Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Bull Exp Biol Med ; 177(2): 243-247, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39090462

RESUMEN

The influence of non-opsonized and opsonized S. aureus 2879M and E. coli 321 strains on the total strength of interaction between the endothelial cell and neutrophil during the docking process was studied using in vitro model of experimental septicemia. We observed a decrease in the force and work of adhesion between receptors of neutrophils and endothelial cells under the influence of non-opsonized strains and further decrease in the affinity of single interactions between cells under the influence of opsonized S. aureus, which was compensated by an increase in the number of contacts, as well as an increase in the force of adhesion under the influence of opsonized E. coli compared to non-opsonized bacteria, which remained below the control level, while adhesion work reaches the control level. Thus, opsonization of S. aureus aggravates the "immunological uncoupling" between neutrophils and endothelial cells, while opsonization of E. coli reduces the pathological effect compared to non-opsonized bacteria.


Asunto(s)
Células Endoteliales , Escherichia coli , Neutrófilos , Sepsis , Staphylococcus aureus , Neutrófilos/inmunología , Neutrófilos/metabolismo , Escherichia coli/inmunología , Staphylococcus aureus/inmunología , Staphylococcus aureus/patogenicidad , Sepsis/inmunología , Sepsis/microbiología , Sepsis/metabolismo , Sepsis/patología , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/microbiología , Humanos , Fagocitosis , Adhesión Celular/inmunología , Proteínas Opsoninas/metabolismo , Proteínas Opsoninas/inmunología , Adhesión Bacteriana , Animales
2.
Trends Immunol ; 45(8): 609-624, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39034185

RESUMEN

Recent studies show an important role for non-neutralizing anti-spike antibodies, including monoclonal antibodies (mAbs), in robustly protecting against SARS-CoV-2 infection. These mAbs use Fc-mediated functions such as complement activation, phagocytosis, and cellular cytotoxicity. There is an untapped potential for using non-neutralizing mAbs in durable antibody treatments; because of their available conserved epitopes, they may not be as sensitive to virus mutations as neutralizing mAbs. Here, we discuss evidence of non-neutralizing mAb-mediated protection against SARS-CoV-2 infection. We explore how non-neutralizing mAb Fc-mediated functions can be enhanced via novel antibody-engineering techniques. Important questions remain to be answered regarding the characteristics of protective non-neutralizing mAbs, including the models and assays used for study, the risks of ensuing detrimental inflammation, as well as the durability and mechanisms of protection.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , COVID-19/inmunología , Anticuerpos Antivirales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Epítopos/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología
3.
Assay Drug Dev Technol ; 22(5): 246-264, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38828531

RESUMEN

Nanoparticle-based drug delivery systems have emerged as promising platforms for enhancing therapeutic efficacy while minimizing off-target effects. Among various strategies employed to optimize these systems, polyethylene glycol (PEG) modification, known as PEGylation-the covalent attachment of PEG to nanoparticles, has gained considerable attention for its ability to impart stealth properties to nanoparticles while also extending circulation time and improving biocompatibility. PEGylation extends to different drug delivery systems, in specific, nanoparticles for targeting cancer cells, where the concentration of drug in the cancer cells is improved by virtue of PEGylation. The primary challenge linked to PEGylation lies in its confirmation. Numerous research findings provide comprehensive insights into selecting PEG for various PEGylation methods. In this review, we have endeavored to consolidate the outcomes concerning the choice of PEG and diverse PEGylation techniques.


Asunto(s)
Lípidos , Nanopartículas , Polietilenglicoles , Polietilenglicoles/química , Nanopartículas/química , Humanos , Lípidos/química , Sistemas de Liberación de Medicamentos , Animales
4.
Pathog Immun ; 9(1): 38-55, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774126

RESUMEN

Background: The effective elimination of encapsulated bacteria like Haemophilus influenzae type a (Hia) relies on immune mechanisms such as complement-mediated opsonophagocytosis by neutrophils in coordination with opsonization by anti-capsular antibodies. This study evaluated if Hia could activate the immune response through neutrophils and if these responses differed between encapsulated versus unencapsulated or invasive versus non-invasive strains. Methods: HL-60-derived neutrophil-like cells (dHL-60), differentiated with 1.25% dimethyl sulfoxide over 9 days, were used in an opsonophagocytosis assay and in vitro infection model to measure Hia's susceptibility to killing and dHL-60 surface molecule expression, respectively. The impact of strain-specific features on the immune response was investigated using clinical isolates of a dominant North American sequence type (ST)-23, including Hia 11-139 (encapsulated, invasive), 14-61 (encapsulated, non-invasive), 13-0074 (unencapsulated, invasive), as well as a representative ST-4 isolate (Hia 13-240, encapsulated, invasive), and a nontypeable strain (NTHi 375, unencapsulated, non-invasive). Results: Unencapsulated and non-invasive Hi strains were more susceptible to killing by the innate immune response while the ST-23 invasive strain, Hia 11-139 required serum antibodies for destruction. Flow cytometry analysis showed increased expression of co-stimulatory molecule ICAM-1 and Fc receptors (CD89, CD64) but decreased expression of the Fc receptor CD16, revealing potential mechanisms of neutrophil-mediated defense against Hia that extend to both non-invasive and invasive strains. Conclusions: Hia clinical isolates with diverse pathogenicity illustrated contrasting susceptibility to killing by immune mechanisms while maintaining the same capacity to activate neutrophil-like cells, further underscoring the need for additional studies on Hia's pathogenesis.

5.
J Immunol Methods ; 528: 113668, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574804

RESUMEN

Complement plays a critical role in the immune response toward nanomaterials. The complement attack on a foreign surface results in the deposition of C3, assembly of C3 convertases, the release of anaphylatoxins C3a and C5a, and finally, the formation of membrane attack complex C5b-9. Various technologies can measure complement activation markers in the fluid phase, but measurements of surface C3 deposition are less common. Previously, we developed an ultracentrifugation-based dot blot immunoassay (DBI) to measure the deposition of C3 and other protein corona components on nanoparticles. Here, we validate the repeatability of the DBI and its correlation with pathway-specific and common fluid phase markers. Moreover, we discuss the advantages of DBI, such as cost-effectiveness and versatility, while addressing potential limitations. This study provides insights into complement activation at the nanosurface level, offering a valuable tool for nanomedicine researchers in the field.


Asunto(s)
Nanopartículas , Opsonización , Activación de Complemento , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Inmunoensayo , Complemento C3a , Complemento C5a , Complemento C5
6.
Adv Sci (Weinh) ; 11(22): e2400713, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593402

RESUMEN

Osteoarthritis (OA) is a chronic inflammatory disease characterized by cartilage destruction, synovitis, and osteophyte formation. Disease-modifying treatments for OA are currently lacking. Because inflammation mediated by an imbalance of M1/M2 macrophages in the synovial cavities contributes to OA progression, regulating the M1 to M2 polarization of macrophages can be a potential therapeutic strategy. Basing on the inherent immune mechanism and pathological environment of OA, an immunoglobulin G-conjugated bilirubin/JPH203 self-assembled nanoparticle (IgG/BRJ) is developed, and its therapeutic potential for OA is evaluated. After intra-articular administration, IgG conjugation facilitates the recognition and engulfment of nanoparticles by the M1 macrophages. The internalized nanoparticles disassemble in response to the increased oxidative stress, and the released bilirubin (BR) and JPH203 scavenge reactive oxygen species (ROS), inhibit the nuclear factor kappa-B pathway, and suppress the activated mammalian target of rapamycin pathway, result in the repolarization of macrophages and enhance M2/M1 ratios. Suppression of the inflammatory environment by IgG/BRJ promotes cartilage protection and repair in an OA rat model, thereby improving therapeutic outcomes. This strategy of opsonization involving M1 macrophages to engulf carrier-free BR/JPH203 nanoparticles to suppress inflammation for OA therapy holds great potential for OA intervention and treatment.


Asunto(s)
Bilirrubina , Modelos Animales de Enfermedad , Inflamación , Macrófagos , Nanopartículas , Osteoartritis , Animales , Osteoartritis/inmunología , Osteoartritis/tratamiento farmacológico , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratas , Inflamación/inmunología , Bilirrubina/farmacología , Bilirrubina/metabolismo , Masculino , Ratas Sprague-Dawley
7.
J Colloid Interface Sci ; 663: 43-52, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38387185

RESUMEN

Peptide-based vaccines can trigger highly specific immune responses, although peptides alone are usually unable to confer strong humoral or cellular immunity. Consequently, peptide antigens are administered with immunostimulatory adjuvants, but only a few are safe and effective for human use. To overcome this obstacle, herein a peptide antigen was lipidated to effectively anchor it to liposomes and emulsion. A peptide antigen B cell epitope from Group A Streptococcus M protein was conjugated to a universal T helper epitope, the pan DR-biding epitope (PADRE), alongside a lipidic moiety cholesterol. Compared to a free peptide antigen, the lipidated version (LP1) adopted a helical conformation and self-assembled into small nanoparticles. Surprisingly, LP1 alone induced the same or higher antibody titers than liposomes or emulsion-based formulations. In addition, antibodies produced by mice immunized with LP1 were more opsonic than those induced by administering the antigen with incomplete Freund's adjuvant. No side effects were observed in the immunized mice and no excessive inflammatory immune responses were detected. Overall, this study demonstrated how simple conjugation of cholesterol to a peptide antigen can produce a safe and efficacious vaccine against Group A Streptococcus - the leading cause of superficial infections and the bacteria responsible for deadly post-infection autoimmune disorders.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas , Ratones , Humanos , Animales , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Lipopéptidos/farmacología , Lipopéptidos/química , Liposomas , Emulsiones , Epítopos , Streptococcus
8.
ACS Infect Dis ; 10(3): 845-857, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38363869

RESUMEN

Myeloid differentiation factor 2 (MD2), the TLR4 coreceptor, has been shown to possess opsonic activity and has been implicated in phagocytosis and intracellular killing of Gram-negative bacteria. However, any MD2 protein segment involved in phagocytosis of Gram-negative bacteria is not yet known. A short synthetic MD2 segment, MD54 (amino acid regions 54 to 69), was shown to interact with a Gram-negative bacterial outer membrane component, LPS, earlier. Furthermore, the MD54 peptide induced aggregation of LPS and facilitated its internalization in THP-1 cells. Currently, it has been investigated if MD2-derived MD54 possesses any opsonic property and role in phagocytosis of Gram-negative bacteria. Remarkably, we observed that MD54 facilitated agglutination of Gram-negative bacteria, Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC BAA-427), but not of Gram-positive bacteria, Bacillus subtilis (ATCC 6633) and Staphylococcus aureus (ATCC 25923). The MD54-opsonized Gram-negative bacteria internalized within PMA-treated THP-1 cells and were killed over a longer incubation period. However, both internalization and intracellular killing of the MD54-opsonized Gram-negative bacteria within THP-1 phagocytes were appreciably inhibited in the presence of a phagocytosis inhibitor, cytochalasin D. Furthermore, MD54 facilitated the clearance of Gram-negative bacteria E. coli (ATCC 25922) and P. aeruginosa (ATCC BAA-427) from the infected BALB/c mice whereas an MD54 analog, MMD54, was inactive. Overall, for the first time, the results revealed that a short MD2-derived peptide can specifically agglutinate Gram-negative bacteria, act as an opsonin for these bacteria, and facilitate their phagocytosis by THP-1 phagocytes. The results suggest that the MD54 segment could have a crucial role in MD2-mediated host-pathogen interaction involving the Gram-negative bacteria.


Asunto(s)
Escherichia coli , Lipopolisacáridos , Animales , Ratones , Lipopolisacáridos/metabolismo , Escherichia coli/metabolismo , Fagocitosis , Macrófagos/metabolismo , Bacterias Gramnegativas/metabolismo
9.
J Biomol Struct Dyn ; 42(2): 687-695, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36995305

RESUMEN

Metal encapsulation delivers a straightforward strategy to improve miscellaneous nanoparticle properties and qualifies the resulting nanocomposite for exceptional application, including bioimaging, drug release, and theranostic development. Besides crucial applications, investigations associated with the nanocomposite impact on the biological media are highly relevant from a pharmacological viewpoint. Such studies can be conducted by exploring nanocomposite attributes and all aspects of their interaction with proteins existing in biofluids. Based on these aspects, the present work examines manganese-encapsulated carbonaceous nanocomposite (MnCQD) and their interaction with plasma proteins. On one side, the obtained nanocomposite has almost spherical shapes (≈12 nm in size), an appropriate composition and interesting optical properties for bioimaging applications. On another side, MnCQD quenches the fluorescence of two plasma proteins (BSA and HTF) following a static mechanism, confirming the formation of the MnCQD-BSA and MnCQD-HTF complexes. Although hydrophobic forces guide the stability of both formed complexes, MnCQD binds preferentially to BSA compared to HTF, with affinity constants differing by almost an order of magnitude. Furthermore, HTF and BSA underwent modifications in their secondary structure provoked due to contact with the nanocomposite, which also presented neglectable opsonization levels when exposed to appropriate biological media. These results highlight the MnCQD outstanding potential to be employed in diverse bioapplications.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Manganeso , Nanocompuestos , Opsonización , Fluorescencia , Proteínas Sanguíneas , Nanocompuestos/química , Albúmina Sérica Bovina/química , Unión Proteica , Espectrometría de Fluorescencia
10.
Cell Biochem Funct ; 41(8): 1031-1043, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37933222

RESUMEN

Opsonization plays a pivotal role in hindering controlled drug release from nanoformulations due to macrophage-mediated nanoparticle destruction. While first and second-generation delivery systems, such as lipoplexes (50-150 nm) and quantum dots, hold immense potential in revolutionizing disease treatment through spatiotemporal controlled drug delivery, their therapeutic efficacy is restricted by the selective labeling of nanoparticles for uptake by reticuloendothelial system and mononuclear phagocyte system via various molecular forces, such as electrostatic, hydrophobic, and van der Waals bonds. This review article presents novel insights into surface-modification techniques utilizing macromolecule-mediated approaches, including PEGylation, di-block copolymerization, and multi-block polymerization. These techniques induce stealth properties by generating steric forces to repel micromolecular-opsonins, such as fibrinogen, thereby mitigating opsonization effects. Moreover, advanced biological methods, like cellular hitchhiking and dysopsonic protein adsorption, are highlighted for their potential to induce biological camouflage by adsorbing onto the nanoparticulate surface, leading to immune escape. These significant findings pave the way for the development of long-circulating next-generation nanoplatforms capable of delivering superior therapy to patients. Future integration of artificial intelligence-based algorithms, integrated with nanoparticle properties such as shape, size, and surface chemistry, can aid in elucidating nanoparticulate-surface morphology and predicting interactions with the immune system, providing valuable insights into the probable path of opsonization.


Asunto(s)
Nanopartículas , Polietilenglicoles , Humanos , Polietilenglicoles/química , Opsonización , Inteligencia Artificial , Sistemas de Liberación de Medicamentos , Proteínas Opsoninas/química , Proteínas Opsoninas/metabolismo , Nanopartículas/química
11.
J Bacteriol ; 205(8): e0001823, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37436150

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen heavily implicated in chronic diseases. Immunocompromised patients that become infected with P. aeruginosa usually are afflicted with a lifelong chronic infection, leading to worsened patient outcomes. The complement system is an integral piece of the first line of defense against invading microorganisms. Gram-negative bacteria are thought to be generally susceptible to attack from complement; however, P. aeruginosa can be an exception, with certain strains being serum resistant. Various molecular mechanisms have been described that confer P. aeruginosa unique resistance to numerous aspects of the complement response. In this review, we summarize the current published literature regarding the interactions of P. aeruginosa and complement, as well as the mechanisms used by P. aeruginosa to exploit various complement deficiencies and the strategies used to disrupt or hijack normal complement activities.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/fisiología , Infecciones por Pseudomonas/microbiología , Proteínas del Sistema Complemento
12.
Microbiol Spectr ; 11(4): e0077723, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37260399

RESUMEN

Mycobacterium abscessus, an intracellular nontuberculous mycobacterium, is considered the most pathogenic species among the group of rapidly growing mycobacteria. The resistance of M. abscessus to the host innate response contributes to its pathogenicity in addition to several virulence factors. We have recently shown in Drosophila that antimicrobial peptides (AMPs), whose production is induced by M. abscessus, are unable to control mycobacterial infection. This could be due to their inability to kill mycobacteria and/or the hidden location of the pathogen in phagocytic cells. Here, we demonstrate that the rapid internalization of M. abscessus by Drosophila macrophages allows it to escape the AMP-mediated humoral response. By depleting phagocytes in AMP-deficient flies, we found that several AMPs were required for the control of extracellular M. abscessus. This was confirmed in the Tep4 opsonin-deficient flies, which we show can better control M. abscessus growth and have increased survival through overproduction of some AMPs, including Defensin. Furthermore, Defensin alone was sufficient to kill extracellular M. abscessus both in vitro and in vivo and control its infection. Collectively, our data support that Tep4-mediated opsonization of M. abscessus allows its escape and resistance toward the Defensin bactericidal action in Drosophila. IMPORTANCE Mycobacterium abscessus, an opportunistic pathogen in cystic fibrosis patients, is the most pathogenic species among the fast-growing mycobacteria. How M. abscessus resists the host innate response before establishing an infection remains unclear. Using Drosophila, we have recently demonstrated that M. abscessus resists the host innate response by surviving the cytotoxic lysis of the infected phagocytes and the induced antimicrobial peptides (AMPs), including Defensin. In this work, we demonstrate that M. abscessus resists the latter response by being rapidly internalized by Drosophila phagocytes. Indeed, by combining in vivo and in vitro approaches, we show that Defensin is able to control extracellular M. abscessus infection through a direct bactericidal action. In conclusion, we report that M. abscessus escapes the host AMP-mediated humoral response by taking advantage of its internalization by the phagocytes.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium , Animales , Drosophila , Opsonización , Péptidos Antimicrobianos , Defensinas/farmacología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Antibacterianos/farmacología
13.
Antibodies (Basel) ; 12(2)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37218899

RESUMEN

Plague is an ancient disease that continues to be of concern to both the public health and biodefense research communities. Pneumonic plague is caused by hematogenous spread of Yersinia pestis bacteria from a ruptured bubo to the lungs or by directly inhaling aerosolized bacteria. The fatality rate associated with pneumonic plague is significant unless effective antibiotic therapy is initiated soon after an early and accurate diagnosis is made. As with all bacterial pathogens, drug resistance is a primary concern when developing strategies to combat these Yersinia pestis infections in the future. While there has been significant progress in vaccine development, no FDA-approved vaccine strategy exists; thus, other medical countermeasures are needed. Antibody treatment has been shown to be effective in animal models of plague. We produced fully human polyclonal antibodies in transchromosomic bovines vaccinated with the recombinant F1-V plague vaccine. The resulting human antibodies opsonized Y. pestis bacteria in the presence of RAW264.7 cells and afforded significant protection to BALB/c mice after exposure to aerosolized Y. pestis. These data demonstrate the utility of this technology to produce large quantities of non-immunogenic anti-plague human antibodies to prevent or possibly treat pneumonic plague in human.

14.
Methods Mol Biol ; 2674: 221-234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258971

RESUMEN

Phagocytosis is relevant for many research fields and is often measured as a functional outcome. However, accurate quantification can be challenging, and many researchers find it difficult to study in a robust manner. There are many ways to measure phagocytosis, but what is often overlooked is the importance of experimental design and how the analysis is planned and performed. Experimental factors like reaction volume, time, and phagocyte-prey concentrations often have a large impact on the outcome, as is the choice of detection strategy with different fluorescent or colorimetric labels of prey and phagocyte. By using dose-response curve principles for both experimental design and analysis, it is possible to increase the sensitivity and robustness, leading to accurate quantification of phagocytosis that is comparable across experiments and systems.Here, we describe how to quantify phagocytosis using flow cytometry with a robust, high-throughput, and easy-to-use approach. The prey is first fluorescently double stained, followed by optional opsonization before being introduced to the phagocyte in a wide range of ratios. After incubation, data is acquired through flow cytometry. It can be assessed on both the population and single-cell level of the phagocytes, separating adhesion and internalization. As an example, we provide an experimental protocol for studying phagocytosis of opsonized Streptococcus pyogenes using the THP-1 cell line. This approach is easily incorporated into most existing phagocytosis assays and allows for reproducible results with high sensitivity.


Asunto(s)
Fagocitos , Fagocitosis , Citometría de Flujo/métodos , Fagocitos/fisiología , Colorantes , Streptococcus pyogenes
15.
Clin Immunol ; 250: 109324, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030524

RESUMEN

While hypogammaglobulinemia is associated with COPD exacerbations, it is unknown whether frequent exacerbators have specific defects in antibody production/function. We hypothesized that reduced quantity/function of serum pneumococcal antibodies correlate with exacerbation risk in the SPIROMICS cohort. We measured total pneumococcal IgG in n = 764 previously vaccinated participants with COPD. In a propensity-matched subset of n = 200 with vaccination within five years (n = 50 without exacerbations in the previous year; n = 75 with one, n = 75 with ≥2), we measured pneumococcal IgG for 23 individual serotypes, and pneumococcal antibody function for 4 serotypes. Higher total pneumococcal IgG, serotype-specific IgG (17/23 serotypes), and antibody function (3/4 serotypes) were independently associated with fewer prior exacerbations. Higher pneumococcal IgG (5/23 serotypes) predicted lower exacerbation risk in the following year. Pneumococcal antibodies are inversely associated with exacerbations, supporting the presence of immune defects in frequent exacerbators. With further study, pneumococcal antibodies may be useful biomarkers for immune dysfunction in COPD.


Asunto(s)
Infecciones Neumocócicas , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Inmunoglobulina G , Streptococcus pneumoniae , Vacunación , Pruebas Inmunológicas , Anticuerpos Antibacterianos , Vacunas Neumococicas
16.
Microbiol Spectr ; 11(1): e0414122, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36622150

RESUMEN

Acinetobacter baumannii is an antibiotic-resistant opportunistic pathogen, one of the main causes of hospital infections. There is an urgent need for the development of therapy strategies which are not based on antibiotics. Hybridoma technology was used to obtain monoclonal antibodies. The antibodies were characterized by enzyme immunoassay and fluorescence microscopy according to their ability to opsonize A. baumannii and to protect model animals from infection upon intraperitoneal and pulmonary injection. Monoclonal antibodies (MAbs), IgG, against the K9 capsular polysaccharide (CPS) of A. baumannii were prepared using a glycoconjugate, synthesized by squaric-acid chemistry, consisting of two CPS K9 monomer units and a carrier protein. The MAbs were highly specific, stained the bacterial surface, allowed detection of A. baumannii in infected lung tissue, effectively opsonized the bacteria at nanogram concentrations (up to 1.5 ng/mL for CPS-407), and demonstrated a high ability to protect an organism against bacterial infection upon intraperitoneal and lung injection. In intraperitoneal infection of a mouse model with A. baumannii K9, the CPS-407 antibody protected at a dose of 25 µg/mouse. When bacteria were injected into the lung, MAb therapy prevented infection of the body and led to a significant reduction of the bacterial load in infected tissues. IMPORTANCE MAbs detected A. baumannii in infected lung tissue, effectively opsonized bacteria, and protected model animals from infection.


Asunto(s)
Acinetobacter baumannii , Sepsis , Ratones , Animales , Anticuerpos Monoclonales , Antibacterianos/farmacología , Polisacáridos/metabolismo , Sepsis/microbiología
17.
Microbiol Spectr ; 11(1): e0327922, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36651756

RESUMEN

Nontuberculous mycobacteria (NTM), including Mycobacterium avium, are clinically important pathogens in cystic fibrosis (CF). The innate immune response to M. avium remains incompletely understood. We evaluated the role of complement opsonization in neutrophil-mediated killing of M. avium. Killing assays were performed using neutrophils from healthy donors (HDs) and persons with CF (pwCF). Clinical isolates of M. avium were opsonized with plasma from HDs or pwCF, which was intact or heat-treated to inactivate complement. HD neutrophils had killing activity against M. avium opsonized with intact HD plasma and killing was significantly reduced when M. avium was opsonized with heat-inactivated HD plasma. When opsonized with HD plasma, CF neutrophils had killing activity against M. avium that was not different than HD neutrophils. When opsonized with intact plasma from pwCF, HD neutrophil killing of M. avium was significantly reduced. Opsonization of M. avium with C3-depleted serum or IgM-depleted plasma resulted in significantly reduced killing. Plasma C3 levels were elevated in pwCF with NTM infection compared to pwCF without NTM infection. These studies demonstrate that human neutrophils efficiently kill M. avium when opsonized in the presence of plasma factors from HD that include C3 and IgM. Killing efficiency is significantly lower when the bacteria are opsonized with plasma from pwCF. This indicates a novel role for opsonization in neutrophil killing of M. avium and a deficiency in complement opsonization as a mechanism of impaired M. avium killing in CF. IMPORTANCE Mycobacterium avium is a member of a group of bacterial species termed nontuberculous mycobacteria (NTM) that cause lung disease in certain populations, including persons with cystic fibrosis (CF). NTM infections are challenging to diagnose and can be even more difficult to treat. This study investigated how the immune system responds to M. avium infection in CF. We found that neutrophils, the most abundant immune cell in the lungs in CF, can effectively kill M. avium in individuals both with and without CF. Another component of the immune response called the complement system is also required for this process. Levels of complement proteins are altered in persons with CF who have a history of NTM compared to those without a history of NTM infection. These results add to our understanding of how the immune system responds to M. avium, which can help pave the way toward better diagnostic and treatment strategies.


Asunto(s)
Fibrosis Quística , Infecciones por Mycobacterium no Tuberculosas , Humanos , Fibrosis Quística/microbiología , Neutrófilos , Mycobacterium avium , Opsonización , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas , Proteínas del Sistema Complemento , Inmunoglobulina M
18.
Methods Cell Biol ; 173: 109-120, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653078

RESUMEN

Antibody-dependent cellular phagocytosis (ADCP) is a process through which myeloid cells are able to exert their phagocytic function after recognition of opsonized bacteria, viruses, infected cells or any cells targeted by a specific antibody. ADCP of tumor cells represents a potent effector mechanism of monoclonal antibody therapy mediated by tumor associated macrophages (TAM) and other phagocytic cells as an in situ anti-tumor activity. Here we described a protocol based on flow cytometry and immunofluorescence assays enabling extensive comparative studies to address whether a monoclonal antibody engaging Fcγ receptors on macrophages can mediate in vitro ADCP of tumor cells.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Fagocitosis , Animales , Ratones , Macrófagos , Anticuerpos Monoclonales , Fagocitos
19.
Int J Nanomedicine ; 17: 5933-5946, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506344

RESUMEN

Purpose: To prepare nanoscale ultrasound contrast agents (Nano-UCAs) and examine the role of their surface charge in complement activation and phagocytosis. Materials and Methods: We analyzed serum proteins present in the corona formed on Nano-UCAs and evaluated two important protein markers of complement activation (C3 and SC5b-9). The effect of surface charge on phagocytosis was further assessed using THP-1 macrophages. Results: When Nano-UCAs were incubated with human serum, they were opsonized by various blood proteins, especially C3. Highly charged Nano-UCAs, whether positive or negative, were favorably opsonized by complement proteins and phagocytized by macrophages. Conclusion: Charged Nano-UCAs show a higher tendency to activated complement system, and are efficiently engulfed by macrophages. The present results provide meaningful insights into the role of the surface charge of nanoparticles in the activation of the innate immune system, which is important not only for the design of targeted Nano-UCAs, but also for the effectiveness and safety of other theranostic agents.


Asunto(s)
Medios de Contraste , Proteínas Opsoninas , Humanos , Medios de Contraste/farmacología , Complemento C3/metabolismo , Fagocitosis , Activación de Complemento , Proteínas del Sistema Complemento
20.
Bioengineering (Basel) ; 9(12)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36550972

RESUMEN

Gold nanoparticles (GNPs) have immense potential in biomedicine, but understanding their interactions with serum proteins is crucial as it could change their biological profile due to the formation of a protein corona, which could then affect their ultimate biodistribution in the body. Grafting GNPs with polyethylene glycol (PEG) is a widely used practice in research in order to decrease opsonization of the particles by serum proteins and to decrease particle uptake by the mononuclear phagocyte system. We investigated the impact of PEGylation on the formation of protein coronae and the subsequent uptake by macrophages and MDA-MB-231 cancer cells. Furthermore, we investigated the in vivo biodistribution in xenograft tumor-bearing mice using a library of 4 and 10 nm GNPs conjugated with a gadolinium chelate as MRI contrast agent, cancer-targeting aptamer AS1411 (or CRO control oligonucleotide), and with or without PEG molecules of different molecular weight (Mw: 1, 2, and 5 kDa). In vitro results showed that PEG failed to decrease the adsorption of proteins; moreover, the cellular uptake by macrophage cells was contingent on the different configurations of the aptamers and the length of the PEG chain. In vivo biodistribution studies showed that PEG increased the uptake by tumor cells for some GNPs, albeit it did not decrease the uptake of GNPs by macrophage-rich organs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA