Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
Biosensors (Basel) ; 14(9)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39329816

RESUMEN

Random lasing (RL) is an optical phenomenon that arises from the combination of light amplification with optical feedback through multiple scattering events. In this paper, we present our investigations of RL generation from human blood samples. We tested mixtures of rhodamine B dye solutions with different blood components, including platelets, lymphocytes, erythrocytes, and whole blood. Intense coherent RL was obtained in all cases at relatively low pump thresholds, except for erythrocytes. We also studied the potential of RL signal analysis for biosensing applications using blood samples from healthy individuals and patients suffering from Chronic Lymphocytic Leukemia (CLL). CLL is a blood disease characterized by a high count of lymphocytes with significant morphological changes. A statistical analysis of the RL spectra based on principal component and linear discriminant analyses was conducted for classification purposes. RL-based sample discrimination was conducted for whole blood, platelet, and lymphocyte samples, being especially successful (86.7%) for the latter. Our results highlight the potential of RL analysis as a sensing tool in blood.


Asunto(s)
Técnicas Biosensibles , Humanos , Plaquetas , Leucemia Linfocítica Crónica de Células B/sangre , Linfocitos , Eritrocitos , Rodaminas
2.
Front Plant Sci ; 15: 1411859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39345978

RESUMEN

Plant pathogens, including viruses, bacteria, and fungi, cause massive crop losses around the world. Abiotic stresses, such as drought, salinity and nutritional deficiencies are even more detrimental. Timely diagnostics of plant diseases and abiotic stresses can be used to provide site- and doze-specific treatment of plants. In addition to the direct economic impact, this "smart agriculture" can help minimizing the effect of farming on the environment. Mounting evidence demonstrates that vibrational spectroscopy, which includes Raman (RS) and infrared spectroscopies (IR), can be used to detect and identify biotic and abiotic stresses in plants. These findings indicate that RS and IR can be used for in-field surveillance of the plant health. Surface-enhanced RS (SERS) has also been used for direct detection of plant stressors, offering advantages over traditional spectroscopies. Finally, all three of these technologies have applications in phenotyping and studying composition of crops. Such non-invasive, non-destructive, and chemical-free diagnostics is set to revolutionize crop agriculture globally. This review critically discusses the most recent findings of RS-based sensing of biotic and abiotic stresses, as well as the use of RS for nutritional analysis of foods.

3.
Micromachines (Basel) ; 15(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39203662

RESUMEN

High-precision displacement sensing has been widely used across both scientific research and industrial applications. The recent interests in developing micro-opto-electro-mechanical systems (MOEMS) have given rise to an excellent platform for miniaturized displacement sensors. Advancement in this field during past years is now yielding integrated high-precision sensors which show great potential in applications ranging from photoacoustic spectroscopy to high-precision positioning and automation. In this review, we briefly summarize different techniques for high-precision displacement sensing based on MOEMS and discuss the challenges for future improvement.

4.
Sensors (Basel) ; 24(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39124088

RESUMEN

The classically defined minimum uncertainty of the optical phase is known as the standard quantum limit or shot-noise limit (SNL), originating in the uncertainty principle of quantum mechanics. Based on the SNL, the phase sensitivity is inversely proportional to K, where K is the number of interfering photons or statistically measured events. Thus, using a high-power laser is advantageous to enhance sensitivity due to the K gain in the signal-to-noise ratio. In a typical interferometer, however, the resolution remains in the diffraction limit of the K = 1 case unless the interfering photons are resolved as in quantum sensing. Here, a projection measurement method in quantum sensing is adapted for classical sensing to achieve an additional K gain in the resolution. To understand the projection measurements, several types of conventional interferometers based on N-wave interference are coherently analyzed as a classical reference and numerically compared with the proposed method. As a result, the Kth-order intensity product applied to the N-wave spectrometer exceeds the diffraction limit in classical sensing and the Heisenberg limit in quantum sensing, where the classical N-slit system inherently satisfies the Heisenberg limit of π/N in resolution.

5.
J Colloid Interface Sci ; 675: 236-250, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38970910

RESUMEN

Pre-treatment of diamond surface in low-temperature plasma for oxygenation and in acids for carboxylation was hypothesized to promote the branching density of the hyperbranched glycidol polymer. This was expected to increase the homogeneity of the branching level and suppress interactions with proteins. As a result, composite nanodiamonds with reduced hydrodynamic diameters that are maintained in physiological environments were anticipated. Surfaces of 140-nm-sized nanodiamonds were functionalized with oxygen and carboxyl groups for grafting of hyperbranched dendritic polyglycerol via anionic ring-opening polymerization of glycidol. The modification was verified with Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Dynamic light scattering investigated colloidal stability in pH-diverse (2-12) solutions, concentrated phosphate-buffered saline, and cell culture media. Thermogravimetric analysis of nanodiamonds-protein incubations examined non-specific binding. Fluorescence emission was tested across pH conditions. Molecular dynamics simulations modeled interparticle interactions in ionic solutions. The hyperbranched polyglycerol grafting increased colloidal stability of nanodiamonds across diverse pH, high ionic media like 10 × concentrated phosphate-buffered saline, and physiological media like serum and cell culture medium. The hyperbranched polyglycerol suppressed non-specific protein adsorption while maintaining intensive fluorescence of nanodiamonds regardless of pH. Molecular modelling indicated reduced interparticle interactions in ionic solutions correlating with the improved colloidal stability.


Asunto(s)
Coloides , Nanodiamantes , Polímeros , Propiedades de Superficie , Nanodiamantes/química , Coloides/química , Concentración de Iones de Hidrógeno , Polímeros/química , Tamaño de la Partícula , Glicerol/química , Dendrímeros/química , Simulación de Dinámica Molecular
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124820, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39032229

RESUMEN

As demand for food continues to rise, innovative methods are needed to sustainably and efficiently meet the growing pressure on agriculture. Indoor farming and controlled environment agriculture have emerged as promising approaches to address this challenge. However, optimizing fertilizer usage, ensuring homogeneous production, and reducing agro-waste remain substantial challenges in these production systems. One potential solution is the use of optical sensing technology, which can provide real-time data to help growers make informed decisions and enhance their operations. optical sensing can be used to analyze plant tissues, evaluate crop quality and yield, measure nutrients, and assess plant responses to stress. This paper presents a systematic literature review of the current state of using spectral-optical sensors and hyperspectral imaging for indoor farming, following the PRISMA 2020 guidelines. The study surveyed existing studies from 2017 to 2023 to identify gaps in knowledge, provide researchers and farmers with current trends, and offer recommendations and inspirations for possible new research directions. The results of this review will contribute to the development of sustainable and efficient methods of food production.


Asunto(s)
Agricultura , Análisis Espectral , Agricultura/métodos , Análisis Espectral/métodos , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Imágenes Hiperespectrales/métodos , Fertilizantes/análisis , Imagen Óptica/métodos
7.
ACS Nano ; 18(32): 21544-21553, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39004820

RESUMEN

The microcapillary, a glass tube with a nano/micrometer scale aperture, is used for manipulating small objects across diverse disciplines. A primary concern in using the microcapillary involves tip breakage upon contact. Here, we report a method for visualizing the microcapillary tip, enabling precise and instant determination of its contact with other objects. Illumination directed to the back aperture of the microcapillary induces waveguiding through the glass wall, enabling the visualization of the tip through scattering. We demonstrate that the tip scattering is sensitive to contact with an adjacent object owing to the near-field interaction of the waveguided light, providing a clear distinction between the contact and noncontact states. The key advantage of our method encompasses its minimal influence, irrespective of conductivity, and applicability to nanoscale systems. The versatility of our method is shown by the application to a wide range of tip diameters, various substrate and in-filling materials.

8.
Sensors (Basel) ; 24(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38894444

RESUMEN

This work describes a sapphire cryo-applicator with the ability to sense tissue freezing depth during cryosurgery by illumination of tissue and analyzing diffuse optical signals in a steady-state regime. The applicator was manufactured by the crystal growth technique and has several spatially resolved internal channels for accommodating optical fibers. The method of reconstructing freezing depth proposed in this work requires one illumination and two detection channels. The analysis of the detected intensities yields the estimation of the time evolution of the effective attenuation coefficient, which is compared with the theoretically calculated values obtained for a number of combinations of tissue parameters. The experimental test of the proposed applicator and approach for freezing depth reconstruction was performed using gelatin-based tissue phantom and rat liver tissue in vivo. It revealed the ability to estimate depth up to 8 mm. The in vivo study confirmed the feasibility of the applicator to sense the freezing depth of living tissues despite the possible diversity of their optical parameters. The results justify the potential of the described design of a sapphire instrument for cryosurgery.


Asunto(s)
Óxido de Aluminio , Criocirugía , Congelación , Hígado , Fantasmas de Imagen , Animales , Criocirugía/métodos , Ratas , Hígado/cirugía , Hígado/diagnóstico por imagen , Óxido de Aluminio/química
9.
ACS Appl Mater Interfaces ; 16(26): 33855-33864, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38900841

RESUMEN

Near-infrared (NIR) phosphors have emerged as novel luminescent materials across various fields due to their unique advantages of high penetration and invisibility. However, there is currently a lack of intelligent NIR phosphors that can achieve multimode stimuli responsive for sensing applications. In this study, we employed a high-temperature solid-phase reaction to incorporate Pr3+ into Cr3+-doped gallate magnetite SrGa12O19 phosphor, yielding a multimode luminescent intelligent NIR phosphor. Also, due to the inherent cation vacancies and defects in the matrix, the material not only exhibits brighter photoluminescence but also exhibits distinct NIR mechanoluminescence at a lower load. Notably, Pr3+-doped SrGa12O19:Cr3+ also demonstrates extended persistent luminescence and thermoluminescence effects. Finally, we combined the phosphor with the blue LED chip to develop a new multifunctional NIR pc-LED. Leveraging NIR's unique penetrating ability, it can persist in biological tissues for prolonged periods, enabling optical inspection and offering a novel approach to password protection for anticounterfeiting measures. This intelligent NIR phosphor solution significantly expands the application potential of NIR light in food quality assessment and analysis.

10.
ACS Appl Bio Mater ; 7(7): 4497-4509, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38925631

RESUMEN

Although visible light-based stereolithography (SLA) represents an affordable technology for the rapid prototyping of 3D scaffolds for in vitro support of cells, its potential could be limited by the lack of functional photocurable biomaterials that can be SLA-structured at micrometric resolution. Even if innovative photocomposites showing biomimetic, bioactive, or biosensing properties have been engineered by loading inorganic particles into photopolymer matrices, main examples rely on UV-assisted extrusion-based low-resolution processes. Here, SLA-printable composites were obtained by mixing a polyethylene glycol diacrylate (PEGDA) hydrogel with multibranched gold nanoparticles (NPs). NPs were engineered to copolymerize with the PEGDA matrix by implementing a functionalization protocol involving covalent grafting of allylamine molecules that have C═C pendant moieties. The formulations of gold nanocomposites were tailored to achieve high-resolution fast prototyping of composite scaffolds via visible light-based SLA. Furthermore, it was demonstrated that, after mixing with a polymer and after laser structuring, gold NPs still retained their unique plasmonic properties and could be exploited for optical detection of analytes through surface-enhanced Raman spectroscopy (SERS). As a proof of concept, SERS-sensing performances of 3D printed plasmonic scaffolds were successfully demonstrated with a Raman probe molecule (e.g., 4-mercaptobenzoic acid) from the perspective of future extensions to real-time sensing of cell-specific markers released within cultures. Finally, biocompatibility tests preliminarily demonstrated that embedded NPs also played a key role by inducing physiological cell-cytoskeleton rearrangements, further confirming the potentialities of such hybrid nanocomposites as groundbreaking materials in laser-based bioprinting.


Asunto(s)
Materiales Biocompatibles , Oro , Hidrogeles , Rayos Láser , Ensayo de Materiales , Nanocompuestos , Impresión Tridimensional , Espectrometría Raman , Andamios del Tejido , Oro/química , Nanocompuestos/química , Materiales Biocompatibles/química , Hidrogeles/química , Andamios del Tejido/química , Tamaño de la Partícula , Polietilenglicoles/química , Nanopartículas del Metal/química , Propiedades de Superficie , Humanos
11.
Angew Chem Int Ed Engl ; 63(36): e202409790, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38880778

RESUMEN

A reaction-based optical relay sensing strategy that enables accurate determination of the concentration and enantiomeric ratio (er) of challenging chiral alcohols exhibiting stereocenters at the α-, ß-, γ- or even δ-position or hard-to-detect cryptochirality arising from H/D substitution is described. This unmatched application scope is achieved with a conceptually new sensing approach by which the alcohol moiety is replaced with an optimized achiral sulfonamide chromophore to minimize the distance between the covalently attached chiroptical reporter unit and the stereogenic center in the substrate. The result is a remarkably strong, red-shifted CD induction that increases linearly with the sample er. The CD sensing part of the tandem assay is seamlessly coupled to a redox reaction with a quinone molecule to generate a characteristic UV response that is independent of the enantiopurity of the alcohol and thus allows determination of the total analyte concentration. The robustness and utility of the CD/UV relay are further verified by chromatography-free asymmetric reaction analysis with small aliquots of crude product mixtures, paving the way toward high-throughput chiral compound screening workflows which is a highly sought-after goal in the pharmaceutical industry.

12.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732860

RESUMEN

Contactless and label-free detection of urea content in aqueous solutions is of great interest in chemical, biomedical, industrial, and automotive applications. In this work, we demonstrate a compact and low-cost instrumental configuration for label-free, reagent-free, and contactless detection of urea dissolved in water, which exploits the absorption properties of urea in the near-infrared wavelength region. The intensity of the radiation transmitted through the fluid under test, contained in a rectangle hollow glass tubing with an optical pathlength of 1 mm, is detected in two spectral bands. Two low-cost, low-power LEDs with emission spectra centered at λ = 1450 nm and λ = 2350 nm are used as readout sources. The photodetector is positioned on the other side of the tubing, in front of the LEDs. The detection performances of a photodiode and of a thermal optical power detector have been compared, exploiting different approaches for LED driving current modulation and photodetected signal processing. The implemented detection system has been tested on urea-water solutions with urea concentrations from 0 up to 525 mg/mL as well as on two samples of commercial diesel exhaust fluid ("AdBlue™"). Considering the transmitted intensity in presence of the urea-water solution, at λ = 1450 nm and λ = 2350 nm, normalized to the transmitted intensity in presence of water, we demonstrate that their ratio is linearly related to urea concentration on a wide range and with good sensitivity.

13.
Nano Lett ; 24(21): 6218-6224, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38757765

RESUMEN

Nanopore sensing is a popular biosensing strategy that is being explored for the quantitative analysis of biomarkers. With low concentrations of analytes, nanopore sensors face challenges related to slow response times and selectivity. Here, we demonstrate an approach to rapidly detect species at ultralow concentrations using an optical nanopore blockade sensor for quantitative detection of the protein vascular endothelial growth factor (VEGF). This sensor relies on monitoring fluorescent polystyrene nanoparticles blocking nanopores in a nanopore array of 676 nanopores. The fluorescent signal is read out using a wide-field fluorescence microscope. Nonspecific blockade events are then distinguished from specific blockade events based on the ability to pull the particles out of the pore using an applied electric field. This allows the detection of VEGF at sub-picomolar concentration in less than 15 min.


Asunto(s)
Técnicas Biosensibles , Nanoporos , Poliestirenos , Factor A de Crecimiento Endotelial Vascular , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Factor A de Crecimiento Endotelial Vascular/análisis , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Poliestirenos/química , Nanopartículas/química , Humanos , Microscopía Fluorescente/métodos
14.
Mikrochim Acta ; 191(6): 349, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806947

RESUMEN

A series of triphenylamine-derived fluorescent dyes were attached to a Cu2+-containing MOF (metal-organic framework), denoted as Pm@CuMOF. The molecular structures of these dyes were discussed by the single crystal structures. Their major absorption bands peaked at 410-450 nm, showing emission bands ranging from 556 to 586 nm with emission quantum yields ranging from 8.0 to 15.1%. It was found that the [-N(C2H5)2] group generally improved sensing performance, and the -OH group in the dyes helped the Cu2+ quenching effect. Pm@CuMOF was observed by SEM as nanorods with a width of ~100 nm and a length of 300 nm. Their XRD patterns and N2 adsorption/desorption isotherms were recorded to confirm their porous structure. A low probe loading level of ~4% was determined by TGA result. The CO sensing mechanism was revealed as a Cu2+/Cu+-involved sensing mechanism based on the result of NMR titration, IR, XPS, and EPR. The fluorescence of these triphenylamine-derived dyes was firstly quenched by CuMOF. In contact with CO, Cu2+ was reduced to Cu+, accompanied by the release and fluorescence recovery of the fluorescent dyes, showing emission turn-on effect towards CO gas. Pm@CuMOF showed increased emission intensity at CO level of 0.005% (versus N2), with response times ranging from 123 s to 280 s (depending on various temperatures). Good selectivity was observed over competing alkane gases, with stable emission for at least 5 days, but no linear calibration plots were observed.

15.
Chempluschem ; 89(8): e202400098, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38647287

RESUMEN

The recent international scenario highlights the importance to protect human health and environmental quality from toxic compounds. In this context, organophosphorous (OP) Nerve Agents (NAs) have received particular attention, due to their use in terrorist attacks. Classical instrumental detection techniques are sensitive and selective, but they cannot be used in real field due to the high cost, specialized personnel requested and huge size. For these reasons, the development of practical, easy and fast detection methods (smart methods) is the future of this field. Indeed, starting from initial sensing research, based on optical and/or electrical sensors, today the development and use of smart strategies to detect NAs is the current state of the art. This review summarizes the smart strategies to detect NAs, highlighting some important parameters, such as linearity, limit of detection and selectivity. Furthermore, some critical comments of the future on this field, and in particular, the problems to be solved before a real application of these methods, are provided.


Asunto(s)
Agentes Nerviosos , Agentes Nerviosos/análisis , Agentes Nerviosos/química , Humanos , Compuestos Organofosforados/análisis , Compuestos Organofosforados/química
16.
Biosensors (Basel) ; 14(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38667190

RESUMEN

Controlling the progression of contagious diseases is crucial for public health management, emphasizing the importance of early viral infection diagnosis. In response, lateral flow assays (LFAs) have been successfully utilized in point-of-care (POC) testing, emerging as a viable alternative to more traditional diagnostic methods. Recent advancements in virus detection have primarily leveraged methods such as reverse transcription-polymerase chain reaction (RT-PCR), reverse transcription-loop-mediated isothermal amplification (RT-LAMP), and the enzyme-linked immunosorbent assay (ELISA). Despite their proven effectiveness, these conventional techniques are often expensive, require specialized expertise, and consume a significant amount of time. In contrast, LFAs utilize nanomaterial-based optical sensing technologies, including colorimetric, fluorescence, and surface-enhanced Raman scattering (SERS), offering quick, straightforward analyses with minimal training and infrastructure requirements for detecting viral proteins in biological samples. This review describes the composition and mechanism of and recent advancements in LFAs for viral protein detection, categorizing them into colorimetric, fluorescent, and SERS-based techniques. Despite significant progress, developing a simple, stable, highly sensitive, and selective LFA system remains a formidable challenge. Nevertheless, an advanced LFA system promises not only to enhance clinical diagnostics but also to extend its utility to environmental monitoring and beyond, demonstrating its potential to revolutionize both healthcare and environmental safety.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Espectrometría Raman , Proteínas Virales , Humanos , Técnicas Biosensibles/métodos , Colorimetría , Nanoestructuras/química , Pruebas en el Punto de Atención , Proteínas Virales/análisis
17.
Biosens Bioelectron ; 255: 116238, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579625

RESUMEN

Efficient real-time diagnostics and on-demand drug delivery are essential components in modern healthcare, especially for managing chronic diseases. The lack of a rapid and effective sensing and therapeutic system can result in analyte level deviations, leading to severe complications. Minimally invasive microneedle (MN)-based patches integrating nanostructures (NSs) in their volume or on their surface have emerged as a biocompatible technology for delay-free analyte sensing and therapy. However, a quantitative relationship for the signal response in NS-assisted reactions remains elusive. Existing generalized formalisms are derived for in-vitro applications, raising questions about their direct applicability to in-situ wearable sensors. In this study, we apply the reaction-diffusion theory to establish a generalized physics-guided framework for NS-in-MN platforms in wearable applications. The model relates the signal response to analyte concentration, incorporating geometric, physical, and catalytic platform properties. Approximating the model under NS (binding or catalytic) and environmental (mass transport) limitations, we validate it against numerical simulations and various experimental results from diverse conditions - analyte sensing (glucose, lactic acid, pyocyanin, miRNA, etc.) in artificial and in-vivo environments (humans, mice, pigs, plants, etc.) through electrochemical and optical/colorimetric, enzymatic and non-enzymatic platforms. The results plotted in the scaled response show that (a) NS-limited platforms exhibit a linear dependence, (b) Mass transport-limited platforms saturate to 1, (c) a one-to-one mapping against traditional sensitivity plots unifies the scattered data points reported in literature. The universality of the model provides insightful perspectives for the design and optimization of MN-based sensing technologies, with potential extensions to dissolvable MNs as part of analyte-responsive closed-loop therapeutic applications.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Humanos , Animales , Porcinos , Ratones , Técnicas Biosensibles/métodos , Nanoestructuras/química , Sistemas de Liberación de Medicamentos/métodos
18.
J Pharm Sci ; 113(8): 2560-2564, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38685453

RESUMEN

The physical stability of parenteral dispersions for delivery of drugs to patients is of particular clinical importance, given their general overall superior bioavailability compared to other routes of administration. Although official pharmacopeial methods for lipid injectable emulsions have been established for triglyceride oil-in-water dispersions (i.e., "mini-emulsions") through USP Chapter <729>, no pharmaceopeial guidance exists for lipid nanoparticle (LNP)-based "micro-emulsions". At present, there are several LNP-based drugs approved for clinical use, including mRNA vaccines. Moreover, the increased interest in using mRNA as a platform technology for an array of potential therapeutic drug candidates increases the importance of developing appropriate methods to ensure their physical stability, safety and efficacy. For all dispersions and by various detection mechanisms (e.g., electrical, mechanical, mathematical), the fusion or growth of droplets/particles in the large-diameter tails of the particle size distribution (PSD) signals the onset of instability. Consequently, the measurement for LNP dispersions will require the use of a modified optical detection design in order to extend the lower particle detection limit into the "relative" large-diameter tail of the PSD for both light extinction and light-scattering methods based on single-particle optical sensing techniques. Fortunately, the technology is currently available and capable of providing the requisite quantitative analysis.


Asunto(s)
Lípidos , Nanopartículas , Nanopartículas/química , Lípidos/química , Humanos , Tamaño de la Partícula , Estabilidad de Medicamentos , Animales , Emulsiones/química , Química Farmacéutica/métodos
19.
Angew Chem Int Ed Engl ; 63(26): e202404594, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38634562

RESUMEN

Piano stool complexes have been studied over many years and found widespread applications in organic synthesis, catalysis, materials and drug development. We now report the first examples of quantitative chiroptical molecular recognition of chiral compounds through click-like η6-arene coordination with readily available half sandwich complexes. This conceptually new approach to chirality sensing is based on irreversible acetonitrile displacement of [Cp*Ru(CH3CN)3]PF6 by an aromatic target molecule, a process that is fast and complete within a few minutes at room temperature. The metal coordination coincides with characteristic circular dichroism inductions that can be easily correlated to the absolute configuration and enantiomeric ratio of the bound molecule. A relay assay that decouples the determination of the enantiomeric composition and of the total sample amount by a practical CD/UV measurement protocol was developed and successfully tested. The introduction of piano stool complexes to the chiroptical sensing realm is mechanistically unique and extends the scope of currently known methods with small-molecule probes that require the presence of amino, alcohol, carboxylate or other privileged functional groups for binding of the target compound. A broad application range including pharmaceutically relevant multifunctional molecules and the use in chromatography-free asymmetric reaction analysis are also demonstrated.

20.
ACS Appl Bio Mater ; 7(5): 3483-3495, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38685505

RESUMEN

The two-dimensional (2D) WSe2 nanostructure was successfully synthesized via the hydrothermal method and subjected to comprehensive characterization using various spectroscopic techniques. X-ray diffraction (XRD) analysis confirmed the formation of nanosheets with a hexagonal crystal structure having a space symmetry of P63/mmc. Scanning electron microscopy (SEM) images showed irregular and nonuniform morphology. The size of the 2D nanosheets was determined using transmission electron microscopy (TEM) providing insights intotheir physical characteristics. The optical spectrum analysis yielded a discernible band gap value of 2.1 eV, as determined by the Tauc equation. Photoluminescence (PL) spectra display an emission at a wavelength of 610 nm, showing a broad emission associated with self-trapped excitons. Under excitation at λexc = 360 nm, PL emission spectra displayed a distinct peak at 610 nm, demonstrating the ability of the nanostructure to emit vivid red light. Photometric analysis underscored the potential of this nanostructure as a prominent red-light source for diverse display applications. The optimized photodetection performance of a device showcases a photoresponsivity of approximately 1.25 × 10-3 AW-1 and a detectivity of around 5.19 × 108 Jones at a wavelength of 390 nm. Additionally, the quantum efficiency is reported to be approximately 6.99 × 10-3 at a wavelength of 635 nm. These findings highlight the capability of the device for efficient photoconversion at specified wavelengths, indicating potential applications in sensing, imaging, and optical communication. The combination of structural, morphological, and optical characterizations highlights the suitability of 2D WSe2 nanostructure for practical optoelectronic applications, particularly in display technologies.


Asunto(s)
Ensayo de Materiales , Nanoestructuras , Tamaño de la Partícula , Dispositivos Electrónicos Vestibles , Nanoestructuras/química , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA