Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.501
Filtrar
1.
Front Pharmacol ; 15: 1361733, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130645

RESUMEN

Introduction: Cytotoxic cerebral edema is a serious complication associated with cerebral ischemic stroke and is widely treated using the hypertonic dehydrant. Here, we propose, for the first time, the decrease of intracellular osmosis as a treatment strategy for alleviating cytotoxic cerebral edema. Methods: We established a fluorescence resonance energy transfer-based intermediate filament tension probe for the study and in situ evaluation of osmotic gradients, which were examined in real-time in living cells from primary cultures as well as cell lines. The MCAO rat model was used to confirm our therapy of cerebral edema. Results: Depolymerization of microfilaments/microtubules and the production of NLRP3 inflammasome resulted in an abundance of protein nanoparticles (PNs) in the glutamate-induced swelling of astrocytes. PNs induced changes in membrane potential and intracellular second messengers, thereby contributing to hyper-osmosis and the resultant astrocyte swelling via the activation of voltage-dependent nonselective ion channels. Therefore, multiple inhibitors of PNs, sodium and chloride ion channels were screened as compound combinations, based on a decrease in cell osmosis and astrocyte swelling, which was followed by further confirmation of the effectiveness of the compound combination against alleviated cerebral edema after ischemia. Discussion: The present study proposes new pathological mechanisms underlying "electrophysiology-biochemical signal-osmotic tension," which are responsible for cascade regulation in cerebral edema. It also explores various compound combinations as a potential treatment strategy for cerebral edema, which act by multi-targeting intracellular PNs and voltage-dependent nonselective ion flux to reduce astrocyte osmosis.

2.
MethodsX ; 13: 102871, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39157813

RESUMEN

OCT imaging is an important technique to study fouling in spacer-filled channels of reverse osmosis systems for seawater desalination. However, OCT imaging of membrane filtration channels with feed spacers is challenging because the spacer material can be (partly) transparent, making it difficult to detect and possibly mistaken for fouling, and the longer optical pathway through the spacer material distorts the image below the spacer. This study presents an automated 3D OCT image processing method in MATLAB for visualization and quantification of biofouling in spacer-filled channels. First, a spacer template of arbitrary size and rotation was generated from a CT scan of the feed spacer. Second, background noise and file size were reduced by representing the OCT image with a list of discrete reflectors. Finally, the spacer template was overlayed with the feed spacer in the 3D OCT image, enabling automated visualization of the feed spacer and correction of the distortions. Moreover, the method allows the selection of datasets with the same location relative to the position of the spacer, enabling systematic comparison between datasets and quantitative analysis.•A spacer template of arbitrary size and rotation was generated from a CT scan.•The background noise was removed, and the file size was reduced by representing the OCT dataset with a list of discrete reflectors.•The spacer template was overlayed with the feed spacer in the 3D OCT image.

3.
Environ Sci Technol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135318

RESUMEN

Vacuum-UV (185 nm, VUV) is widely applied to polish reverse osmosis permeate (ROP), such as the production of electronics-grade ultrapure water. In this study, the VUV oxidation of acetaldehyde, a common carbonyl in ROP, was found to be influenced by anions even at low concentrations. Interestingly, the influencing extent and mechanism varied depending on the anions. Bicarbonate minimally affected the VUV-photon absorption and •OH consumption, but at 5000 µg-C·L-1, it decreased the degradation of acetaldehyde by 58.7% possibly by scavenging organic radicals or other radical chain reactions. Nitrate strongly competed for VUV-photon absorption and •OH scavenging through the formation of nitrite, and at 500 µg-N·L-1, it decreased the removal rate of acetaldehyde degradation by 71.2% and the mineralization rate of dissolved organic carbon by 53.4%. Chloride competed for VUV-photon absorption and also generated reactive chlorine species, which did not affect acetaldehyde degradation but influenced the formation of organic byproducts. The radical chain reactions or activation of anions under VUV irradiation could compensate for the decrease in oxidation performance and need further investigation. In real ROPs, the VUV oxidation of acetaldehyde remained efficient, but mineralization was hindered due to nitrate and chloride anions. This study deepens the understanding of the photochemistry and feasibility of VUV in water with low concentrations of anions.

4.
J Mol Graph Model ; 132: 108833, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39042997

RESUMEN

Molecular dynamics (MD) simulations are conducted to assess pristine graphenylene membranes' effectiveness in seawater desalination, explicitly focusing on their salt rejection and water permeability capabilities. This study investigates the potential of the graphenylene for separation of the Na+ as monovalent cation, in order to evaluate its further application for separation of the other type of contaminants. To this end, the pristine graphenylene nanosheet is introduced into the simulation box which included the water molecules, sodium and chlorine ions. Subsequently, MD simulations were conducted by applying different amounts of external pressures in which the temperature changes are investigated as another effective parameter in water permeability and salt rejection properties. Furthermore, the water density map, radial distribution functions, and water density elucidate the performance of the considered membrane in the presence of water molecules, Na+ ions, and Cl- ions. The optimum performance of the pristine graphenylene for seawater desalination is achieved at P = 400 MPa and T = 298 K that results in the water flux of 2920 L/m2 h bar and 98.8 % salt rejection. The pristine graphenylene nanosheet shows significant potential in effectively separating salt ions, which has elucidated its importance and subsequently, the functionalized membrane for this application.

5.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000689

RESUMEN

Total ammoniacal nitrogen (TAN) occurs in various wastewaters and its recovery is vital for environmental reasons. Forward osmosis (FO), an energy-efficient technology, extracts water from a feed solution (FS) and into a draw solution (DS). Asymmetric FO membranes consist of an active layer and a support layer, leading to internal concentration polarization (ICP). In this study, we assessed TAN recovery using a polymeric thin-film composite FO membrane by determining the permeability coefficients of NH4+ and NH3. Calculations employed the solution-diffusion model, Nernst-Planck equation, and film theory, applying the acid-base equilibrium for bulk concentration corrections. Initially, model parameters were estimated using sodium salt solutions as the DS and deionized water as the FS. The NH4+ permeability coefficient was 0.45 µm/s for NH4Cl and 0.013 µm/s for (NH4)2SO4 at pH < 7. Meanwhile, the NH3 permeability coefficient was 6.18 µm/s at pH > 9 for both ammonium salts. Polymeric FO membranes can simultaneously recover ammonia and water, achieving 15% and 35% recovery at pH 11.5, respectively.

6.
Environ Sci Pollut Res Int ; 31(33): 45495-45506, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967844

RESUMEN

The reverse osmosis (RO) technique has been extensively employed in the advanced treatment of industrial water and wastewater. However, this process results in the production of a significant quantity of reverse osmosis concentrate (ROC), which contains high levels of salinity and organic contaminants, thereby posing serious environmental problems. This study reported a two-stage precipitation process utilizing quicklime (CaO) and caustic soda (NaOH) in conjunction with air blowing (carbonation) for the removal of Ca2+ and Mg2+ from real brackish water ROC of factory. In stage I, the CaO precipitation-carbonation process was employed to eliminate the majority of Ca2+ from the ROC, while leaving Mg2+ virtually unaffected, yielding high-purity CaCO3 precipitates. In stage II, the NaOH precipitation method was utilized to eliminate the remaining Ca2+ and Mg2+ from the ROC. It was demonstrated that under optimal conditions, the removal rates of Ca2+ and Mg2+ exceeded 97%. Finally, the characterization of precipitates demonstrated the generation of high-purity CaCO3 precipitates in stage I, as well as the formation of CaCO3 and Mg(OH)2 precipitates in stage II. The results confirmed the feasibility of employing the two-stage precipitation with carbonation process to economically treat ROC and enable its reuse, offering valuable insights for the treatment of industrial wastewater.


Asunto(s)
Calcio , Magnesio , Ósmosis , Magnesio/química , Calcio/química , Purificación del Agua/métodos , Precipitación Química , Aguas Residuales/química , Iones , Contaminantes Químicos del Agua/química
7.
Environ Sci Pollut Res Int ; 31(33): 45847-45861, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976191

RESUMEN

Recently, alcohol-based draw solute (DS), i.e., alcohol with water, is one of the trending research topics in forward osmosis (FO) because of its performance and ease of regeneration. Nevertheless, the higher reverse solute flux (RSF) of the alcohol-based DS hinders its commercialization in water and wastewater treatment applications. This research aims to minimize the RSF of the alcohol-based DS in FO by investigating the possibility of using alcohol-alcohol-based draw solutes for the first time. Three alcohol-alcohol-based draw solutions, namely, (1) E70 + IPA30 (ethanol: 70% + isopropanol: 30%), (2) E40 + IPA60 (ethanol: 40% + isopropanol: 60%), and (3) E10 + IPA90 (ethanol: 10% + isopropanol: 90%), were prepared and the properties (including osmolality, shear stress, and viscosity) of the DS were first investigated followed by the parametric investigation (concerning temperature and concentration). The results were further analyzed with the fixed-point iterative method in MATLAB to obtain the performance parameters. Results reveal that the E10 + IPA90 mixture yields a lower RSF of 40.62 g/m2/h and specific reverse solute flux of 3.78 g/L with a considerably good water flux and recovery percentage of 11.47 LMH and 26.29%, respectively, as compared to other DS E70 + IPA30 and E40 + IPA60 at 25 °C. Thus, E10 + IPA90 is recommended as a potential candidate to be used as a DS in FO.


Asunto(s)
Ósmosis , Purificación del Agua , Purificación del Agua/métodos , Alcoholes/química , Aguas Residuales/química
8.
BMC Chem ; 18(1): 134, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049105

RESUMEN

Typically, hydrogels are described as three-dimensional networks of hydrophilic polymers that are able to capture a certain mass of water within their structure. Recently, hydrogels have been widely used as drawing agents in forward osmosis (FO) desalination processes. The major aim of this study is to prepare a novel semi-interpenetrating hydrogel by crosslinking sodium alginate (SA) and polyvinyl alcohol (PVA) by using the epichlorohydrin (ECH) crosslinker and polyethylene glycol (PEG) interpenetrated within the hydrogel's network as a linear polymer. Based on the optimum composition of SA/PVA composite hydrogel obtained from our earlier research, the effect of various percentages of PEG on the response of the hydrogel was investigated. The optimal composition of SA/PVA/PEG hydrogel was characterized by scanning electron microscopy (SEM), compression strength testing, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The morphological and mechanical properties of the SA/PVA/PEG semi-interpenetrating hydrogel were also compared to those of the SA/PVA composite hydrogel. Moreover, the performance of the optimal SA/PVA/PEG hydrogel in a FO batch unit as a drawing agent was investigated based on the optimal operation conditions from our previous experiments. The results showed that the optimal PEG/polymer blend mass ratio was 0.25, which increased the swelling ratio (SR) (%) of the hydrogel from 645.42 (of the neat SA/PVA hydrogel) to 2683. The SA/PVA/PEG semi-interpenetrating hydrogel was superior to the SA/PVA copolymer hydrogel in pore structure and mechanical properties. Additionally, in terms of FO desalination, the achieved water flux by SA/PVA/PEG hydrogel is higher than that accomplished by SA/PVA hydrogel.

9.
Cryobiology ; 116: 104943, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39033954

RESUMEN

The paper discusses the impact of cell size on cytotoxicity and expansion lysis during the osmotic excursions resulting from the contact of hMSCs from UCB with Me2SO. It builds upon the mathematical model recently presented by the authors, which pertains to a population of cells with uniform size. The objective is to enhance the model's relevance by incorporating the more realistic scenario of cell size distribution, utilizing a Population Balance Equations approach. The study compares the capability of the multiple-sized model to the single-sized one to describe system behavior experimentally measured through cytofluorimetry and Coulter counter when, first, suspending hMSCs in hypertonic solutions of Me2SO (at varying osmolality, system temperature, and contact times), and then (at room temperature) pelleting by centrifugation before suspending the cells back to isotonic conditions. Simulations demonstrate that expansion lysis and cytotoxic effect are not affected by cell size for the specific system hMSCs/Me2SO, thus confirming what was found so far by the authors through a single-size model. On the other hand, simulations show that, when varying the adjustable parameters of the model that are expected to change from cell to cell lineages, expansion lysis is sensitive to cell size, while cytotoxicity is not, being mainly influenced by external CPA concentration and contact duration. More specifically, it is found that smaller cells suffer expansion lysis more than larger ones. The findings suggest that different cells from hMSCs may require a multiple-sized model to assess cell damage during osmotic excursions in cryopreservation.

10.
Water Res ; 261: 122039, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024800

RESUMEN

Membrane fouling has always been a critical constraint in the operation of the reverse osmosis (RO) process, and chemical cleaning is essential for mitigating membrane fouling and ensuring smooth operation of the membrane system. This paper presents an optimized chemical cleaning method for the efficient cleaning of RO membranes in full-scale applications. Compared to the regular cleaning method (cleaning with 0.1 % NaOH + 1 % ethylenediaminetetraacetic acid + 0.025 % sodium dodecyl benzene sulfonate followed by 0.2 % HCl), the optimized cleaning method improves the cleaning efficiency by adding sodium chloride to the alkaline cleaning solution and citric acid to the acid cleaning solution. Notably, the membrane flux recovery rate with the optimized cleaning method is 45.74 %, and it improves the cleaning efficiency by 1.65 times compared to the regular cleaning method. Additionally, the optimized cleaning method removes 30.46 % of total foulants (organic and inorganic), which is 2.11 times higher than the regular cleaning method. The removal of inorganic ions such as Fe, Ca, and Mg is significantly improved with the optimized cleaning method. For organic matter removal, the optimized cleaning method effectively removes more polysaccharides, proteins, and microbial metabolites by disrupting the complex structures of organic matter. Furthermore, it also changes the microbial community structure on the RO membrane surface by eliminating microorganisms that cannot withstand strong acids, bases, and high salt environments. However, Mycobacterium can adapt to these harsh conditions, showing a relative abundance of up to 84.13 % after cleaning. Overall, our results provide a new chemical cleaning method for RO membranes in full-scale applications. This method effectively removes membrane foulants and enhances the understanding of the removal characteristics of foulants on RO membrane surfaces by chemical cleaning.


Asunto(s)
Membranas Artificiales , Ósmosis , Aguas Residuales , Purificación del Agua , Aguas Residuales/química , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos
11.
ACS Nano ; 18(28): 18673-18682, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38951732

RESUMEN

Separating xylene isomers is a challenging task due to their similar physical and chemical properties. In this study, we developed a molecular sieve incorporating a reduced graphene oxide (rGO) membrane for the precise differentiation of xylene isomers. We fabricated GO membranes using a vacuum filtration technique followed by thermal-induced reduction to produce rGO membranes with precisely controllable interlayer spacing. Notably, we could finely tune the interlayer spacing of the rGO membrane from 8.0 to 5.0 Å by simply varying the thermal reduction temperature. We investigated the reverse osmosis separation ability of the rGO membranes for xylene isomers and found that the rGO membrane with an interlayer spacing of 6.1 Å showed a high single component permeance of 0.17 and 0.04 L m-2 h-1 bar-1 for para- and ortho-xylene, respectively, exhibiting clear permselectivity. The separation factor reached 3.4 and 2.8 when 90:10 and 50:50 feed mixtures were used, respectively, with permeance 1 order of magnitude higher than that of current state-of-the-art reverse osmosis membranes. Additionally, the membrane showed negligible permeance and selectivity decay even after continuous operation for more than 5 days, suggesting commendable membrane resistance to solvent swelling and operating pressure.

12.
Plant J ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990506

RESUMEN

The osmotic resistance mechanism has been extensively studied in whole plants or plant tissues. However, little is known about it in embryogenic tissue (ET) which is widely used in plant-based biotechnological systems. Suberin, a cell wall aliphatic and aromatic heteropolymer, plays a critical role in plant cells against osmosis stress. The suberin regulatory biosynthesis has rarely been studied in gymnosperms. Here, PaMYB11, a subgroup 11 R2R3-MYB transcription factor, plays a key role in the osmotic resistance of Norway spruce (Picea abies) ETs during cryoprotectant pretreatment. Thus, RNA-seq, histological, and analytical chemical analyses are performed on the stable transformations of PaMYB11-OE and PaMYB11-SRDX in Norway spruce ETs. DAP-seq, Y1H, and LUC are further combined to explore the PaMYB11 targets. Activation of PaMYB11 is necessary and sufficient for suberin lamellae deposition on Norway spruce embryogenic cell walls, which plays a decisive role in ET survival under osmotic stress. Transcriptome analysis shows that PaMYB11 enhances suberin lamellae monomer synthesis by promoting very long-chain fatty acid (VLCFA) synthesis. PaPOP, PaADH1, and PaTET8L, the first two (PaADH1 and PaPOP, included) involved in VLCFA synthesis, are proved to be the direct targets of PaMYB11. Our study identified a novel osmotic response directed by PaMYB11 in Norway spruce ET, which provides a new understanding of the resistance mechanism against osmosis in gymnosperms.

13.
Water Sci Technol ; 90(1): 1-17, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007303

RESUMEN

Reverse osmosis (RO) membrane fouling and biological contamination problems faced by seawater desalination systems are microbiologically related. We used full-length 16S rRNA gene sequencing to assess the bacterial community structure and chlorine-resistant bacteria (CRB) associated with biofilm growth in different treatment processes under the winter mode of a chlorinated seawater desalination system in China. At the outset of the winter mode, certain CRB, such as Acinetobacter, Pseudomonas, and Bacillus held sway over the bacterial community structure, playing a pivotal role in biofouling. At the mode's end, Deinococcus and Paracoccus predominated, with Pseudomonas and Roseovarius following suit, while certain CRB genera still maintained their dominance. RO and chlorination are pivotal factors in shaping the bacterial community structure and diversity, and increases in total heterotrophic bacterial counts and community diversity in safety filters may adversely affect the effectiveness of subsequent RO systems. Besides, the bacterial diversity and culturable biomass in the water produced by the RO system remain high, and some conditionally pathogenic CRBs pose a certain microbial risk as a source of drinking water. Targeted removal of these CRBs will be an important area of research for advancing control over membrane clogging and ensuring water quality safety in the future.


Asunto(s)
Bacterias , Incrustaciones Biológicas , Halogenación , Plantas de Energía Nuclear , ARN Ribosómico 16S , Purificación del Agua , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Purificación del Agua/métodos , Agua de Mar/microbiología , Cloro/química
14.
Water Sci Technol ; 90(1): 314-343, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007322

RESUMEN

Desalination of seawater, brackish water, and reclaimed water is becoming increasingly prevalent worldwide to supplement and diversify fresh water supplies. However, particularly for industrial wastewater, the need for environment-friendly and economically viable alternatives for concentrate management is the major impediment to deploying large-scale desalination. This review covers various strategies and technologies for managing reverse osmosis concentrate (ROC) and also includes their disposal, treatment, and potential applications. Developing energy-efficient, economical, and ecologically sound ROC management systems is essential if desalination and wastewater treatment are being implemented for a sustainable water future, particularly for industrial wastewater. The limitations and benefits of various concentrate management strategies are examined in this review. Moreover, it explores the potential of innovative technologies in reducing concentrate volume, enhancing water recovery, eliminating organic pollutants, and extracting valuable resources. This review critically discusses concentrate management approaches and technologies, including disposal, treatment, and reuse, including new technologies for reducing concentrate volume, boosting water recovery, eliminating organic contaminants, recovering valuable commodities, and minimizing energy consumption.


Asunto(s)
Ósmosis , Purificación del Agua , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Residuos Industriales
15.
Chemosphere ; 363: 142742, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38971441

RESUMEN

Uranium (U) is a chemical and radioactive toxic contaminant affecting many groundwater systems. The focus of this study was to evaluate the suitability of forward osmosis (FO) for uranium rejection from contaminated groundwater under field-relevant conditions. Laboratory experiments with aqueous solution containing uranium were performed with FO membrane to understand the uranium rejection mechanism under varied pH, draw solution concentration, and presence of co-ions. Further, experiments were performed with U-contaminated field groundwater. Results of the hydrogeochemcial modelling using PHREEQC indicated that the rejection mechanism of uranium was highly dependent on aqueous speciation. Uranium rejection was maximum at alkaline pH with ca. 99% rejection due to charge-based interactions between membrane and dominant uranyl complexes. The results of the co-ion study indicated that nitrate and phosphate ions decrease uranium rejection. Whereas, bicarbonates, calcium, and magnesium ions concentrated uranium in feed solution. Further, the uranium adsorption onto the membrane surface primarily depended on pH of the aqueous solution with maximum adsorption at pH 5.5. Our results show that the World Health Organization's drinking water guideline value of 30 µgL-1 for U could be achieved via FO process in field groundwater containing low dissolved solids.


Asunto(s)
Agua Subterránea , Ósmosis , Uranio , Contaminantes Radiactivos del Agua , Purificación del Agua , Uranio/química , Agua Subterránea/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Adsorción , Contaminantes Radiactivos del Agua/química , Contaminantes Radiactivos del Agua/análisis , Iones/química
16.
Nano Lett ; 24(31): 9487-9493, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38949896

RESUMEN

Recent years have seen a growing interest in zero-dimensional (0D) transport phenomena occurring across two-dimensional (2D) materials for their potential applications to nanopore technology such as ion separation and molecular sensing. Herein, we investigate ion transport through 1 nm-wide nanopores in Ti3C2 MXene using molecular dynamics simulations. The high polarity and fish-bone arrangement of the Ti3C2 MXene offer a built-in potential and an atomic-scale distortion to the nanopore, causing an adsorption preference for cations. Our observation of variable cation-specific ion selectivity and Coulomb blockade highlights the complex interplay between adsorption affinity and cation size. The cation-specific ion selectivity can induce both the ion current and electro-osmotic water transmission, which can be regulated by tailoring the ions' preferential pathways through electric field tilting. Our finding underscores the pivotal role of the atomic arrangement of MXenes in 0D ion transport and provides fundamental insight into the application of 2D material in nanopores-based technologies.

17.
ACS Nano ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051760

RESUMEN

Nanopore technology is widely used for sequencing DNA, RNA, and peptides with single-molecule resolution, for fingerprinting single proteins, and for detecting metabolites. However, the molecular driving forces controlling the analyte capture, its residence time, and its escape have remained incompletely understood. The recently developed Nanopore Electro-Osmotic trap (NEOtrap) is well fit to study these basic physical processes in nanopore sensing, as it reveals previously missed events. Here, we use the NEOtrap to quantitate the electro-osmotic and electrophoretic forces that act on proteins inside the nanopore. We establish a physical model to describe the capture and escape processes, including the trapping energy potential. We verified the model with experimental data on CRISPR dCas9-RNA-DNA complexes, where we systematically screened crucial modeling parameters such as the size and net charge of the complex. Tuning the balance between electrophoretic and electro-osmotic forces in this way, we compare the trends in the kinetic parameters with our theoretical models. The result is a comprehensive picture of the major physical processes in nanopore trapping, which helps to guide the experiment design and signal interpretation in nanopore experiments.

18.
J Environ Manage ; 367: 122041, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39083934

RESUMEN

RO process is commonly used to treat and reuse manganese-containing industrial wastewater. Nevertheless, even after undergoing multi-stage treatment, the secondary biochemical effluent still exhibits a high concentration of Mn2+ coupled with organics entering the RO system, leading to membrane fouling. In this work, we systematically analyze the RO membrane organic fouling processes and mechanisms, considering the coexistence of Mn2+ with humic acid (HA), sodium alginate (SA), bovine serum albumin (BSA) and their mixtures (HBS). The impact of Mn2+ on membrane fouling was HBS > SA > HA > BSA, controlling polysaccharide pollutant concentrations should be a priority for mitigating membrane fouling. In the presence of Mn2+ with HA, SA, or HBS, membrane fouling is primarily attributed to the complexation of organics and Mn2+ and the facilitation of interfacial interaction energy. RO membrane BSA fouling was not directly affected by Mn2+, the addition of Mn2+ induced a salting-out effect, leading to the deposition of BSA in a single molecular on the membrane. Simultaneously, adhesion energy hinders the deposition of BSA on the membrane, resulting in milder membrane fouling. This study provided the theoretical basis and suggestions for RO membrane organic fouling control in the presence of Mn2+.


Asunto(s)
Sustancias Húmicas , Manganeso , Membranas Artificiales , Manganeso/química , Sustancias Húmicas/análisis , Albúmina Sérica Bovina/química , Alginatos/química , Aguas Residuales/química , Incrustaciones Biológicas/prevención & control
19.
Chemosphere ; 363: 142873, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019187

RESUMEN

Electro-osmosis has been valued as a promising technology to enhance the dewatering of waste sludge, stabilization and environmental remediation of soils with low permeability. However, the coefficient of electro-osmotic permeability (keo) is commonly taken as constant value which is particularly not the case in variable charge soil. As a result, the nonlinearity of the electro-osmotic flow (EOF) and the direction reverse could not be interpreted. Herein, the electro-chemical parameters were monitored in electro-osmotic experiment with natural variable charge soil. It was observed that the evolutions showed significant nonlinear behavior and were correlated. The comprehensive Zeta potential model proposed by the authors was applied to simulate the nonlinear keo induced by the variable pH and electrolyte concentration. The agreement between tested and simulated flow rate variation and excess pore water pressure distribution demonstrated the reliability of the theory. The error rate of the simulations through coupling nonlinear keo and voltage gradient Ex was reduced to 29.4% from 381.9% of calculations with constant parameters. The direction reverse of EOF was innovatively interpreted. Hence, the numerical model would act as a useful tool to connect these electro-chemical parameters and provide guidance to evaluate contributions of commonly used pH conditioning measurements.


Asunto(s)
Ósmosis , Suelo , Suelo/química , Concentración de Iones de Hidrógeno , Electroósmosis/métodos , Permeabilidad , Modelos Teóricos , Restauración y Remediación Ambiental/métodos , Electrólitos/química
20.
Chemosphere ; 363: 142899, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029711

RESUMEN

Anaerobically-treated palm oil mill effluent (POME) still has unacceptable properties for water recycling and reuse, with an unpleasant appearance due to the brownish color caused by tannins and phenolic compounds. This study proposes an approach for treating anaerobically-treated POME for water recycling by combining organic precipitation, electrocoagulation (EC), and ion-exchange resin, followed by reverse osmosis (RO) membrane filtration in series. The results indicated that the organic precipitation enhanced the efficiency of EC treatment in reducing the concentrations of tannins, color, and chemical oxygen demand (COD) of the anaerobically-treated POME effluent, with reductions of 95.73%, 96.31%, and 93.96% for tannin, color, and COD, respectively. Moreover, organic precipitation affected the effectiveness of Ca2+ and Mg2+ ion removal using ion exchange resin and RO membrane filtration. Without prior organic precipitation, the ion-exchange resin process required a longer contact time, and the RO membrane filtration treatment was hardly effective in removing total dissolved solids (TDS). The combined process gave a water quality that meets the criteria set by the Thailand Ministry of Industry for industrial boiler use (COD 88 mg/L, TDS <0.001 mg/L, water hardness <5 mg-CaCO3/L, and pH 6.9).


Asunto(s)
Filtración , Resinas de Intercambio Iónico , Ósmosis , Aceite de Palma , Eliminación de Residuos Líquidos , Aceite de Palma/química , Filtración/métodos , Resinas de Intercambio Iónico/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Membranas Artificiales , Purificación del Agua/métodos , Electrocoagulación/métodos , Anaerobiosis , Residuos Industriales/análisis , Análisis de la Demanda Biológica de Oxígeno , Taninos/química , Taninos/análisis , Precipitación Química , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA