Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Biochimie ; 223: 41-53, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38608750

RESUMEN

The endogenous metabolite of estradiol, estradiol 17ß-D-glucuronide (E17G), is considered the main responsible of the intrahepatic cholestasis of pregnancy. E17G alters the activity of canalicular transporters through a signaling pathway-dependent cellular internalization, phenomenon that was attributed to oxidative stress in different cholestatic conditions. However, there are no reports involving oxidative stress in E17G-induced cholestasis, representing this the aim of our work. Using polarized hepatocyte cultures, we showed that antioxidant compounds prevented E17G-induced Mrp2 activity alteration, being this alteration equally prevented by the NADPH oxidase (NOX) inhibitor apocynin. The model antioxidant N-acetyl-cysteine prevented, in isolated and perfused rat livers, E17G-induced impairment of bile flow and Mrp2 activity, thus confirming the participation of reactive oxygen species (ROS) in this cholestasis. In primary cultured hepatocytes, pretreatment with specific inhibitors of ERK1/2 and p38MAPK impeded E17G-induced ROS production; contrarily, NOX inhibition did not affect ERK1/2 and p38MAPK phosphorylation. Both, knockdown of p47phox by siRNA and preincubation with apocynin in sandwich-cultured rat hepatocytes significantly prevented E17G-induced internalization of Mrp2, suggesting a crucial role for NOX in this phenomenon. Concluding, E17G-induced cholestasis is partially mediated by NOX-generated ROS through internalization of canalicular transporters like Mrp2, being ERK1/2 and p38MAPK necessary for NOX activation.


Asunto(s)
Estradiol , Hepatocitos , NADPH Oxidasas , Especies Reactivas de Oxígeno , Animales , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratas , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Estradiol/farmacología , Estradiol/metabolismo , Estradiol/análogos & derivados , Femenino , Colestasis/inducido químicamente , Colestasis/metabolismo , Colestasis/patología , Ratas Wistar , Acetofenonas/farmacología , Estrés Oxidativo/efectos de los fármacos , Acetilcisteína/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Cultivadas , Antioxidantes/farmacología , Antioxidantes/metabolismo , Colestasis Intrahepática , Complicaciones del Embarazo , Transportadoras de Casetes de Unión a ATP
2.
Int J Biol Macromol ; 264(Pt 1): 130500, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428770

RESUMEN

BACKGROUND: Endotoxemia is a severe and dangerous clinical syndrome that results in elevated morbidity, especially in intensive care units. Neonates are particularly susceptible to endotoxemia due to their immature immune systems. There are few effective treatments for neonatal endotoxemia. One group of compounds with potential in the treatment of neonatal inflammatory diseases such as endotoxemia is the flavonoids, mainly due to their antioxidant and anti-inflammatory properties. Among these, naringenin (NGN) is a citrus flavonoid which has already been reported to have anti-inflammatory, antioxidant, anti-nociceptive and anti-cancer effects. Unfortunately, its clinical application is limited by its low solubility and bioavailability. However, cyclodextrins (CDs) have been widely used to improve the solubility of nonpolar drugs and enhance the bioavailability of these natural products. OBJECTIVE: We, therefore, aimed to investigate the effects of NGN non-complexed and complexed with hydroxypropyl-ß-cyclodextrin (HPßCD) on neonatal endotoxemia injuries in a rodent model and describe the probable molecular mechanisms involved in NGN activities. METHOD: We used exposure to a bacterial lipopolysaccharide (LPS) to induce neonatal endotoxemia in the mice. RESULTS: It was found that NGN (100 mg/kg i.p.) exposure during the neonatal period reduced leukocyte migration and decreased pro-inflammatory cytokine (TNF-α, IL-1ß and IL-6) levels in the lungs, heart, kidneys or cerebral cortex. In addition, NGN upregulated IL-10 production in the lungs and kidneys of neonate mice. The administration of NGN also enhanced antioxidant enzyme catalase and SOD activity, reduced lipid peroxidation and protein carbonylation and increased the reduced sulfhydryl groups in an organ-dependent manner, attenuating the oxidative damage caused by LPS exposure. NGN decreased ERK1/2, p38MAPK and COX-2 activation in the lungs of neonate mice. Moreover, NGN complexed with HPßCD was able to increase the animal survival rate. CONCLUSION: NGN attenuated inflammatory and oxidative damage in the lungs, heart and kidneys caused by neonatal endotoxemia through the MAPK signaling pathways regulation. Our results show that NGN has beneficial effects against neonatal endotoxemia and could be useful in the treatment of neonatal inflammatory injuries.


Asunto(s)
Citrus , Endotoxemia , Flavanonas , Ratones , Animales , Flavonoides/uso terapéutico , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Endotoxemia/inducido químicamente , Endotoxemia/tratamiento farmacológico , Lipopolisacáridos/uso terapéutico , Antiinflamatorios/farmacología
3.
Cancers (Basel) ; 16(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38254747

RESUMEN

Resistance to therapy and disease progression are the main causes of mortality in most cancers. In particular, the development of resistance is an important limitation affecting the efficacy of therapeutic alternatives for cancer, including chemotherapy, radiotherapy, and immunotherapy. Signaling pathways are largely responsible for the mechanisms of resistance to cancer treatment and progression, and multiple myeloma is no exception. p38 mitogen-activated protein kinase (p38) is downstream of several signaling pathways specific to treatment resistance and progression. Therefore, in recent years, developing therapeutic alternatives directed at p38 has been of great interest, in order to reverse chemotherapy resistance and prevent progression. In this review, we discuss recent findings on the role of p38, including recent advances in our understanding of its expression and activity as well as its isoforms, and its possible clinical role based on the mechanisms of resistance and progression in multiple myeloma.

4.
J Neurosci Res ; 102(1): e25269, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284851

RESUMEN

This study aimed to evaluate the effects of inhibitors of the fractalkine pathway in hyperalgesia in inflammatory and neuropathic orofacial pain in male rats and the morphological changes in microglia and satellite glial cells (SGCs). Rats were submitted to zymosan-induced arthritis of the temporomandibular joint or infraorbital nerve constriction, and treated intrathecally with a P2 X7 antagonist, a cathepsin S inhibitor or a p-38 mitogen-activated protein kinase (MAPK) inhibitor. Mechanical hyperalgesia was evaluated 4 and 6 h following arthritis induction or 7 and 14 days following nerve ligation. The expression of the receptor CX3 CR1 , phospho-p-38 MAPK, ionized calcium-binding adapter molecule-1 (Iba-1), and glutamine synthetase and the morphological changes in microglia and SGCs were evaluated by confocal microscopy. In both inflammatory and neuropathic models, untreated animals presented a higher expression of CX3 CR1 and developed hyperalgesia and up-regulation of phospho-p-38 MAPK, which was prevented by all drugs (p < .05). The number of microglial processes endpoints and the total branch length were lower in the untreated animals, but the overall immunolabeling of Iba-1 was altered only in neuropathic rats (p < .05). The mean area of SGCs per neuron was significantly altered only in the inflammatory model (p < .05). All morphological alterations were reverted by modulating the fractalkine pathway (p < .05). In conclusion, the blockage of the fractalkine pathway seemed to be a possible therapeutic strategy for inflammatory and neuropathic orofacial pain, reducing mechanical hyperalgesia by impairing the phosphorylation of p-38 MAPK and reverting morphological alterations in microglia and SGCs.


Asunto(s)
Artritis , Neuralgia , Masculino , Animales , Ratas , Hiperalgesia/tratamiento farmacológico , Quimiocina CX3CL1 , Neuroglía , Neuralgia/tratamiento farmacológico , Proteínas Quinasas Activadas por Mitógenos , Inhibidores de Proteínas Quinasas , Dolor Facial/tratamiento farmacológico , Proteínas Quinasas p38 Activadas por Mitógenos
5.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37533216

RESUMEN

AIMS: To evaluate the adhesion capacity and anti-inflammatory activity of lactic acid bacteria (LAB) isolated from raw cow milk and artisan cheese in Southern Brazil, investigating their effect on the release of cytokines such as TNF-α and IL-10 and their influence on the activation of the p38/MAPK pathway. METHODS AND RESULTS: Lentilactobacillus parabuchneri ML4, Lacticaseibacillus paracasei ML33, Lactiplantibacillus pentosus ML82, Lactiplantibacillus plantarum CH131, and L. paracasei CH135 demonstrated high adhesion potential in an in vitro model of the intestinal epithelium, as well as anti-inflammatory activity. After a 4-hour treatment, the strains significantly increased TNF-α levels, while a 24-hour treatment led to a significant decrease in TNF-α release. Moreover, IL-10 levels significantly increased after 24-hour and 48-hour treatments with LAB. The inhibition of p38/MAPK phosphorylation was identified as one of the mechanisms by which the L. paracasei ML33 and L. plantarum CH131 strains suppressed the production and release of TNF-α. CONCLUSIONS: We identified LAB strains with potential anti-inflammatory properties that could adhere to the intestinal mucosa and alleviate the inflammatory response by reducing the production and release of TNF-α through the inhibition of the p38/MAPK pathway, while promoting the production of IL-10.


Asunto(s)
Lactobacillales , Probióticos , Animales , Factor de Necrosis Tumoral alfa , Interleucina-10 , Brasil , Leche/microbiología , Antiinflamatorios
6.
Biogerontology ; 24(6): 913-923, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37458859

RESUMEN

One of the theories related to aging is the increase in oxidative stress. Given this, the objective of the study is to evaluate the cellular mechanisms responsible for the resveratrol antioxidant effect on leukocytes from donors aged between 20 and 80 years old. For this, leukocytes from donors of three age groups (20-39, 40-59 and 60-80) were isolated. Image-iT™LIVE Green Reactive Oxygen Species (ROS) Kit was used. Reactive Nitrogen Species (RNS) analysis was performed by measuring nitric oxide and peroxynitrite. The PKA, Akt/PKB and p38-MAPK were evaluated by chemiluminescence. The statistical analysis between age and treatments were performed by Pearson correlation (*p < 0.05). It was possible to observe the antioxidant effect of resveratrol in all age groups. The correlation results show loss of resveratrol effect in decreasing ROS in leukocytes from older donors. We observed an active antioxidant effect of p38-MAPK in all ages, with resveratrol acting on it. The PKA and Akt/PKB were active in leukocytes from donors aged 20-59. In cells from donors older than 60, these pathways are silenced, and an effect is also not observed in cells treated with resveratrol. Therefore, resveratrol showed antioxidant effect in all age, although it was more pronounced in leukocytes from younger. One of resveratrol's mechanisms is due to the activation of the PKA and Akt/PKB, which were activated in younger donor cells.


Asunto(s)
Antioxidantes , Proteínas Proto-Oncogénicas c-akt , Antioxidantes/farmacología , Resveratrol/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37259433

RESUMEN

Previous works showed that a Tepary bean lectin fraction (TBLF) induced apoptosis on colon cancer cells and inhibited early colonic tumorigenesis. One Tepary bean (TB) lectin was expressed in Pichia pastoris (rTBL-1), exhibiting similarities to one native lectin, where its molecular structure and in silico recognition of cancer-type N-glycoconjugates were confirmed. This work aimed to determine whether rTBL-1 retained its bioactive properties and if its apoptotic effect was related to EGFR pathways by studying its cytotoxic effect on colon cancer cells. Similar apoptotic effects of rTBL-1 with respect to TBLF were observed for cleaved PARP-1 and caspase 3, and cell cycle G0/G1 arrest and decreased S phase were observed for both treatments. Apoptosis induction on SW-480 cells was confirmed by testing HA2X, p53 phosphorylation, nuclear fragmentation, and apoptotic bodies. rTBL-1 increased EGFR phosphorylation but also its degradation by the lysosomal route. Phospho-p38 increased in a concentration- and time-dependent manner, matching apoptotic markers, and STAT1 showed activation after rTBL-1 treatment. The results show that part of the rTBL-1 mechanism of action is related to p38 MAPK signaling. Future work will focus further on the target molecules of this recombinant lectin against colon cancer.

8.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108435

RESUMEN

This study describes, to some extent, the VCC contribution as an early stimulation of the macrophage lineage. Regarding the onset of the innate immune response caused by infection, the ß form of IL-1 is the most important interleukin involved in the onset of the inflammatory innate response. Activated macrophages treated in vitro with VCC induced the activation of the MAPK signaling pathway in a one-hour period, with the activation of transcriptional regulators for a surviving and pro-inflammatory response, suggesting an explanation inspired and supported by the inflammasome physiology. The mechanism of IL-1ß production induced by VCC has been gracefully outlined in murine models, using bacterial knockdown mutants and purified molecules; nevertheless, the knowledge of this mechanism in the human immune system is still under study. This work shows the soluble form of 65 kDa of the Vibrio cholerae cytotoxin (also known as hemolysin), as it is secreted by the bacteria, inducing the production of IL-1ß in the human macrophage cell line THP-1. The mechanism involves triggering the early activation of the signaling pathway MAPKs pERK and p38, with the subsequent activation of (p50) NF-κB and AP-1 (cJun and cFos), determined by real-time quantitation. The evidence shown here supports that the monomeric soluble form of the VCC in the macrophage acts as a modulator of the innate immune response, which is consistent with the assembly of the NLRP3 inflammasome actively releasing IL-1ß.


Asunto(s)
FN-kappa B , Vibrio cholerae , Humanos , Animales , Ratones , FN-kappa B/metabolismo , Factor de Transcripción AP-1/metabolismo , Inflamasomas/metabolismo , Vibrio cholerae/metabolismo , Activación Transcripcional , Citotoxinas/farmacología , Transducción de Señal , Macrófagos/metabolismo , Células THP-1 , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
9.
Front Cell Dev Biol ; 11: 1265475, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274271

RESUMEN

Tristetraprolin (TTP) is an RNA binding protein that destabilizes mRNAs of factors involved in proliferation, invasiveness, and inflammation. Disruption of the gene that codes for TTP (Zfp36) led to severe arthritis, autoimmunity, cachexia and dermatitis in mice. It has been shown that these phenotypes were mostly due to excessive TNFα levels in the affected tissues. We have previously reported that TTP expression is required for lactation maintenance. Our results indicated that conditional MG TTP-KO female mice displayed early involution due to the untimely induction of pro-inflammatory pathways led mostly by TNFα overexpression. Here we show that reducing TTP levels not only affects the fully differentiated mammary gland, but also harms morphogenesis of this tissue by impairing the progenitor cell population. We found that Zfp36 expression is linked to mammary stemness in human and mice. In addition, diminishing TTP expression and activity induced apoptosis of stem-like mouse mammary cells, reduced its ability to form mammospheres in culture and to develop into complete glands when implanted into cleared mammary fat pads in vivo. Our results show that survival of the stem-like cells is compromised by increased levels of inflammatory cytokines and stimulation of signaling cascades involving NFκB, STAT3 and MAPK-p38 activation. Moreover, TNFα overexpression and the consequent p38 phosphorylation would be the leading cause of progenitor cell death upon TTP expression restriction. Taken together, our results reveal the relevance of TTP for the maintenance of the mammary progenitor cell compartment by maintaining local TNFα levels at bay.

10.
Front Pharmacol ; 13: 975197, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299892

RESUMEN

Gliomas are extremely debilitating malignant brain tumors with very limited response to therapies. The initiation and progression of gliomas can be attributed to several molecular abnormalities, such as mutations in important regulatory networks. In this regard, the mitogen-activated protein kinases (MAPKs) arise as key signaling pathways involved in cell proliferation, survival, and differentiation. MAPK pathway has been altered in most glial tumors. In glioma cells, the activation of p38 MAPK contributes to tumor invasion and metastasis and is positively correlated with tumor grade, being considered a potential oncogenic factor contributing to brain tumorigenesis and chemotherapy resistance. Hence, a better understanding of glioma pathogenesis is essential to the advancement of therapies that provide extended life expectancy for glioma patients. This review aims to explore the role of the p38 MAPK pathway in the genesis and progression of malignant brain tumors.

11.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232927

RESUMEN

Although the mouse model of incisional pain is broadly used, the mechanisms underlying plantar incision-induced nociception are not fully understood. This work investigates the role of Nav1.8 and Nav1.9 sodium channels in nociceptive sensitization following plantar incision in mice and the signaling pathway modulating these channels. A surgical incision was made in the plantar hind paw of male Swiss mice. Nociceptive thresholds were assessed by von Frey filaments. Gene expression of Nav1.8, Nav1.9, TNF-α, and COX-2 was evaluated by Real-Time PCR in dorsal root ganglia (DRG). Knockdown mice for Nav1.8 and Nav1.9 were produced by antisense oligodeoxynucleotides intrathecal treatments. Local levels of TNF-α and PGE2 were immunoenzymatically determined. Incised mice exhibited hypernociception and upregulated expression of Nav1.8 and Nav1.9 in DRG. Antisense oligodeoxynucleotides reduced hypernociception and downregulated Nav1.8 and Nav1.9. TNF-α and COX-2/PGE2 were upregulated in DRG and plantar skin. Inhibition of TNF-α and COX-2 reduced hypernociception, but only TNF-α inhibition downregulated Nav1.8 and Nav1.9. Antagonizing NF-κB and p38 mitogen-activated protein kinase (MAPK), but not ERK or JNK, reduced both hypernociception and hyperexpression of Nav1.8 and Nav1.9. This study proposes the contribution of the TNF-α/p38/NF-κB/Nav1.8 and Nav1.9 pathways to the pathophysiology of the mouse model of incisional pain.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , FN-kappa B , Animales , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Masculino , Ratones , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Oligodesoxirribonucleótidos , Dolor Postoperatorio/tratamiento farmacológico , Prostaglandinas E , Canales de Sodio/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Arq. gastroenterol ; Arq. gastroenterol;59(3): 414-420, July-Sept. 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1403494

RESUMEN

ABSTRACT Background: Colorectal cancer is the third cause of cancer worldwide and a quarter of them are in the rectum. DEK oncogene is involved in several nuclear processes and can accelerate tumorigenesis. Objective: This study aims to evaluate the immunoexpression of DEK and Phospho-P38 proteins before neoadjuvant therapy in patients with rectum adenocarcinoma and correlate it with a clinical response and survival. Methods: Patients with adenocarcinoma of the middle and low rectum who underwent chemotherapy and radiotherapy followed by surgical tumor resection were included. The expression and quantification were studied by immunohistochemistry in the tumor biopsy tissues using a HScore system. Score ≥4 were considered positive and those with <4 negative. Results: 22 patients were included with a mean age of 63.55 years (SD: ±13.49). The clinical-stage before treatment was T3 on 72.7%, T4 on 18.2%, 31.8% were N1, 50% N0 and all M0. After chemo and radiotherapy, 54.6% were T3; 22.7% were classified as T2; 9.1% as T1, and 13.6% were T0. Among the tumors, 22.7% were positive for DEK and 63.6% positive for Phospho-P38. There was a positive correlation between DEK protein before treatment and pTNM stage (P=0.011). Phospho-P38 protein showed no correlation with these parameters. Patients with a negative HScore had a mean survival of 141.33 months (95%CI: 112.41-170.25) and those with a positive HSscore had a mean survival of 25.10 months (95%CI: 17.36-32.84; P<0.001). Conclusion: A higher expression of DEK was observed in advanced stages. Patients who presented DEK expression <4 had a higher survival, being a factor of worst prognosis.


RESUMO Contexto: O câncer colorretal é mundialmente, a terceira causa de câncer e um quarto destes estão localizados no reto. O oncogene DEK está envolvido em vários processos nucleares e pode acelerar a tumorigênese. Objetivo: Este estudo tem como objetivo avaliar a imunoexpressão das proteínas DEK e Fosfo-P38 antes da terapia neoadjuvante em pacientes com adenocarcinoma de reto e correlacioná-la com resposta clínica e sobrevida. Métodos: Foram incluídos pacientes com adenocarcinoma de reto médio e baixo submetidos à quimio e radioterapia seguida de ressecção cirúrgica do tumor. A expressão e quantificação foram estudadas por imuno-histoquímica nos tecidos de biópsia tumoral utilizando um sistema HScore. Escores ≥4 foram considerados positivos e aqueles com <4 negativos. Resultados: Foram incluídos 22 pacientes com média de idade de 63,55 anos (DP: ±13,49). O estágio clínico antes do tratamento era T3 em 72,7%, T4 em 18,2%, 31,8% eram N1, 50% N0 e todos M0. Após a quimio e radioterapia, 54,6% eram T3; 22,7% eram T2; 9,1% eram T1 e 13,6% T0. Entre os tumores, 22,7% foram positivos para DEK e 63,6% positivos para Phospho-P38. Houve uma correlação positiva para a imunoexpressão da proteína DEK e o estágio pTNM (P=0,011). A proteína fosfo-P38 não apresentou correlação com esses parâmetros. Pacientes com HScore negativo para DEK tiveram sobrevida média de 141,33 meses (IC95%: 112,41-170,25) e aqueles com HScore positivo tiveram sobrevida média de 25,10 meses (IC95%: 17,36-32,84) (P<0,001). Conclusão: Observou-se maior expressão de DEK em estágios avançados. Os pacientes que apresentaram expressão de DEK <4 tiveram maior sobrevida, sendo um fator de pior prognóstico.

13.
Clinics (Sao Paulo) ; 77: 100046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35588578

RESUMEN

OBJECTIVE: To explore the role and possible mechanisms of action of apolipoprotein O (APOO) in autophagy in Myocardial Infarction (MI) in vivo and in vitro. METHODS: Differential gene expression and single Gene Set Enrichment Analysis (GSEA) were used to evaluate MI-related candidate genes. Animal and cell MI models were established. Sh-APOO, si-APOO, and SB203580 were used to inhibit the expression of APOO or p38MAPK. Western blot and qRT-PCR were used to analyze the expression levels of the target protein or mRNA. Apoptosis was observed using the TUNEL assay. The plasma concentrations of CK-MB and cTn-I in humans and mice were determined. RESULTS: In the GSE23294 dataset, APOO mRNA was highly expressed in the left ventricle of mice with MI; GSEA revealed that APOO was positively correlated with p38MAPK, autophagy, and apoptosis. The plasma concentration of APOO in patients with MI was significantly higher than that in healthy subjects. The expression of APOO, Beclin-1, LC3, and Bax in mouse and AC16 cell MI models increased, while the level of Bcl-2 decreased. After silencing the APOO gene, the expression of APOO was downregulated; meanwhile, changes in autophagy, apoptosis and myocardial cell injury were reversed in vivo and in vitro. Furthermore, autophagy was alleviated after AC16 cells were treated with SB203580. CONCLUSIONS: The increased APOO expression in mouse and cell MI models may activate autophagy and apoptosis by regulating the p38MAPK signaling pathway, thus aggravating the myocardial injury.


Asunto(s)
Apolipoproteínas , Infarto del Miocardio , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Apolipoproteínas/metabolismo , Apoptosis , Autofagia , Humanos , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , ARN Mensajero , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Endocr Relat Cancer ; 29(6): 359-373, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35324456

RESUMEN

Among pituitary adenomas, prolactinomas are the most frequently diagnosed (about 50%). Dopamine agonists are generally effective in the treatment of prolactinomas. However, a subset of about 25% of patients does not respond to these agents. The management of drug-resistant prolactinomas remains a challenge for endocrinologists and new inhibitory treatments are needed. Pituitary activins inhibit lactotroph function. Its expression and action were found reduced in animal models of lactotroph hyperplasia (female mice overexpressing the B subunit of the human chorionic gonadotrophin and female mice knockout for dopamine receptor type 2). In these models, an oophorectomy avoids prolactinoma development. Hormonal replacement with oestradiol and/or progesterone is not enough to reach the tumor size observed in transgenic females. We postulated that the loss of gonadal inhibins after an oophorectomy contributes to prevent hyperplasia development. Here, we demonstrated that an oophorectomy at 2 months age recovers the following in adulthood: (i) pituitary activin expression, (ii) activin receptor expression specifically in lactotroph population, (iii) activin biological activity in lactotrophs with a concomitant reduction of Pit-1 expression. To summarize, when an oophorectomy is performed, inhibins are lost and the inhibitory action of pituitary activins on lactotroph population is recovered, helping to prevent lactotroph hyperplasia development. These results emphasize the importance of the inhibitory action of activins on lactotroph function, positioning activins as a good therapeutic target for the treatment of resistant prolactinomas.


Asunto(s)
Lactotrofos , Neoplasias Hipofisarias , Prolactinoma , Activinas/metabolismo , Adulto , Animales , Femenino , Humanos , Hiperplasia , Inhibinas/metabolismo , Inhibinas/uso terapéutico , Lactotrofos/metabolismo , Lactotrofos/patología , Ratones , Ovariectomía , Neoplasias Hipofisarias/metabolismo , Prolactina/metabolismo , Prolactinoma/metabolismo , Prolactinoma/prevención & control
15.
Inflammopharmacology ; 30(2): 565-577, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35165808

RESUMEN

Myrciaria plinioides D. Legrand (Myrtaceae) is a native plant of Southern Brazil, which have potential in the food industry due to its edible fruits. Many plants belonging to this genus have been used for a variety of illnesses, including inflammatory disorders due to antioxidant properties. However, therapeutic uses of M. plinioides have been poorly studied. The aim of study was to assess the anti-inflammatory and anticoagulant activities of the ethanol leaf extract of M. plinioides. In M. plinioides extract-treated RAW 264.7 cells, assessments of cell viability, TNF-α release and p38 MAPK pathway-dependent protein expression were detected. In addition, rat paw edema models were used to analyze the anti-inflammatory effect of the extract. Macrophages cell line treated with M. plinioides extract showed a slight decrease in cell viability. In LPS-stimulated macrophages treated with different concentrations of the extract for 24 h, TNF-α release was inhibited, while modulation of p38 signaling pathway and inhibition of NF-κB p65 protein expression were dose-dependent. In rats, the extract inhibited the formation of paw edema, while an inhibitory effect on trypsin-like enzymes derived from mast cells was seen. Furthermore, the extract presented anticoagulant activity via extrinsic pathway, being able to block specifically factor Xa and thrombin. The study suggests that extract possess potent anti-inflammatory and anticoagulant effects. M. plinioides present great biological potential as a source for the development of anti-inflammatory and anticoagulant drugs. Additional studies can be proposed to better elucidate the mechanism by which M. plinioides exerts its effects.


Asunto(s)
Etanol , Myrtaceae , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Anticoagulantes/farmacología , Lipopolisacáridos , FN-kappa B/metabolismo , Óxido Nítrico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas
16.
Can J Physiol Pharmacol ; 100(5): 453-463, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34932399

RESUMEN

The complexity of hepatocellular carcinoma (HCC) signaling and the failure of pharmacological therapeutics reveal the significance of establishing new anti-cancer strategies. Interferon alpha (IFN-α) has been used as adjuvant therapy for reducing HCC recurrence and improving survival. Delta-tocotrienol (δ-tocotrienol), a natural unsaturated isoform of vitamin E, is a promising candidate for cancer treatment. In this study, we evaluated whether the combination of δ-tocotrienol with IFN-α displays significant advantages in the treatment of HCC cells. Results showed that the combination significantly decreased cell viability, migration and invasion of HCC cells compared with single therapies. Combining δ-tocotrienol and IFN-α enhanced the decrease in proliferating cell nuclear antigen (PCNA) and matrix metalloproteinase (MMP) 7 and MMP-9. The combination also produced an enhancement of apoptosis together with increased Bax/Bcl-xL ratio and reactive oxygen species (ROS) generation. δ-tocotrienol induced Notch1 activation and changes in Erk and p38 MAPK signaling status. Blocking experiments confirmed that ROS and Erk are involved, at least in part, in the anti-cancer effects of the combined treatment. In conclusion, the combination of δ-tocotrienol with IFN-α therapy showed promising results for HCC cell treatment, which makes the combination of cytokine-based immunotherapy with natural products a potential strategy against liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptosis , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Humanos , Interferón-alfa/farmacología , Interferón-alfa/uso terapéutico , Neoplasias Hepáticas/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Vitamina E/análogos & derivados , Vitamina E/farmacología , Vitamina E/uso terapéutico
17.
Acta cir. bras ; 37(11): e371104, 2022. graf, ilus
Artículo en Inglés | VETINDEX | ID: biblio-1415452

RESUMEN

Purpose: Our previous study showed that Er-Bai-Tang decoction (EBT) could effectively improve Parkinson's disease (PD) patients' quality of life, sleep, mood, and cognitive disorders, but the mechanism of EBT to treat PD was unclear. So, our study aimed to explore the mechanism of EBT to treat PD via p38 mitogen-activated protein kinases (MAPK) pathway and intestinal flora. Methods: In our study, the PD rat model was established by subcutaneously injecting 2 mg/kg/d rotenone solution, and 23.43 g/kgEBT was used to treat PD model rats. Results: Behavioral test showed that EBT could reverse the motor impairment in the PD model rats. Hematoxylin and eosin result showed that EBT could reduce the cell necrosis in the SNpc area of the PD model rats. Western blotting and real time-polymerase chain reaction showed that EBT could decrease the p38 MAPK expression in the SNpc area of the PD model rats. 16s rRNA sequencing analysis showed that EBT could improve the composition of intestinal flora in the PD model rats. Rikenellaceae at family level and Alistipes and Allobaculum at the genus level were the key species in the PD development and EBT treatment to PD. KEGG showed that EBT might change the iron uptake in PD rats. Conclusions: EBT could improve the motor symptoms and neuronal injury in the PD model rat, and its mechanism may be related to decreasing p38 MAPK pathway and improving the composition of intestinal flora.


Asunto(s)
Animales , Ratas , Enfermedad de Parkinson , Proteínas Quinasas p38 Activadas por Mitógenos , Microbioma Gastrointestinal/efectos de los fármacos , Animales de Laboratorio , Trastornos del Movimiento , Degeneración Nerviosa
18.
Clinics ; Clinics;77: 100046, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1384609

RESUMEN

Abstract Objectives To explore the role and possible mechanisms of action of apolipoprotein O (APOO) in autophagy in Myocardial Infarction (MI) in vivo and in vitro. Methods Differential gene expression and single Gene Set Enrichment Analysis (GSEA) were used to evaluate MI-related candidate genes. Animal and cell MI models were established. Sh-APOO, si-APOO, and SB203580 were used to inhibit the expression of APOO or p38MAPK. Western blot and qRT-PCR were used to analyze the expression levels of the target protein or mRNA. Apoptosis was observed using the TUNEL assay. The plasma concentrations of CK-MB and cTn-I in humans and mice were determined. Results In the GSE23294 dataset, APOO mRNA was highly expressed in the left ventricle of mice with MI; GSEA revealed that APOO was positively correlated with p38MAPK, autophagy, and apoptosis. The plasma concentration of APOO in patients with MI was significantly higher than that in healthy subjects. The expression of APOO, Beclin-1, LC3, and Bax in mouse and AC16 cell MI models increased, while the level of Bcl-2 decreased. After silencing the APOO gene, the expression of APOO was downregulated; meanwhile, changes in autophagy, apoptosis and myocardial cell injury were reversed in vivo and in vitro. Furthermore, autophagy was alleviated after AC16 cells were treated with SB203580. Conclusions The increased APOO expression in mouse and cell MI models may activate autophagy and apoptosis by regulating the p38MAPK signaling pathway, thus aggravating the myocardial injury. HIGHLIGHTS APOO was highly expressed in the left ventricle of mice with myocardial infarction. Increasing of APOO may activate autophagy and apoptosis in myocardial infarction. The regulation of APOO in autophagy and apoptosis was regulated by p38MAPK signaling pathway.

19.
Physiol Rep ; 9(22): e15093, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34806317

RESUMEN

We have previously demonstrated that inhibition of extracellularly oriented carbonic anhydrase (CA) isoforms protects the myocardium against ischemia-reperfusion injury. In this study, our aim was to assess the possible further contribution of CA intracellular isoforms examining the actions of the highly diffusible cell membrane permeant inhibitor of CA, ethoxzolamide (ETZ). Isolated rat hearts, after 20 min of stabilization, were assigned to the following groups: (1) Nonischemic control: 90 min of perfusion; (2) Ischemic control: 30 min of global ischemia and 60 min of reperfusion (R); and (3) ETZ: ETZ at a concentration of 100 µM was administered for 10 min before the onset of ischemia and then during the first 10 min of reperfusion. In additional groups, ETZ was administered in the presence of SB202190 (SB, a p38MAPK inhibitor) or chelerythrine (Chel, a protein kinase C [PKC] inhibitor). Infarct size, myocardial function, and the expression of phosphorylated forms of p38MAPK, PKCε, HSP27, and Drp1, and calcineurin Aß content were assessed. In isolated mitochondria, the Ca2+ response, Ca2+ retention capacity, and membrane potential were measured. ETZ decreased infarct size by 60%, improved postischemic recovery of myocardial contractile and diastolic relaxation increased P-p38MAPK, P-PKCε, P-HSP27, and P-Drp1 expression, decreased calcineurin content, and normalized calcium and membrane potential parameters measured in isolated mitochondria. These effects were significantly attenuated when ETZ was administered in the presence of SB or Chel. These data show that ETZ protects the myocardium and mitochondria against ischemia-reperfusion injury through p38MAPK- and PKCε-dependent pathways and reinforces the role of CA as a possible target in the management of acute cardiac ischemic diseases.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Etoxzolamida/farmacología , Corazón/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Miocardio/metabolismo , Animales , Benzofenantridinas/farmacología , Calcio/metabolismo , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Preparación de Corazón Aislado , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Daño por Reperfusión Miocárdica , Proteína Quinasa C/antagonistas & inhibidores , Piridinas/farmacología , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
20.
Traffic ; 22(10): 345-361, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34431177

RESUMEN

Ligand-independent epidermal growth factor receptor (EGFR) endocytosis is inducible by a variety of stress conditions converging upon p38 kinase. A less known pathway involves phosphatidic acid (PA) signaling toward the activation of type 4 phosphodiesterases (PDE4) that decrease cAMP levels and protein kinase A (PKA) activity. This PA/PDE4/PKA pathway is triggered with propranolol used to inhibit PA hydrolysis and induces clathrin-dependent and clathrin-independent endocytosis, followed by reversible accumulation of EGFR in recycling endosomes. Here we give further evidence of this signaling pathway using biosensors of PA, cAMP, and PKA in live cells and then show that it activates p38 and ERK1/2 downstream the PKA inhibition. Clathrin-silencing and IN/SUR experiments involved the activity of p38 in the clathrin-dependent route, while ERK1/2 mediates clathrin-independent EGFR endocytosis. The PA/PDE4/PKA pathway selectively increases the EGFR endocytic rate without affecting LDLR and TfR constitute endocytosis. This selectiveness is probably because of EGFR phosphorylation, as detected in Th1046/1047 and Ser669 residues. The EGFR accumulates at perinuclear recycling endosomes colocalizing with TfR, fluorescent transferrin, and Rab11, while a small proportion distributes to Alix-endosomes. A non-selective recycling arrest includes LDLR and TfR in a reversible manner. The PA/PDE4/PKA pathway involving both p38 and ERK1/2 expands the possibilities of EGFR transmodulation and interference in cancer.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Ácidos Fosfatidicos , Clatrina/metabolismo , Endocitosis/fisiología , Receptores ErbB/metabolismo , Ligandos , Ácidos Fosfatidicos/metabolismo , Fosforilación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA