as ratites. The results suggest that ratites and chickens exhibit disparate endocranial shapes not simply accounted for by their size differences. When shape and age are examined, chickens partly exhibit more accelerated and mature brain shapes than ratites of similar size and age. Taken together, our study indicates that disparate brain shapes between these differently sized taxa have emerged from the evolution of distinct developmental allometries, rather than simply following conserved scaling trends.

8.
Drug Metab Dispos ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284705

RESUMEN

Cytochrome P450 (CYP) superfamily represents the major drug metabolizing enzymes responsible for metabolizing over 65% of therapeutic drugs, including those for pediatric use. CYP-ontogeny based physiologically-based pharmacokinetic (PBPK) models have emerged as useful tools to mechanistically extrapolate adult pharmacokinetic data to children. However, these models integrate physiological differences in pediatric population including age-dependent differences in the abundances of CYP enzymes. Conventionally, developmental changes in CYP enzymes have been reported using protein abundance and activity data from subcellular fractions such as microsomes, which is prone to high technical variability. Similarly, the available pediatric pharmacokinetic data suffer from the lack of specific CYP substrates, especially in younger children. In the present study, we utilized viable hepatocytes from 50 pediatric (age, day 1- 18 yr) and 8 adult human donors and carried out global proteomics-based quantification of all major hepatic CYP enzymes, including orphan enzymes that have not been studied previously. While CYPs 2B6, 3A5, 4A11, 4F3, and 4V2 did not show significant association with age, all other quantified isoforms either increased or decreased with age. CYPs 1A2, 2C8, 2C18, and 2C19 were absent or barely detected in the neonatal group, while CYP3A7 was the highest in this group. The >1-2 yr age-group showed the highest total abundance of all CYP enzymes. The age-dependent differences in CYP enzymes reported in this study can be used to develop ontogeny-based PBPK models, which in turn can help improve pediatric dose-prediction based on adult dosing, leading to safer drug pharmacology in children. Significance Statement We quantified age-dependent differences in the abundances of hepatic CYP enzymes using a large set of viable pediatric and adult hepatocytes using quantitative global proteomics. We report for the first time the ontogeny in the abundance of CYP enzymes in human hepatocytes, especially, orphan CYPs 20A1, 27A1, 51A1, 7B1, and 8B1 and the CYP4 subfamily of enzymes. Our study provides important data about CYP ontogeny that can be used for the better prediction of pediatric pharmacokinetics using physiologically-based pharmacokinetic modeling.

9.
Zygote ; : 1-9, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295272

RESUMEN

We herein investigated the influence of temperature on the embryonic development (from fertilisation to hatching) of Mugil liza larvae. For this purpose, oocytes (>600 µm) and sperm were obtained from breeding stock at the laboratory of marine fish culture (LAPMAR). After fertilisation, 1200 eggs were distributed in 12 cylindrical experimental units of 400 mL under four different temperatures 18, 22, 26 and 30 ºC, all in triplicate. Every 15 min until hatching, about 10 eggs were randomly sampled in each treatment. The eggs were visualized and photographed, and the classification of embryonic stages was performed. Temperature influenced the main events of the embryonic development of M. liza. More accelerated development was observed according to the increase in temperature until the gastrula phase. At temperatures of 22 and 26 °C, embryonic development occurred from fertilisation to hatching of the larvae. In the 18 °C treatment, it was verified that most of the embryos ceased development during the final phase of cleavage and the beginning of blastula formation, while in the 30 °C treatment patterns of embryo malformation were also verified, with erratic divisions of the blastomeres, resulting in irregular cells. Unlike what was observed at a temperature of 18 °C, none of the embryos incubated at 30 °C reached the blastopore closure phase, stopping in the gastrula. The larvae hatched in the treatments at 22 and 26 °C were viable and exhibited intense swimming, with a large amount of reserve material (yolk) and an evident drop of oil.

10.
Adv Neurobiol ; 37: 53-63, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39207686

RESUMEN

Since the classical studies of Pío del Río-Hortega, microglia research has come a long way. In particular, recent advances in bulk and single-cell (sc) transcriptomics have yielded many fascinating new insights into these intriguing immune cells at the interface with the central nervous system (CNS), both in small animal models and human samples. In parallel, tools developed by advanced mouse genetics have revealed the unique ontogeny of microglia and their striking dynamic interactions with other cells in the brain parenchyma. In this chapter, we will discuss various applications of the Cre/loxP-based approach that have enabled the study of microglia in their physiological context of the mouse brain. We will highlight selected key findings that have shaped our current understanding of these cells and discuss the technical intricacies of the Cre/loxP approach and some remaining challenges.


Asunto(s)
Encéfalo , Microglía , Animales , Ratones , Encéfalo/citología , Encéfalo/inmunología , Encéfalo/metabolismo , Integrasas/metabolismo , Microglía/inmunología , Microglía/metabolismo , Mutagénesis/inmunología , Análisis de Expresión Génica de una Sola Célula
11.
J Plant Res ; 137(5): 721-743, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39207556

RESUMEN

Floral diversity of Croton, the second largest genus in Euphorbiaceae, is currently under-explored. Several clades demonstrate an unusual floral morphology, e.g., lower or higher stamen number, bilateral symmetry and reduced ovary, but have never been investigated in a comparative study with typical Croton. This study examined morphology and ontogeny of flowers in nine Croton species from different clades within the genus with light and scanning microscopy, resin sectioning and micro-computed tomography. In staminate flowers, great variations of stamen number and arrangement are observed. The ancestral androecium likely consisted of two or more whorls with the outermost antepetalous stamen whorl developing centrifugally. Modification by reduction of the antepetalous whorl resulted in an outer alternipetalous stamen whorl in Croton section Moacroton, subgenus Quadrilobi. Several species in the subgenus Geiseleria show an independent reduction of stamen numbers by absence of a centrifugal development with the antepetalous whorl the first whorl to develop. Petal losses are observed in the distantly related C. setiger and C. dioicus. Chaotic stamen arrangement is found in C. celtidifolius (subgenus Adenophylli) as a result of a secondary stamen increase. In pistillate flowers, reduction of carpel numbers happened three times in the subgenus Geiseleria. C. monanthogynus has a bicarpellate ovary, while in C. setiger and C. michauxii the ovary is monocarpellate. Reduction of carpel number is linked with merism change and perianth reduction. The ovary in C. michauxii has basal placentation which is unique among all Croton. Moreover, strong bilateral sepals and nectaries are observed in species from section Julocroton. Therefore, the floral diversity of some species in the genus Croton could be explained by developmental modification of an ancestral form via reduction, rearrangement of stamen whorls, and symmetry shifts.


Asunto(s)
Croton , Flores , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Croton/anatomía & histología , Croton/crecimiento & desarrollo , Filogenia , Evolución Biológica , Microtomografía por Rayos X , Especificidad de la Especie
12.
J Morphol ; 285(8): e21754, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39136647

RESUMEN

The mechanosensory lateral line (LL) system of salmonid fishes has been the focus of comparative morphological studies and behavioral and physiological analyses of flow sensing capabilities, but its morphology and development have not been studied in detail in any one species. Here, we describe the post-embryonic development of the cranial LL system in Brook Trout, Salvelinus fontinalis, using vital fluorescent staining (4-Di-2-ASP), scanning electron microscopy, µCT, and clearing and staining to visualize neuromasts and the process of cranial LL canal morphogenesis. We examined the relationship between the timing of LL development, the prolonged life history of salmonids, and potential ecological implications. The LL system is composed of seven canals containing canal neuromasts (CNs) and four lines of superficial neuromasts (SNs) on the skin. CNs and SNs increase in number and size during the alevin (larval) stage. CN number stabilizes as canal morphogenesis commences, but SN number increases well into the parr (juvenile) stage. CNs become larger and more elongated than SNs, but the relative area occupied by sensory hair cells decreases during ontogeny in both types of neuromasts. Neuromast-centered canal morphogenesis starts in alevins (yolk sac larvae), as they swim up into the water column from their gravel nests (~4 months post-fertilization), after which yolk sac absorption is completed and exogenous feeding begins. Canal morphogenesis proceeds asynchronously within and among canal series and is not complete until ~8 months post-fertilization (the parr stage). Three characters in the LL system and associated dermal bones were used to identify their homologs in other actinopterygians and to consider the evolution of LL canal reduction, thus demonstrating the value of salmonids for the study of LL evolution. The prolonged life history of Brook Trout and the onset of canal morphogenesis at swim-up are predicted to have implications for neuromast function at these critical behavioral and ecological transitions.


Asunto(s)
Evolución Biológica , Sistema de la Línea Lateral , Trucha , Animales , Sistema de la Línea Lateral/embriología , Sistema de la Línea Lateral/ultraestructura , Sistema de la Línea Lateral/crecimiento & desarrollo , Trucha/anatomía & histología , Trucha/crecimiento & desarrollo , Trucha/embriología , Larva/crecimiento & desarrollo , Cráneo/anatomía & histología , Cráneo/crecimiento & desarrollo , Cráneo/embriología , Morfogénesis
13.
MethodsX ; 13: 102855, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39105087

RESUMEN

Study of morphogenesis and its regulation requires analytical tools that enable simultaneous assessment of processes operating at cellular level, such as synthesis of transcription factors (TF), with their effects at the tissue scale. Most current studies conduct histological, cellular and immunochemical (IHC) analyses in separate steps, introducing inevitable biases in finding and alignment of areas of interest at vastly distinct scales of organization, as well as image distortion associated with image repositioning or file modifications. These problems are particularly severe for longitudinal analyses of growing structures that change size and shape. Here we introduce a python-based application for automated and complete whole-slide measurement of expression of multiple TFs and associated cellular morphology. The plugin collects data at customizable scale from the cell-level to the entire structure, records each data point with positional information, accounts for ontogenetic transformation of structures and variation in slide positioning with scalable grid, and includes a customizable file manager that outputs collected data in association with full details of image classification (e.g., ontogenetic stage, population, IHC assay). We demonstrate the utility and accuracy of this application by automated measurement of morphology and associated expression of eight TFs for more than six million cells recorded with full positional information in beak tissues across 12 developmental stages and 25 study populations of a wild passerine bird. Our script is freely available as an open-source Fiji plugin and can be applied to IHC slides from any imaging platforms and transcriptional factors.

14.
Am J Primatol ; : e23672, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113211

RESUMEN

Primates show large interindividual variability in the character and quantity of interactions between mothers and their immature offspring. Multiple studies have documented associations between maternal behavior and the occurrence or frequency of certain behaviors among offspring, but it remains unclear whether and how early maternal interactions generally affect behavioral development in offspring. We followed two wild groups of Japanese macaques on Yakushima island and investigated the relationship between maternal behavior and several types of behavior performed by 35 juvenile offspring. We further asked if the impact of maternal behavior on juvenile behavior persists regardless of the distance between mother and offspring, testing whether the influence extends beyond cases when the mother is nearby. We found that juveniles whose mothers frequently rejected them approached and played with others more often, independent of their mother's presence. Juveniles of more protective mothers were in proximity to fewer other individuals and played less, but only if their mothers were nearby. Maternal rejection appears to exert a generalized effect on offspring behavior that endures when mothers are absent. In contrast, effects of maternal protectiveness may be temporary and/or reflect direct maternal influences, such as active intervention in offspring interactions, or effects of the mother's own social relationships on offspring interactions. Our results suggest that understanding how maternal behavior affects offspring development requires paying attention to the context of juvenile behavior, including the mother's distance from her offspring.

15.
J Exp Biol ; 227(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39189063

RESUMEN

Acoustic signalling, integral to intraspecific communication and reproductive behaviour, undergoes notable changes during an animal's ontogenetic development. The onset and progression of this maturation in fish remains poorly understood. Here, we investigated the ontogeny of acoustic communication in the miniature teleost Danionella cerebrum, one of the smallest known vertebrates and an emerging model organism. Its adult males produce audible clicks that appear in sequences with a repetition rate of ∼60 or ∼120 Hz, caused by consecutive unilateral or alternating bilateral compressions of the swim bladder. To investigate the maturation of this ability, we performed long-term sound recordings and morphological studies of the sound production apparatus in D. cerebrum throughout its ontogenetic development. We found that fish start producing clicks during the second month of their lives and continually increase their abundance and structured repetition over the course of the following 1 to 2 months. The sound production machinery, including specialised bone and cartilage structures, starts to form in males after approximately 4 weeks and prior to reaching sexual maturity. Although clicks increase in amplitude as animals mature, click repetition rates of 60 and 120 Hz are stable throughout development. This suggests fully mature pattern generation in juvenile males, yet a continued development of the drumming apparatus capable of creating louder sounds.


Asunto(s)
Vocalización Animal , Animales , Masculino , Vocalización Animal/fisiología , Cyprinidae/fisiología , Cyprinidae/crecimiento & desarrollo , Femenino , Sonido
16.
Curr Issues Mol Biol ; 46(8): 8118-8147, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194698

RESUMEN

Skin stem cells (SCs) play a pivotal role in supporting tissue homeostasis. Several types of SCs are responsible for maintaining and regenerating skin tissue. These include bulge SCs and others residing in the interfollicular epidermis, infundibulum, isthmus, sebaceous glands, and sweat glands. The emergence of skin SCs commences during embryogenesis, where multipotent SCs arise from various precursor populations. These early events set the foundation for the diverse pool of SCs that will reside in the adult skin, ready to respond to tissue repair and regeneration demands. A network of molecular cues regulates skin SC behavior, balancing quiescence, self-renewal, and differentiation. The disruption of this delicate equilibrium can lead to SC exhaustion, impaired wound healing, and pathological conditions such as skin cancer. The present review explores the intricate mechanisms governing the development, activation, and differentiation of skin SCs, shedding light on the molecular signaling pathways that drive their fate decisions and skin homeostasis. Unraveling the complexities of these molecular drivers not only enhances our fundamental knowledge of skin biology but also holds promise for developing novel strategies to modulate skin SC fate for regenerative medicine applications, ultimately benefiting patients with skin disorders and injuries.

17.
Mucosal Immunol ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159846

RESUMEN

The helper-like ILC contains various functional subsets, such as ILC1, ILC2, ILC3 and LTi cells, mediating the immune responses against viruses, parasites, and extracellular bacteria, respectively. Among them, LTi cells are also crucial for the formation of peripheral lymphoid tissues, such as lymph nodes. Our research, along with others', indicates a high proportion of LTi cells in the fetal ILC pool, which significantly decreases after birth. Conversely, the proportion of non-LTi ILCs increases postnatally, corresponding to the need for LTi cells to mediate lymphoid tissue formation during fetal stages and other ILC subsets to combat diverse pathogen infections postnatally. However, the regulatory mechanism for this transition remains unclear. In this study, we observed a preference for fetal ILC progenitors to differentiate into LTi cells, while postnatal bone marrow ILC progenitors preferentially differentiate into non-LTi ILCs. Particularly, this differentiation shift occurs within the first week after birth in mice. Further analysis revealed that adult ILC progenitors exhibit stronger activation of the Notch signaling pathway compared to fetal counterparts, accompanied by elevated Gata3 expression and decreased Rorc expression, leading to a transition from fetal LTi cell-dominant states to adult non-LTi ILC-dominant states. This study suggests that the body can regulate ILC development by modulating the activation level of the Notch signaling pathway, thereby acquiring different ILC subsets to accommodate the varying demands within the body at different developmental stages.

18.
Front Immunol ; 15: 1375528, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104525

RESUMEN

Tissue-resident macrophages (TRMs) are an integral part of the innate immune system, but their biology is not well understood in the context of cancer. Distinctive resident macrophage populations are identified in different organs in mice using fate mapping studies. They develop from the yolk sac and self-maintain themselves lifelong in specific tissular niches. Similarly, breast-resident macrophages are part of the mammary gland microenvironment. They reside in the breast adipose tissue stroma and close to the ductal epithelium and help in morphogenesis. In breast cancer, TRMs may promote disease progression and metastasis; however, precise mechanisms have not been elucidated. TRMs interact intimately with recruited macrophages, cytotoxic T cells, and other immune cells along with cancer cells, deciding further immunosuppressive or cytotoxic pathways. Moreover, triple-negative breast cancer (TNBC), which is generally associated with poor outcomes, can harbor specific TRM phenotypes. The influence of TRMs on adipose tissue stroma of the mammary gland also contributes to tumor progression. The complex crosstalk between TRMs with T cells, stroma, and breast cancer cells can establish a cascade of downstream events, understanding which can offer new insight for drug discovery and upcoming treatment choices. This review aims to acknowledge the previous research done in this regard while exploring existing research gaps and the future therapeutic potential of TRMs as a combination or single agent in breast cancer.


Asunto(s)
Neoplasias de la Mama , Macrófagos , Microambiente Tumoral , Humanos , Animales , Femenino , Microambiente Tumoral/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo
19.
Fish Physiol Biochem ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207579

RESUMEN

Spexin (SPX1) is a neuropeptide of 14 amino acids (aa), originally identified by bioinformatics, which has been implicated in various physiological functions in vertebrates via galanin receptors 2 and 3 (GALR2/3). To clarify the biological role of SPX1 in the control of reproduction in yellowtail kingfish, which is regarded as a promising species for offshore aquaculture worldwide, cDNA sequences of spx1 and six potential receptors were identified in the current study. The open reading frame of yellowtail kingfish spx1 was 363 nucleotides in size that encoded a 120-aa preprohormone, and its mature peptide was highly conserved among other species. The cDNA sequences of six GALRs (galr1a, galr1b, galr2a, galr2b, galr type 1, and galr type 2) were 1053 base pairs (bp), 1068 bp, 981 bp, 1137 bp, 1038 bp, 924 bp, which encoded G protein-coupled receptors of 350 aa, 355 aa, 326 aa, 378 aa, 345 aa, 307 aa, respectively. Tissue distribution analysis showed that spx1, galr1b, and galr2b transcripts were mainly detected in the brain. The highest mRNA levels of galr1a and galr2a were observed in the pituitary, followed by the brain and ovary. Both galr type 1 and galr type 2 were widely expressed in various tissues, with a peak level in the kidney. Moreover, all spx1 and galr genes significantly fluctuated during early ontogeny, exhibiting different expression patterns. Intraperitoneal injection of SPX1 significantly increased brain gnrh1, gnih, spx1, gal, and tac3 expression, while it inhibited gnrh2, kiss1r, and kiss2r mRNA levels. In the pituitary, SPX1 injection reduced transcript levels of gh, lhß, and fshß. Overall, our results have revealed the involvement of SPX1 in the reproductive functions in yellowtail kingfish.

20.
Fish Physiol Biochem ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39198296

RESUMEN

Chirostoma estor (Jordan, 1879) is an endemic freshwater species with a high potential for aquaculture; however, as in many other fish, larviculture of this species is the most critical stage, in which the higher mortality rates. Therefore, it is necessary to fully describe the development of the digestive system to establish better feeding protocols in the larval culture of C. estor, both for aquaculture and restoration purposes. In the present study, larviculture was carried out from hatching to 20 days after hatching (DAH). The organisms were fed with the rotifer Brachionus plicatilis from 2 to 14 DAH, and nauplii of Artemia sp. from 15 to 20 DAH. A total of 12 organisms (0, 3, 5, 10, 15, and 20 DAH) were taken for size and weight growth and histological and histochemical analysis. The histological analysis indicated that after 3 DAH, the opening of the mouth and anus was observed, coinciding with the beginning of exogenous feeding. In addition, the digestive system developed, with differentiation of the oropharyngeal sections, esophagus, and intestine, folding of the intestinal mucosa, as well as associated organs (liver and pancreas) that reach their maximum development at 20 DAH. Thus, C. estor at this stage of development can digest and absorb nutrients despite being an agastric fish. The results obtained in this study will facilitate a better understanding of the ontogenetic morphophysiological development processes, associated with the transition of larvae to exogenous feeding, which ensures a higher percentage of survival during larval development and of course, adds to the diversity ontogenetics of teleostean.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA