Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Cell Commun Signal ; 22(1): 314, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849885

RESUMEN

BACKGROUND: Abnormally expressed BCR/ABL protein serves as the basis for the development of chronic myeloid leukaemia (CML). The F-actin binding domain (FABD), which is a crucial region of the BCR/ABL fusion protein, is also located at the carboxyl end of the c-ABL protein and regulates the kinase activity of c-ABL. However, the precise function of this domain in BCR/ABL remains uncertain. METHODS: The FABD-deficient adenovirus vectors Ad-BCR/ABL△FABD, wild-type Ad-BCR/ABL and the control vector Adtrack were constructed, and 32D cells were infected with these adenoviruses separately. The effects of FABD deletion on the proliferation and apoptosis of 32D cells were evaluated by a CCK-8 assay, colony formation assay, flow cytometry and DAPI staining. The levels of phosphorylated BCR/ABL, p73, and their downstream signalling molecules were detected by western blot. The intracellular localization and interaction of BCR/ABL with the cytoskeleton-related protein F-actin were identified by immunofluorescence and co-IP. The effect of FABD deletion on BCR/ABL carcinogenesis in vivo was explored in CML-like mouse models. The degree of leukaemic cell infiltration was observed by Wright‒Giemsa staining and haematoxylin and eosin (HE) staining. RESULTS: We report that the loss of FABD weakened the proliferation-promoting ability of BCR/ABL, accompanied by the downregulation of BCR/ABL downstream signals. Moreover, the deletion of FABD resulted in a change in the localization of BCR/ABL from the cytoplasm to the nucleus, accompanied by an increase in cell apoptosis due to the upregulation of p73 and its downstream proapoptotic factors. Furthermore, we discovered that the absence of FABD alleviated leukaemic cell infiltration induced by BCR/ABL in mice. CONCLUSIONS: These findings reveal that the deletion of FABD diminished the carcinogenic potential of BCR/ABL both in vitro and in vivo. This study provides further insight into the function of the FABD domain in BCR/ABL.


Asunto(s)
Apoptosis , Proliferación Celular , Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Animales , Humanos , Ratones , Apoptosis/genética , Actinas/metabolismo , Carcinogénesis/genética , Dominios Proteicos , Línea Celular Tumoral
2.
Cancer Cell ; 42(6): 946-967, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729160

RESUMEN

p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Animales , Ferroptosis/genética , Transducción de Señal , Apoptosis , Procesamiento Proteico-Postraduccional
3.
Sci Rep ; 14(1): 9894, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688978

RESUMEN

This study aims to decipher crucial biomarkers regulated by p73 for the early detection of colorectal cancer (CRC) by employing a combination of integrative bioinformatics and expression profiling techniques. The transcriptome profile of HCT116 cell line p53 - / - p73 + / + and p53 - / - p73 knockdown was performed to identify differentially expressed genes (DEGs). This was corroborated with three CRC tissue expression datasets available in Gene Expression Omnibus. Further analysis involved KEGG and Gene ontology to elucidate the functional roles of DEGs. The protein-protein interaction (PPI) network was constructed using Cytoscape to identify hub genes. Kaplan-Meier (KM) plots along with GEPIA and UALCAN database analysis provided the insights into the prognostic and diagnostic significance of these hub genes. Machine/deep learning algorithms were employed to perform TNM-stage classification. Transcriptome profiling revealed 1289 upregulated and 1897 downregulated genes. When intersected with employed CRC datasets, 284 DEGs were obtained. Comprehensive analysis using gene ontology and KEGG revealed enrichment of the DEGs in metabolic process, fatty acid biosynthesis, etc. The PPI network constructed using these 284 genes assisted in identifying 20 hub genes. Kaplan-Meier, GEPIA, and UALCAN analyses uncovered the clinicopathological relevance of these hub genes. Conclusively, the deep learning model achieved TNM-stage classification accuracy of 0.78 and 0.75 using 284 DEGs and 20 hub genes, respectively. The study represents a pioneer endeavor amalgamating transcriptomics, publicly available tissue datasets, and machine learning to unveil key CRC-associated genes. These genes are found relevant regarding the patients' prognosis and diagnosis. The unveiled biomarkers exhibit robustness in TNM-stage prediction, thereby laying the foundation for future clinical applications and therapeutic interventions in CRC management.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Biología Computacional , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Mapas de Interacción de Proteínas , Proteína Tumoral p73 , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biología Computacional/métodos , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Mapas de Interacción de Proteínas/genética , Pronóstico , Células HCT116 , Transcriptoma , Estimación de Kaplan-Meier
4.
Biomark Res ; 12(1): 34, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481290

RESUMEN

Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) originate from preleukemic hematopoietic conditions, such as clonal hematopoiesis of indeterminate potential (CHIP) or clonal cytopenia of undetermined significance (CCUS) and have variable outcomes despite the successful implementation of targeted therapies. The prognosis differs depending on the molecular subgroup. In patients with TP53 mutations, the most inferior outcomes across independent studies were observed. Myeloid malignancies with TP53 mutations have complex cytogenetics and extensive structural variants. These factors contribute to worse responses to induction therapy, demethylating agents, or venetoclax-based treatments. Survival of patients with biallelic TP53 gene mutations is often less than one year but this depends on the type of treatment applied. It is still controversial whether the allelic state of mutant TP53 impacts the outcomes in patients with AML and high-risk MDS. Further studies are needed to justify estimating TP53 LOH status for better risk assessment. Yet, TP53-mutated MDS, MDS/AML and AML are now classified separately in the International Consensus Classification (ICC). In the clinical setting, the wild-type p53 protein is reactivated pharmacologically by targeting p53/MDM2/MDM4 interactions and mutant p53 reactivation is achieved by refolding the DNA binding domain to wild-type-like conformation or via targeted degradation of the mutated protein. This review discusses our current understanding of p53 biology in MDS and AML and the promises and failures of wild-type and mutant p53 reactivation in the clinical trial setting.

5.
J Biochem Mol Toxicol ; 38(2): e23646, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38345168

RESUMEN

Circular RNAs (circRNAs) exhibit essential regulation in the malignant development of hepatocellular carcinoma (HCC). This study aims to investigate the physiological mechanisms of circ_0029343 encoded by scavenger receptor class B member 1 (SCARB1) involved in the growth and metastasis of HCC. Differentially expressed mRNAs in HCC were obtained, followed by the prediction of target genes of differentially expressed miRNAs and gene ontology and kyoto encyclopedia of genes and genomes analysis on the differentially expressed mRNAs. Moreover, the regulatory relationship between circRNAs encoded by SCARB1 and differentially expressed miRNAs was predicted. In vitro cell experiments were performed to verify the effects of circ_0029343, miR-486-5p, and SRSF3 on the malignant features of HCC cells using the gain- or loss-of-function experiments. Finally, the effects of circ_0029343 on the growth and metastasis of HCC cells in xenograft mouse models were also explored. It was found that miR-486-5p might interact with seven circRNAs encoded by SCARB1, and its possible downstream target gene was SRSF3. Moreover, SRSF3 was associated with the splicing of various RNA. circ_0029343 could sponge miR-486-5p to up-regulate SRSF3 and activate PDGF-PDGFRB (platelet-derived growth factor and its receptor, receptor beta) signaling pathway by inducing p73 splicing, thus promoting the proliferation, migration, and invasion and inhibiting apoptosis of HCC cells. In vivo, animal experiments further confirmed that overexpression of circ_0029343 could promote the growth and metastasis of HCC cells in nude mice. circ_0029343 encoded by SCARB1 may induce p73 splicing and activate the PDGF-PDGFRB signaling pathway through the miR-486-5p/SRSF3 axis, thus promoting the growth and metastasis of HCC cells.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Animales , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones Desnudos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo
6.
Am J Respir Crit Care Med ; 209(2): 153-163, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37931077

RESUMEN

Rationale: Multiciliated cell (MCC) loss and/or dysfunction is common in the small airways of patients with chronic obstructive pulmonary disease (COPD), but it is unclear if this contributes to COPD lung pathology. Objectives: To determine if loss of p73 causes a COPD-like phenotype in mice and explore whether smoking or COPD impact p73 expression. Methods: p73floxE7-E9 mice were crossed with Shh-Cre mice to generate mice lacking MCCs in the airway epithelium. The resulting p73Δairway mice were analyzed using electron microscopy, flow cytometry, morphometry, forced oscillation technique, and single-cell RNA sequencing. Furthermore, the effects of cigarette smoke on p73 transcript and protein expression were examined using in vitro and in vivo models and in studies including airway epithelium from smokers and patients with COPD. Measurements and Main Results: Loss of functional p73 in the respiratory epithelium resulted in a near-complete absence of MCCs in p73Δairway mice. In adulthood, these mice spontaneously developed neutrophilic inflammation and emphysema-like lung remodeling and had progressive loss of secretory cells. Exposure of normal airway epithelium cells to cigarette smoke rapidly and durably suppressed p73 expression in vitro and in vivo. Furthermore, tumor protein 73 mRNA expression was reduced in the airways of current smokers (n = 82) compared with former smokers (n = 69), and p73-expressing MCCs were reduced in the small airways of patients with COPD (n = 11) compared with control subjects without COPD (n = 12). Conclusions: Loss of functional p73 in murine airway epithelium results in the absence of MCCs and promotes COPD-like lung pathology. In smokers and patients with COPD, loss of p73 may contribute to MCC loss or dysfunction.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Animales , Humanos , Ratones , Epitelio/metabolismo , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/patología
7.
Dev Dyn ; 253(3): 333-350, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37698352

RESUMEN

BACKGROUND: Some marine invertebrate organisms are considered not to develop tumors due to unknown mechanisms. To gain an initial insight into how tumor-related genes may be expressed and function during marine invertebrate development, we here leverage sea urchin embryos as a model system and characterize the expressions of Myc and p53/p63/p73 which are reported to function synergistically in mammalian models as an oncogene and tumor suppressor, respectively. RESULTS: During sea urchin embryogenesis, a combo gene of p53/p63/p73 is found to be maternally loaded and decrease after fertilization both in transcript and protein, while Myc transcript and protein are zygotically expressed. p53/p63/p73 and Myc proteins are observed in the cytoplasm and nucleus of every blastomere, respectively, throughout embryogenesis. Both p53/p63/p73 and Myc overexpression results in compromised development with increased DNA damage after the blastula stage. p53/p63/p73 increases the expression of parp1, a DNA repair/cell death marker gene, and suppresses endomesoderm gene expressions. In contrast, Myc does not alter the expression of specification genes or oncogenes yet induces disorganized morphology. CONCLUSIONS: p53/p63/p73 appears to be important for controlling cell differentiation, while Myc induces disorganized morphology yet not through conventional oncogene regulations or apoptotic pathways during embryogenesis of the sea urchin.


Asunto(s)
Blastocisto , Proteína p53 Supresora de Tumor , Animales , Proteína p53 Supresora de Tumor/genética , Blastómeros , Desarrollo Embrionario/genética , Erizos de Mar/genética , Mamíferos
8.
J Vet Med Sci ; 86(1): 39-48, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38030281

RESUMEN

Merkel cell carcinoma (MCC) is a cutaneous neuroendocrine tumor, and more than 90% of feline MCC cases test positive for Felis catus papillomavirus type 2 (FcaPV2). In the present study, basal cell markers p40, p63, and p73 and the stem cell marker SOX2 and cytokeratin 14 (CK14) were immunohistochemically examined in normal fetal, infant, and adult feline skin tissues. The expression of these proteins was examined in tumors positive for FcaPV2, including MCC, basal cell carcinoma (BCC), Bowenoid in situ carcinoma (BISC), and squamous cell carcinoma (SCC). Infant and adult feline skin tissues had mature Merkel cells, which were CK14-, CK18+, CK20+, SOX2+, synaptophysin+ and CD56+, while fetal skin tissue had no mature Merkel cells. MCC was immunopositive for p73, CK18, and SOX2 in 32/32 cases, and immunonegative for CK14 in 31/32 cases and for p40 and p63 in 32/32 cases. These results indicate that MCC exhibits different immunophenotypes from Merkel cells (p73-) and basal cells (p40+, p63+, and SOX2-). In contrast, all 3 BCCs, 1 BISC, and 2 SCCs were immunopositive for the basal cell markers p40, p63, and p73. The life cycle of papillomavirus is closely associated with the differentiation of infected basal cells, which requires the transcription factor p63. Changes in p63 expression in FcaPV2-positive MCC may be associated with unique cytokeratin expression patterns (CK14-, CK18+, and CK20+). Furthermore, SOX2 appears to be involved in Merkel cell differentiation in cats, similar to humans and mice.


Asunto(s)
Carcinoma de Células de Merkel , Carcinoma de Células Escamosas , Enfermedades de los Gatos , Neoplasias Cutáneas , Animales , Gatos , Biomarcadores de Tumor/metabolismo , Carcinoma de Células de Merkel/veterinaria , Carcinoma de Células de Merkel/metabolismo , Carcinoma de Células de Merkel/patología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/veterinaria , Papillomaviridae/genética , Neoplasias Cutáneas/veterinaria , Factores de Transcripción
9.
Cancers (Basel) ; 15(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37760451

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive cancer that lacks specific molecular targets that are often used for therapy. The refractory rate of TNBC to broad-spectrum chemotherapy remains high; however, the combination of newly developed treatments with the current standard of care has delivered promising anti-tumor effects. One mechanism employed by TNBC to avoid cell death is the increased expression of the anti-apoptotic protein, myeloid cell leukemia 1 (MCL1). Multiple studies have demonstrated that increased MCL1 expression enables resistance to platinum-based chemotherapy. In addition to suppressing apoptosis, we recently demonstrated that MCL1 also binds and negatively regulates the transcriptional activity of TP73. TP73 upregulation is a critical driver of cisplatin-induced DNA damage response, and ultimately, cell death. We therefore sought to determine if the coadministration of an MCL1-targeted inhibitor with cisplatin could produce a synergistic response in TNBC. This study demonstrates that the MCL1 inhibitor, S63845, combined with cisplatin synergizes by inducing apoptosis while also decreasing proliferation in a subset of TNBC cell lines. The use of combined MCL1 inhibitors with cisplatin in TNBC effectively initiates TAp73 anti-tumor effects on cell cycle arrest and apoptosis. This observation provides a molecular profile that can be exploited to identify sensitive TNBCs.

10.
G3 (Bethesda) ; 13(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717172

RESUMEN

Aging is the consequence of intra- and extracellular events that promote cellular senescence. Dyskeratosis congenita (DC) is an example of a premature aging disorder caused by underlying telomere/telomerase-related mutations. Cells from these patients offer an opportunity to study telomere-related aging and senescence. Our previous work has found that telomere shortening stimulates DNA damage responses (DDRs) and increases reactive oxygen species (ROS), thereby promoting entry into senescence. This work also found that telomere elongation via TERT expression, the catalytic component of the telomere-elongating enzyme telomerase, or p53 shRNA could decrease ROS by disrupting this telomere-DDR-ROS pathway. To further characterize this pathway, we performed a CRISPR/Cas9 knockout screen to identify genes that extend life span in DC cells. Of the cellular clones isolated due to increased life span, 34% had a guide RNA (gRNA) targeting CEBPB, while gRNAs targeting WSB1, MED28, and p73 were observed multiple times. CEBPB is a transcription factor associated with activation of proinflammatory response genes suggesting that inflammation may be present in DC cells. The inflammatory response was investigated using RNA sequencing to compare DC and control cells. Expression of inflammatory genes was found to be significantly elevated (P < 0.0001) in addition to a key subset of these inflammation-related genes [IL1B, IL6, IL8, IL12A, CXCL1 (GROa), CXCL2 (GROb), and CXCL5]. which are regulated by CEBPB. Exogenous TERT expression led to downregulation of RNA/protein CEBPB expression and the inflammatory response genes suggesting a telomere length-dependent mechanism to regulate CEBPB. Furthermore, unlike exogenous TERT and p53 shRNA, CEBPB shRNA did not significantly decrease ROS suggesting that CEBPB's contribution in DC cells' senescence is ROS independent. Our findings demonstrate a key role for CEBPB in engaging senescence by mobilizing an inflammatory response within DC cells.


Asunto(s)
Disqueratosis Congénita , Telomerasa , Humanos , Especies Reactivas de Oxígeno/metabolismo , Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Proteína p53 Supresora de Tumor/genética , Mutación , Telómero/genética , Telómero/metabolismo , ARN Interferente Pequeño/metabolismo , Fibroblastos/metabolismo , Inflamación/genética , Complejo Mediador/genética , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo
11.
Am J Cancer Res ; 13(7): 2922-2937, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559979

RESUMEN

Indisulam is a synthetic sulfonamides drug with anticancer activity in various tumors. However, the effect and molecular mechanism of indisulam have still not been studied in human cervical cancer. We treated human cervical cancer cell lines (HeLa and C33A) with indisulam, evaluated its efficacy, and investigated its molecular targets. Indisulam inhibited tumor growth and induced RBM39 degradation in a dose-dependent manner. RNA-seq and proteomics analysis revealed that indisulam disrupted transcriptional regulation pathways related to mRNA splicing and apoptosis. More importantly, indisulam caused mis-splicing of RNA transcripts including p73 isoforms ΔNp73 and TAp73 which have opposite roles in apoptosis regulation. Indisulam increased TAp73 expression and triggered mitochondrial apoptosis independent of p53 status in HeLa cells. In summary, our data suggests that indisulam has therapeutic potential in cervical cancer, representing an attractive strategy in p53-disrupted cancers and should be further investigated.

12.
Cell Rep ; 42(1): 112024, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36848235

RESUMEN

p53 is a key tumor suppressor that is frequently mutated in human tumors. In this study, we investigated how p53 is regulated in precancerous lesions prior to mutations in the p53 gene. Analyzing esophageal cells in conditions of genotoxic stress that promotes development of esophageal adenocarcinoma, we find that p53 protein is adducted with reactive isolevuglandins (isoLGs), products of lipid peroxidation. Modification of p53 protein with isoLGs diminishes its acetylation and binding to the promoters of p53 target genes causing modulation of p53-dependent transcription. It also leads to accumulation of adducted p53 protein in intracellular amyloid-like aggregates that can be inhibited by isoLG scavenger 2-HOBA in vitro and in vivo. Taken together, our studies reveal a posttranslational modification of p53 protein that causes molecular aggregation of p53 protein and its non-mutational inactivation in conditions of DNA damage that may play an important role in human tumorigenesis.


Asunto(s)
Daño del ADN , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Mutación/genética , Peroxidación de Lípido , Proteínas Amiloidogénicas
13.
Cells ; 12(4)2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36831211

RESUMEN

The Runt-related transcription factor (RUNX) family, which is essential for the differentiation of cells of neural crest origin, also plays a potential role in neuroblastoma tumorigenesis. Consecutive studies in various tumor types have demonstrated that the RUNX family can play either pro-tumorigenic or anti-tumorigenic roles in a context-dependent manner, including in response to chemotherapeutic agents. However, in primary neuroblastomas, RUNX3 acts as a tumor-suppressor, whereas RUNX1 bifunctionally regulates cell proliferation according to the characterized genetic and epigenetic backgrounds, including MYCN oncogenesis. In this review, we first highlight the current knowledge regarding the mechanism through which the RUNX family regulates the neurotrophin receptors known as the tropomyosin-related kinase (Trk) family, which are significantly associated with neuroblastoma aggressiveness. We then focus on the possible involvement of the RUNX family in functional alterations of the p53 family members that execute either tumor-suppressive or dominant-negative functions in neuroblastoma tumorigenesis. By examining the tripartite relationship between the RUNX, Trk, and p53 families, in addition to the oncogene MYCN, we endeavor to elucidate the possible contribution of the RUNX family to neuroblastoma tumorigenesis for a better understanding of potential future molecular-based therapies.


Asunto(s)
Neuroblastoma , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Carcinogénesis , Fenotipo
14.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36674747

RESUMEN

Radioresistance compromises the efficacy of radiotherapy for glioblastoma multiforme (GBM), the most devastating and common brain tumor. The present study investigated the relationship between radiation tolerance and formation of polyploid/multinucleated giant (PGCC/MGCC) and quiescent/senescent slow-cycling cancer cells in human U-87, LN-229, and U-251 cell lines differing in TP53/PTEN status and radioresistance. We found significant enrichment in MGCC populations of U-87 and LN-229 cell lines, and generation of numerous small mononuclear (called Raju cells, or RJ cells) U-87-derived cells that eventually form cell colonies, in a process termed neosis, in response to X-ray irradiation (IR) at single acute therapeutic doses of 2-6 Gy. For the first time, single-cell high-content imaging and analysis of Ki-67- and EdU-coupled fluorescence demonstrated that the IR exposure dose-dependently augments two distinct GBM cell populations. Bifurcation of Ki-67 staining suggests fast-cycling and slow-cycling populations with a normal-sized nuclear area, and with an enlarged nuclear area, including one resembling the size of PGCC/MGCCs, that likely underlie the highest radioresistance and propensity for repopulation of U-87 cells. Proliferative activity and anchorage-independent survival of GBM cell lines seem to be related to neosis, low level of apoptosis, fraction of prematurely stress-induced senescent MGCCs, and the expression of p63 and p73, members of p53 family transcription factors, but not to the mutant p53. Collectively, our data support the importance of the TP53wt/PTENmut genotype for the maintenance of cycling radioresistant U-87 cells to produce a significant amount of senescent MGCCs as an IR stress-induced adaptation response to therapeutic irradiation doses.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Rayos X , Proteína p53 Supresora de Tumor/genética , Antígeno Ki-67/metabolismo , Línea Celular Tumoral , Tolerancia a Radiación/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
15.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674865

RESUMEN

Apoptosis is a form of programmed cell death that plays a critical role in cellular homeostasis and development, including in the ovarian reserve. In humans, hundreds of thousands of oocytes are produced in the fetal ovary. However, the majority die by apoptosis before birth. After puberty, primordial follicles develop into mature follicles. While only a large dominant follicle is selected to ovulate, smaller ones undergo apoptosis. Despite numerous studies, the mechanism of oocyte death at the molecular level remains elusive. Over the last two and a half decades, many knockout mouse models disrupting key genes in the apoptosis pathway have been generated. In this review, we highlight some of the phenotypes and discuss distinct and overlapping roles of the apoptosis regulators in oocyte death and survival. We also review how the transcription factor p63 and its family members may trigger oocyte apoptosis in response to DNA damage.


Asunto(s)
Oocitos , Maduración Sexual , Humanos , Femenino , Animales , Ratones , Técnicas de Inactivación de Genes , Ratones Noqueados , Oocitos/metabolismo , Apoptosis/genética
16.
Int J Clin Exp Pathol ; 16(12): 357-367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188352

RESUMEN

BACKGROUND: Lung cancer is one of the most common and deadly cancers in humans. P73, a member of the p53 family, is a vital gene for the carcinogenesis of lung cancer. Single nucleotide polymorphism (SNP) of P73 gene may affect the risk of lung cancer. Therefore, we performed a meta-analysis of p73 SNP and lung cancer risk using the most recent data. METHODS: A total of 1407 articles from EMBASE, Web of science, PubMed and Chinese National Knowledge Infrastructure (CNKI) databases were identified initially from the search. A meta-analysis of the association between P73 polymorphism and lung cancer risk was performed based on various genetic models and by type of lung cancer and race. RESULTS: Seven articles published in either English or Chinese with English abstract were eventually selected for final analysis. The total pooled population included 6214 subjects (2,897 cases and 3,317 controls). The results showed that p73 RS2273953 to RS1801173 polymorphism was associated with increased risk of lung cancer in Caucasians but not in Asians. Within Asians, those with p73 GC/GC may have an increased risk for squamous carcinoma compared to those with GC/AT+AT/AT polymorphism. CONCLUSIONS: Our analysis suggested a lack of association between p73 RS2273953 to RS1801173 polymorphism and risk of lung cancer overall. However, patients with GC/GC polymorphism showed an increased risk for squamous carcinoma in the lung compared to those with GC/AT+AT/AT in Asians.

17.
Cancers (Basel) ; 14(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077845

RESUMEN

Despite aggressive combination chemotherapy and surgery, outcomes for patients with osteosarcoma have remained stagnant for more than 25 years, and numerous clinical trials have identified no new therapies. p53 deletion or mutation is found in more than 80% of osteosarcoma tumors. In p53-deficient cancers with structurally altered p63 and p73, interfering with tumor cell metabolism using Pramlintide (an FDA-approved drug for type 2 diabetes) results in tumor regression. Pramlintide response is mediated through upregulation of islet amyloid polypeptide (IAPP). Here, we showed that osteosarcoma cells have altered p63, p73, and p53, and decreased IAPP expression but have the two main IAPP receptors, CalcR and RAMP3, which inhibit glycolysis and induce apoptosis. We showed that in osteosarcoma cells with high- or mid-range glycolytic activity, Pramlintide decreased cell glycolysis, resulting in decreased proliferation and increased apoptosis in vitro. In contrast, Pramlintide had no effect in osteosarcoma cells with low glycolytic activity. Using a subcutaneous osteosarcoma mouse model, we showed that intratumoral injection of Pramlintide-induced tumor regression. Tumor sections showed increased apoptosis and a decrease in Ki-67 and HIF-1α. These data suggest that in osteosarcoma cells with altered p53, p63, and p73 and a high glycolytic function, Pramlintide therapy can modulate metabolic programming and inhibit tumor growth.

18.
Cells ; 11(16)2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-36010592

RESUMEN

Altered lipid metabolism is a hallmark of cancer. p73, a p53 family member, regulates cellular processes and is expressed as multiple isoforms. However, the role of p73 in regulating lipid metabolism is not well-characterized. Previously, we found that loss of p73 exon 12 (E12) leads to an isoform switch from p73α to p73α1, the latter of which has strong tumor suppressive activity. In this study, comprehensive untargeted metabolomics was performed to determine whether p73α1 alters lipid metabolism in non-small cell lung carcinoma cells. RNA-seq and molecular biology approaches were combined to identify lipid metabolism genes altered upon loss of E12 and identify a direct target of p73α1. We found that loss of E12 leads to decreased levels of phosphatidylcholines, and this was due to decreased expression of genes involved in phosphatidylcholine synthesis. Additionally, we found that E12-knockout cells had increased levels of phosphatidylcholines containing saturated fatty acids (FAs) and decreased levels of phosphatidylcholines containing monounsaturated fatty acids (MUFAs). We then found that p73α1 inhibits cancer cell viability through direct transcriptional suppression of Stearoyl-CoA Desaturase-1 (SCD1), which converts saturated FAs to MUFAs. Finally, we showed that p73α1-mediated suppression of SCD1 leads to increased ratios of saturated FAs to MUFAs.


Asunto(s)
Metabolismo de los Lípidos , Neoplasias , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Fosfatidilcolinas , Isoformas de Proteínas/metabolismo , Estearoil-CoA Desaturasa
19.
Acta Pharmacol Sin ; 43(10): 2562-2572, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35948751

RESUMEN

Tax1 banding protein 1 (Tax1bp1) was originally identified as an NF-κB regulatory protein that participated in inflammatory, antiviral and innate immune processes. Tax1bp1 also functions as an autophagy receptor that plays a role in autophagy. Our previous study shows that Tax1bp1 protects against cardiomyopathy in STZ-induced diabetic mice. In this study we investigated the role of Tax1bp1 in heart failure. Pressure overload-induced heart failure model was established in mice by aortic banding (AB) surgery, and angiotensin II (Ang II)-induced heart failure model was established by infusion of Ang II through osmotic minipump for 4 weeks. We showed that the expression levels of Tax1bp1 in the heart were markedly increased 2 and 4 weeks after AB surgery. Knockdown of Tax1bp1 in mouse hearts significantly ameliorated both AB- and Ang II infusion-induced heart failure parameters. On the contrary, AB-induced heart failure was aggravated in cardiac-specific Tax1bp1 transgenic mice. Similar results were observed in neonatal rat cardiomyocytes (NRCMs) under Ang II insult. We demonstrated that the pro-heart failure effect of Tax1bp1 resulted from its interaction with the E3 ligase ITCH to promote the transcription factor P73 ubiquitination and degradation, causing enhanced BCL2 interacting protein 3 (BNIP3)-mediated cardiomyocyte apoptosis. Knockdown ITCH or BNIP3 in NRCMs significantly reduced Ang II-induced apoptosis in vitro. Similarly, BNIP3 knockdown attenuated heart failure in cardiac-specific Tax1bp1 transgenic mice. In the left ventricles of heart failure patients, Tax1bp1 expression level was significantly increased; Tax1bp1 gene expression was negatively correlated with left ventricular ejection fraction in heart failure patients. Collectively, the Tax1bp1 increase in heart failure enhances ITCH-P73-BNIP3-mediated cardiomyocyte apoptosis and induced cardiac injury. Tax1bp1 may serve as a potent therapeutic target for the treatment of heart failure.• Cardiac Tax1bp1 transgene mice were more vulnerable to cardiac dysfunction under stress.• Cardiac Tax1bp1 transgene mice were more vulnerable to cardiac dysfunction under stress.• Knockout of Tax1bp1 in mouse hearts ameliorated heart failure induced by pressure overload.• Tax1bp1 interacts with the E3 ligase Itch to promote P73 ubiquitination and degradation, causing enhanced BNIP3-mediated apoptosis.• Tax1bp1 may become a target of new therapeutic methods for treating heart failure.


Asunto(s)
Diabetes Mellitus Experimental , Insuficiencia Cardíaca , Angiotensina II/farmacología , Animales , Antivirales/farmacología , Apoptosis , Diabetes Mellitus Experimental/complicaciones , Insuficiencia Cardíaca/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Mitocondriales , Miocitos Cardíacos , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Volumen Sistólico , Ubiquitina-Proteína Ligasas/metabolismo , Función Ventricular Izquierda
20.
Cancer Metastasis Rev ; 41(4): 853-869, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35948758

RESUMEN

Cancer largely adheres to Darwinian selection. Evolutionary forces are prominent during metastasis, the final and incurable disease stage, where cells acquire combinations of advantageous phenotypic features and interact with a dynamically changing microenvironment, in order to overcome the metastatic bottlenecks, while therapy exerts additional selective pressures. As a strategy to increase their fitness, tumors often co-opt developmental and tissue-homeostasis programs. Herein, 25 years after its discovery, we review TP73, a sibling of the cardinal tumor-suppressor TP53, through the lens of cancer evolution. The TP73 gene regulates a wide range of processes in embryonic development, tissue homeostasis and cancer via an overwhelming number of functionally divergent isoforms. We suggest that TP73 neither merely mimics TP53 via its p53-like tumor-suppressive functions, nor has black-or-white-type effects, as inferred by the antagonism between several of its isoforms in processes like apoptosis and DNA damage response. Rather, under dynamic conditions of selective pressure, the various p73 isoforms which are often co-expressed within the same cancer cells may work towards a common goal by simultaneously activating isoform-specific transcriptional and non-transcriptional programs. Combinatorial co-option of these programs offers selective advantages that overall increase the likelihood for successfully surpassing the barriers of the metastatic cascade. The p73 functional pleiotropy-based capabilities might be present in subclonal populations and expressed dynamically under changing microenvironmental conditions, thereby supporting clonal expansion and propelling evolution of metastasis. Deciphering the critical p73 isoform patterns along the spatiotemporal axes of tumor evolution could identify strategies to target TP73 for prevention and therapy of cancer metastasis.


Asunto(s)
Neoplasias , Proteínas Supresoras de Tumor , Humanos , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Tumoral p73/genética , Proteína p53 Supresora de Tumor/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Genes Supresores de Tumor , Neoplasias/genética , Neoplasias/patología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA