Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.404
Filtrar
1.
Small ; : e2309891, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721972

RESUMEN

Although the current cancer photothermal therapy (PTT) can produce a powerful therapeutic effect, tumor cells have been proved a protective mechanism through autophagy. In this study, a novel hybrid theranostic nanoparticle (CaCO3@CQ@pDB NPs, CCD NPs) is designed and prepared by integrating a second near-infrared (NIR-II) absorbed conjugated polymer DTP-BBT (pDB), CaCO3, and autophagy inhibitor (chloroquine, CQ) into one nanosystem. The conjugated polymer pDB with asymmetric donor-acceptor structure shows strong NIR-II absorbing capacity, of which the optical properties and photothermal generation mechanism of pDB are systematically analyzed via molecular theoretical calculation. Under NIR-II laser irradiation, pDB-mediated PTT can produce powerful killing ability to tumor cells. At the same time, heat stimulates a large amount of Ca2+ inflow, causing calcium overload induced mitochondrial damage and enhancing the apoptosis of tumor cells. Besides, the released CQ blocks the self-protection mechanism of tumor cells and greatly enhances the attack of PTT and calcium overload therapy. Both in vitro and in vivo experiments confirm that CCD NPs possess excellent NIR-II theranostic capacity, which provides a new nanoplatform for anti-tumor therapy and builds great potential for future clinical research.

2.
Eur J Nutr ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722385

RESUMEN

PURPOSE: Iron absorption in sickle cell anemia (SCA) remains unclear and studies in adults with SCA are scarce. The aim of this study was to evaluate the iron absorption SCA adults and its association with iron status and hepcidin concentration. METHODS: SCA patients (n = 13; SCAtotal) and control participants (n = 10) ingested an oral stable iron isotope (57Fe). Iron absorption was measured by inductively coupled plasma mass spectrometry (ICP-MS) 14 days after isotope administration. Patients with ≥ 1000 ng/mL serum ferritin were considered to present iron overload (IO) (SCAio+; n = 3) and others classified without IO (SCAio-; n = 10). RESULTS: Iron absorption in the control group ranged from 0.3 to 26.5% (median = 0.9%), while it varied from 0.3 to 5.4% in SCAio+ (median = 0.5%) and from 0.3 to 64.2% in the SCAio- (median = 6.9%). Hepcidin median values were 14.1 ng/mL (3.0-31.9 ng/mL) in SCAio-, 6.2 ng/mL (3.3-7.8 ng/mL) in SCAio + and 6.2 ng/mL (0.6-9.3 ng/mL) in control. Iron absorption was associated with ferritin level (r = - 0.641; p = 0.018) and liver iron concentration (LIC; r = - 0.786; p = 0.036) in the SCAtotal group. CONCLUSION: Our data suggest that SCAio- individuals may be at risk of developing primary IO. Simultaneously, secondary IO may induce physiological adaptation, resulting in reduced iron absorption. Further studies evaluating intestinal iron absorption using larger sample sizes should be conducted to help establish a safe nutrition approach to be adopted and to ensure the security of food-fortifying public policies for these patients. TRIAL REGISTRATION: This trial was registered at www.ensaiosclinicos.gov.br (Identifier RBR-4b7v8pt).

3.
Ann Biomed Eng ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744754

RESUMEN

Bone tissue is subjected to increased mechanical stress during high-intensity work. Inadequate bone remodeling reparability can result in the continuous accumulation of microdamage, leading to stress fractures. The aim of this work was to investigate the characteristics and repair mechanisms of tibial microdamage under several degrees of overload. Also, we aimed at better understanding the effects of overload on the multi-scale structure and mechanical properties of bone. Sixty 5-month female rats were divided into three groups with different time points. Micro-CT was used to evaluate the three-dimensional microstructure, and three-point bending, quasi-static fracture toughness and creep mechanical test were carried out to evaluate the mechanical properties. SEM was used to observe the morphological characteristics of fracture surfaces. Section staining was used to count the microdamage parameters and numbers of osteoblasts and osteoclasts. The microarchitectures of cancellous and cortical bones in the three overload groups showed different degrees of damage. Overload led to a messy crystal structure of cortical bone, with slender microcracks mixed in, and a large number of broken fibers of cancellous bone. The properties associated with the elastic plasticity, fracture toughness, and viscoelasticity of cortical bone reduced in three groups, with that corresponding to day 30 presenting the highest damage. The accumulation of microdamage mainly occurred in the first 14 days, that is, the crack density peaked on day 14. Peak-targeted bone remodeling of cortical and cancellous bones occurred mainly between days 14 and 30. The influence of overload mechanical environment on bone quality at different time points was deeply investigated, which is of great significance for the etiology and treatment of stress fractures.

4.
Front Public Health ; 12: 1362009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726229

RESUMEN

Aim: This study aimed to analyze the coronavirus disease 2019 (COVID-19) infodemic phenomenon in the medical field, providing essential data to help healthcare professionals understand it. Methods: This study utilized a hybrid model for concept analysis. In the theoretical phase (first phase), a literature review was conducted using ScienceDirect, PubMed, CINAHL, ProQuest, Scopus, Web of Science, DBpia, RISS, and KISS. Semi-structured interviews, involving eight physicians and six nurses, were used in the fieldwork phase (second phase). In the final analysis phase (third phase), the results of the preceding phases were combined. Results: Based on the findings of these phases, the COVID-19 infodemic can be defined as "the phenomenon of information flood, reproduction, dissemination, and asymmetry, which occurred during the pandemic through social networks among the public lacking essential knowledge of infectious disease, and is associated with negative and positive effects." Conclusion: Our findings can help the Ministry of Health and Welfare and healthcare professionals to understand the phenomenon of the infodemic and prepare necessary strategies and education programs for the public. Therefore, the provision of basic data is important for developing influential roles for healthcare professionals during infectious disease outbreaks.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Personal de Salud/estadística & datos numéricos , Pandemias , Difusión de la Información , Formación de Concepto , Femenino , Masculino
5.
Stomatologiia (Mosk) ; 103(2): 50-55, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38741535

RESUMEN

BACKGROUND: Restoring the integrity of the dentition with orthopedic structures should be carried out strictly according to indications, taking into account the condition of the supporting teeth and/or teeth limiting the defect. OBJECTIVE: To conduct a retrospective analysis of the results of orthopedic treatment of patients with shortened dentition according to clinical and radiological methods. MATERIALS AND METHODS: The material for the study was data from cone beam computed tomography (CBCT) of 126 patients with shortened dentition (most patients with the absence of a second molar, as well as the absence of the first and second molars), who sought a consultation about missing teeth in the orthopedic and surgical department of the Federal State Budgetary Institution National Medical Research Center TsNIISiCHLKh Ministry of Health of Russia. RESULTS: At the stages of treatment for patients in the study group, insufficient attention is paid to the restoration of terminal defects of the dentition in the upper and lower jaws, especially the restoration of second molars. This may be due to improper planning of dental treatment and insufficient motivation of the patient to carry out comprehensive dental rehabilitation. According to CT studies, the number of complications of orthopedic treatment in the area of supporting teeth and/or teeth limiting the included defect or terminal defect of the dentition in the masticatory region increases depending on the period of use of the orthopedic structure. CONCLUSIONS: The use of cantilever structures leads to functional overload of the supporting teeth. Neglecting the restoration of a full dentition and prosthetics of end defects of the dentition leads to dentoalveolar advancement of antagonists of missing teeth and the appearance of complications such as functional overload of supporting teeth and resorption of alveolar bone.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Arco Dental , Humanos , Estudios Retrospectivos , Femenino , Masculino , Adulto , Arco Dental/diagnóstico por imagen , Arco Dental/anomalías , Resultado del Tratamiento , Persona de Mediana Edad , Adolescente , Adulto Joven , Restauración Dental Permanente/métodos , Federación de Rusia
6.
Free Radic Biol Med ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763207

RESUMEN

Intestinal ischemia‒reperfusion (IIR) injury is a common complication of surgery, but clear molecular insights and valuable therapeutic targets are lacking. Mitochondrial calcium overload is an early sign of various diseases and is considered a vital factor in ischemia‒reperfusion injury. The mitochondrial calcium uniporter (MCU), which is located on the inner mitochondrial membrane, is the primary mediator of calcium ion entry into the mitochondria. However, the specific mechanism of MCU in IIR injury remains to be clarified. In this study, we generated an IIR model using C57BL/6 mice and Caco-2 cells and found increases in the calcium levels and MCU expression following IIR injury. The specific inhibition of MCU markedly attenuated IIR injury. Moreover, MCU knockdown alleviates mitochondrial dysfunction by reducing oxidative stress and apoptosis. Mechanistically, MCU knockdown substantially reduced the translocation of Drp1 and thus its binding to Fis1 receptors, resulting in decreased mitochondrial fission. Taken together, our findings demonstrated that MCU is a novel upstream regulator of Drp1 in ischemia‒reperfusion and represents a predictive and therapeutic target for IIR.

7.
J Dent Res ; : 220345241242389, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38766865

RESUMEN

Inflammation and loss of articular cartilage are considered the major cause of temporomandibular joint osteoarthritis (TMJOA), a painful condition of the temporomandibular joint (TMJ). To determine the cause of TMJ osteoarthritis in these patients, synovial fluid of TMJOA patients was compared prior to and after hyaluronic lavage, revealing substantially elevated levels of interleukin (IL) 1ß, reactive oxidative stress (ROS), and an overload of Fe3+ and Fe2+ prior to lavage, indicative of ferroptosis as a mode of chondrocyte cell death. To ask whether prolonged inflammatory conditions resulted in ferroptosis-like transformation in vitro, we subjected TMJ chondrocytes to IL-1ß treatment, resulting in a shift in messenger RNA sequencing gene ontologies related to iron homeostasis and oxidative stress-related cell death. Exposure to rat unilateral anterior crossbite conditions resulted in reduced COL2A1 expression, fewer chondrocytes, glutathione peroxidase 4 (GPX4) downregulation, and 4-hydroxynonenal (4-HNE) upregulation, an effect that was reversed after intra-articular injections of the ferroptosis inhibitor ferrostatin 1 (Fer-1). Our study demonstrated that ferroptosis conditions affected mitochondrial structure and function, while the inhibitor Fer-1 restored mitochondrial structure and the inhibition of hypoxia-inducible factor 1α (HIF-1α) or the transferrin receptor 1 (TFRC) rescued IL-1ß-induced loss of mitochondrial membrane potential. Inhibition of HIF-1α downregulated IL-1ß-induced TFRC expression, while inhibition of TFRC did not downregulate IL-1ß-induced HIF-1α expression in chondrocytes. Moreover, inhibition of HIF-1α or TFRC downregulated the IL-1ß-induced MMP13 expression in chondrocytes, while inhibition of HIF-1α or TFRC rescued IL-1ß-inhibited COL2A1 expression in chondrocytes. Furthermore, upregulation of TFRC promoted Fe2+ entry into chondrocytes, inducing the Fenton reaction and lipid peroxidation, which in turn caused ferroptosis, a disruption in chondrocyte functions, and an exacerbation of condylar cartilage degeneration. Together, these findings illustrate the far-reaching effects of chondrocyte ferroptosis in TMJOA as a mechanism causing chondrocyte death through iron overload, oxidative stress, and articular cartilage degeneration and a potential major cause of TMJOA.

8.
J Holist Nurs ; : 8980101241255160, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772631

RESUMEN

Purpose: The current study aimed to examine the role of the dominant spiritual and religious coping modality on health-related variables and determinants, including stress overload, mindfulness, and impulsivity, among nursing students. Methods: A cross-sectional design was used to achieve the study goal. The authors recruited 1199 nursing students. The results showed that the mean for positive spiritual and religious coping was higher compared to negative spiritual and religious coping. Results: In the current study, 73.3% of nursing students predominantly used positive spiritual and religious coping compared to 17.6% in the neutral group and 9.1% in the negative spiritual and religious coping group. Positive spiritual and religious coping was positively correlated with mindfulness and stress overload and negatively correlated with impulsivity. According to the ANOVA results, students with positive spiritual and religious coping tended to have a significantly higher stress overload, higher mindfulness, and lower impulsivity compared to the neutral and negative spiritual and coping groups. Negative spiritual and religious coping group significantly differed from the neutral groups only in terms of impulsivity. Conclusion: The current study's findings help nursing students by determining dominant spiritual and religious coping modalities and provide valuable information in directing counseling efforts. Results and implications were discussed.

9.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731873

RESUMEN

The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.


Asunto(s)
Quelantes del Hierro , Sobrecarga de Hierro , Humanos , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/metabolismo , Quelantes del Hierro/uso terapéutico , Quelantes del Hierro/farmacología , Anemia Ferropénica/tratamiento farmacológico , Anemia Ferropénica/metabolismo , Hierro/metabolismo , Animales , Deferiprona/uso terapéutico , Deferiprona/farmacología
10.
Exp Neurol ; 377: 114807, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38704082

RESUMEN

Repeated sevoflurane exposure in neonatal mice can leads to neuronal apoptosis and mitochondrial dysfunction. The mitochondria are responsible for energy production to maintain homeostasis in the central nervous system. The mitochondria-associated endoplasmic reticulum membrane (MAM) is located between the mitochondria and endoplasmic reticulum (ER), and it is critical for mitochondrial function and cell survival. MAM malfunction contributes to neurodegeneration, however, whether it is involved in sevoflurane-induced neurotoxicity remains unknown. Our study demonstrated that repeated sevoflurane exposure induced mitochondrial dysfunction and dampened the MAM structure. The upregulated ER-mitochondria tethering enhanced Ca2+ transition from the cytosol to the mitochondria. Overload of mitochondrial Ca2+ contributed to opening of the mitochondrial permeability transition pore (mPTP), which caused neuronal apoptosis. Mitofusin 2(Mfn2), a key regulator of ER-mitochondria contacts, was found to be suppressed after repeated sevoflurane exposure, while restoration of Mfn2 expression alleviated cognitive dysfunction due to repeated sevoflurane exposure in the adult mice. These evidences suggest that sevoflurane-induced MAM malfunction is vulnerable to Mfn2 suppression, and the enhanced ER-mitochondria contacts promotes mitochondrial Ca2+ overload, contributing to mPTP opening and neuronal apoptosis. This paper sheds light on a novel mechanism of sevoflurane-induced neurotoxicity. Furthermore, targeting Mfn2-mediated regulation of the MAM structure and mitochondrial function may provide a therapeutic advantage in sevoflurane-induced neurodegeneration.

11.
Int Med Case Rep J ; 17: 471-477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774710

RESUMEN

Background: Fat overload syndrome is a rare and severe adverse reaction triggered by the infusion of a single source of lipid emulsion, resulting in elevated blood triacylglycerol (TG) levels. The majority of literature reports focus on cases of fat overload syndrome in patients with mild symptoms. This case is significant because it demonstrates the diagnostic and therapeutic experience and provide valuable insights for the management for severe fat overload syndrome. Case Presentation: We present a case report of a female patient who developed fat overload syndrome following prolonged and excessive infusion of lipid emulsion after colon resection surgery. In the setting of compromised immune function and malnutrition, the patient's pulmonary infection and respiratory distress symptoms have further exacerbated. Hence, in addition to severe pancreatitis, the patient has also contracted severe pneumonia. Upon admission, tracheal intubation, plasma exchange and blood perfusion were performed. Subsequently, comprehensive treatment was provided, including anti-infection, antispasmodic, acid suppression, enzyme inhibition, as well as targeted supportive measures to stabilize electrolytes and nutritional status. After treatment, there was a progressive reduction in blood lipid levels. After assessing the relevant risks, it was deemed necessary to perform an emergency computed tomography (CT)-guided percutaneous drainage tube placement procedure targeting the necrotic area of the pancreas while the patient was still intubated. Finally, the patient was discharged from the hospital. Conclusion: The case highlights the association between fat overload syndrome and pancreatitis as well as the use of lipid emulsions and suggests the treatment strategies for severe fat overload syndrome.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38775931

RESUMEN

The aim of this cross-sectional study was to investigate the relationship of left atrioventricular coupling index (LACI) and right atrioventricular coupling index (RACI) with demographics, clinical data, cardiovascular magnetic resonance findings, and cardiac complications (heart failure, arrhythmias, and pulmonary hypertension) in a cohort of patients with beta-thalassemia major (ß-TM). We evaluated 292 ß-TM patients (151 females, 36.72 ± 11.76 years) consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia (E-MIOT) project. Moreover, we assessed 32 sex- and age-matched healthy controls (12 females, mean age 40.78 ± 14.35 years). LACI was determined by calculating the ratio of the left atrium end-diastolic volume to the left ventricle end-diastolic volume, while RACI was defined by calculating the ratio of the right atrium end-diastolic volume to the right ventricle end-diastolic volume. Compared to healthy control, ß-TM demonstrated increased LACI (22.99 ± 13.58% vs. 16.05 ± 5.28%; p < 0.0001) and RACI (27.84 ± 10.30% vs. 17.06 ± 5.03%; p < 0.0001). Aging, diabetes, splenectomy, and the presence of late gadolinium enhancement (LGE) showed a significant positive association with both LACI and RACI. In stepwise regression analysis, the presence of LGE was found to be an independent predictor of both impaired LACI and RACI (ß coefficient = 0.244, p < 0.0001 and ß coefficient = 0.218, p = 0.003; respectively). LACI and RACI were not correlated with myocardial iron overload. Patients with cardiac complications had significantly higher LACI and RACI than patients without cardiac complications. In patients with ß-TM, LACI and RACI were significantly associated with the presence of LV LGE. In addition, patients with cardiac complications had impaired LACI and RACI.

13.
Toxicol Sci ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38754108

RESUMEN

Although iron (Fe) is the most biologically abundant transition metal, it is highly toxic when it accumulates as Fe2+, forming a labile Fe pool and favoring the Fenton reaction. This oxidative scenario leads to a type of caspase-independent programmed cell death, referred to as ferroptosis, where following processes take place: 1) Fe2+ overload; 2) glutathione peroxidase 4 inactivation; 3) lipid peroxidation and 4) glutathione depletion. The present study sought to evaluate the consequences of Fe2+ administration on ferroptosis induction in Caenorhabditis elegans. We demonstrated higher mortality, increased lipid peroxidation, reduced glutathione peroxidase activity, and morphological damage in dopaminergic neurons upon Fe2+ overload. Pharmacological intervention at the level of lipid peroxidation with ferrostatin-1 (250 µM) mitigated the damage and returned the biochemical parameters to basal levels, revealing the potential of this therapeutical approach. Finally, to assess the relationship between ferroptosis and dopamine in a Parkinsonian background, we evaluated the UA44 worm strain which overexpresses the alpha-synuclein protein in cherry-labeled dopaminergic neurons. We demonstrated that Fe2+ administration reduced lethality associated with similar alterations in biochemical and dopaminergic morphological parameters in wild-type animals. These experiments provide mechanistic-based evidence on the efficacy of a pharmacological approach to mitigate the physiological, biochemical, and morphological consequences of Fe2+ overload. At the same time, they encourage further research on the impact of the combined effects resulting from the genetic background and dopamine signaling in a Parkinsonian phenotype.

14.
Expert Rev Clin Pharmacol ; : 1-8, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38739460

RESUMEN

INTRODUCTION: Over the past decade, polypharmacy has increased dramatically. Measurable harms include falls, fractures, cognitive impairment, and death. The associated costs are massive and contribute substantially to low-value health care. Deprescribing is a promising solution, but there are barriers. Establishing a network to address polypharmacy can help overcome barriers by connecting individuals with an interest and expertise in deprescribing and can act as an important source of motivation and resources. AREAS COVERED: Over the past decade, several deprescribing networks were launched to help tackle polypharmacy, with evidence of individual and collective impact. A network approach has several advantages; it can spark interest, ideas and enthusiasm through information sharing, meetings and conversations with the public, providers, and other key stakeholders. In this special report, the details of how four deprescribing networks were established across the globe are detailed. EXPERT OPINION: Networks create links between people who lead existing and/or budding deprescribing practices and policy initiatives, can influence people with a shared passion for deprescribing, and facilitate sharing of intellectual capital and tools to take initiatives further and strengthen impact.This report should inspire others to establish their own deprescribing networks, a critical step in accelerating a global deprescribing movement.

15.
Mol Neurobiol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696064

RESUMEN

Iron accumulation has been associated with the pathogenesis of neurodegenerative diseases and memory decline. As previously described by our research group, iron overload in the neonatal period induces persistent memory deficits and increases oxidative stress and apoptotic markers. The neuronal insult caused by iron excess generates an energetic imbalance that can alter glutamate concentrations and thus trigger excitotoxicity. Drugs that block glutamatergic receptor eligibly mitigate neurotoxicity; among them is perampanel (PER), a reversible AMPA receptor (AMPAR) antagonist. In the present study, we sought to investigate the neuroprotective effects of PER in rats subjected to iron overload in the neonatal period. Recognition and aversive memory were evaluated, AMPAR subunit phosphorylation, as well as the relative expression of genes such as GRIA1, GRIA2, DLG4, and CAC, which code proteins involved in AMPAR anchoring. Male rats received vehicle or carbonyl iron (30 mg/kg) from the 12th to the 14th postnatal day and were treated with vehicle or PER (2 mg/kg) for 21 days in adulthood. The excess of iron caused recognition memory deficits and impaired emotional memory, and PER was able to improve the rodents' memory. Iron increased the phosphorylation of GLUA1 subunit, which was reversed by PER. Furthermore, iron overload increased the expression of the GRIA1 gene and decreased the expression of the DLG4 gene, demonstrating the influence of metal accumulation on the metabolism of AMPAR. These results suggest that iron can interfere with AMPAR functionality, through altered phosphorylation of its subunits, and the expression of genes that code for proteins critically involved in the assembly and anchoring of AMPAR. The blockade of AMPAR with PER is capable of partially reversing the cognitive deficits caused by iron overload.

16.
Pediatr Nephrol ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713228

RESUMEN

BACKGROUND: Multicenter early diuretic response (DR) analysis of single furosemide dosing following neonatal cardiac surgery is lacking to inform whether early DR predicts adverse clinical outcomes. METHODS: We performed a retrospective cohort study utilizing data from the NEPHRON registry. Random forest machine learning generated receiver operating characteristic-area under the curve (ROC-AUC) and odds ratios for mechanical ventilation (MV) and respiratory support (RS). Prolonged MV and RS were defined using ≥ 90th percentile of observed/expected ratios. Secondary outcomes were prolonged CICU and hospital length of stay (LOS) and kidney failure (stage III acute kidney injury (AKI), peritoneal dialysis, and/or continuous kidney replacement therapy on postoperative day three) assessed using covariate-adjusted ROC-AUC curves. RESULTS: A total of 782 children were included. Cumulative urine output (UOP) metrics were lower in prolonged MV and RS patients, but DR poorly predicted prolonged MV (highest AUC 0.611, OR 0.98, sensitivity 0.67, specificity 0.53, p = 0.006, 95% OR CI 0.96-0.99 for cumulative 6-h UOP) and RS (highest AUC 0.674, OR 0.94, sensitivity 0.75, specificity 0.54, p < 0.001, 95% CI 0.91-0.97 UOP between 3 and 6 h). Secondary outcome results were similar. DR had fair discrimination for kidney failure (AUC 0.703, OR 0.94, sensitivity 0.63, specificity 0.71, 95% OR CI 0.91-0.98, p < 0.001, cumulative 6-h UOP). CONCLUSIONS: Early DR poorly discriminated patients with prolonged MV, RS, and LOS in this cohort, though it may identify severe postoperative AKI phenotype. Future work is warranted to determine if early DR or late postoperative DR later, in combination with other AKI metrics, may identify a higher-risk phenotype.

17.
Pediatr Blood Cancer ; : e31035, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753107

RESUMEN

In this review, we provide a summary of evidence on iron overload in young children with transfusion-dependent ß-thalassemia (TDT) and explore the ideal timing for intervention. Key data from clinical trials and observational studies of the three available iron chelators deferoxamine, deferiprone, and deferasirox are also evaluated for inclusion of subsets of young children, especially those less than 6 years of age. Evidence on the efficacy and safety of iron chelation therapy for children ≥2 years of age with transfusional iron overload is widely available. New data exploring the risks and benefits of early-start iron chelation in younger patients with minimal iron overload are also emerging.

18.
Int J Cardiol Heart Vasc ; 52: 101414, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38694269

RESUMEN

Ferroptosis is a newly discovered form of programmed cell death triggered by intracellular iron overload, which leads to the accumulation of lipid peroxides in various cells. It has been implicated in the pathogenesis and progression of various diseases, including tumors, neurological disorders, and cardiovascular diseases. The intricate mechanism underlying ferroptosis involves an imbalance between the oxidation and antioxidant systems, disturbances in iron metabolism, membrane lipid peroxidation, and dysregulation of amino acid metabolism. We highlight the key molecular mechanisms governing iron overload and ferroptosis, and discuss potential molecular pathways linking ferroptosis with arrhythmias.

19.
Ann Med Surg (Lond) ; 86(5): 2759-2776, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694398

RESUMEN

The concentration of iron is tightly regulated, making it an essential element. Various cellular processes in the body rely on iron, such as oxygen sensing, oxygen transport, electron transfer, and DNA synthesis. Iron excess can be toxic because it participates in redox reactions that catalyze the production of reactive oxygen species and elevate oxidative stress. Iron chelators are chemically diverse; they can coordinate six ligands in an octagonal sequence. Because of the ability of chelators to trap essential metals, including iron, they may be involved in diseases caused by oxidative stress, such as infectious diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. Iron-chelating agents, by tightly binding to iron, prohibit it from functioning as a catalyst in redox reactions and transfer iron and excrete it from the body. Thus, the use of iron chelators as therapeutic agents has received increasing attention. This review investigates the function of various iron chelators in treating iron overload in different clinical conditions.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38719717

RESUMEN

BACKGROUND: Iron overload (IO) is a complex condition in which clinical, behavioral and genetic factors contribute to the phenotype. In multiethnic and non-Caucasian populations, mutations in HFE gene alone cannot explain IO in most of the cases, and additional genetic and environmental factors must be investigated. Bone Morphogenetic Proteins (BMPs) play a central role in iron homeostasis by modulating HAMP transcription through the signaling pathway that includes SMAD and HJV. In this study, we aimed to explore the clinical relevance of BMP6 mutations in a cohort of Brazilian patients with IO. METHODS: 41 patients with IO were evaluated. Blood samples were collected to analyze BMP6 mutations through New Sequence Generations (NGS). Frequency of variants and mutations were analyzed and correlated with clinical and environmental characteristics. RESULTS: We identified BMP6 mutations in three patients with IO. The p.Arg257His mutation was identified in two patients and the p.Leu71Val mutation was identified in one patient. Two of these patients had additional risk factors for IO (HFE mutations and diabetes mellitus). CONCLUSION: BMP6 mutations, when combined to other genetic and clinical risk factors, may contribute to IO. Functional studies and THE evaluation of large cohorts are necessary to fully address BMP6 role in IO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...