Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
J Cell Mol Med ; 28(15): e18573, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39121235

RESUMEN

During coronary artery bypass grafting (CABG), the surgical procedure, particularly the manipulation of the major arteries of the heart, induces a significant inflammatory state that may compromise platelet function to the extent that platelet transfusion is required. Given stored platelets as a major source of biological mediators, this study investigates the effects of platelet transfusion on the major pro-aggregatory, pro-inflammatory and immunomodulatory markers of platelets. Platelets from 20 patients, 10 who received platelet transfusion and 10 without, were subjected to flow cytometery where P-selectin and CD40 ligand (CD40L) expressions and PAC-1 binding (activation-specific anti GPIIb/GPIIIa antibody) analysed at five-time points of 24 h before surgery, immediately, 2 h, 24 h and 1 week after surgery. Analysis of intra-platelet transforming growth factor-beta-1 (TGF-ß1) was also conducted using western blotting. Patients with platelet transfusion showed increased levels of P-selectin, CD40L and intra-platelet TGF-ß1 2-h after surgery compared to those without transfusion (p < 0.05). PAC-1 binding was increased 24 h after surgery in transfused patients (p < 0.05). Given the significant post-transfusion elevation of platelet TGF-ß1, P-sel/CD40L reduction in transfused patients a week after was of much interest. This study showed for the first time the significant effects of platelet transfusion on the pro-inflammatory, pro-aggeregatory and immunomodulatory state of platelets in CABG patients, which manifested with immediate, midterm and delayed consequences. While the increased pro-inflammatory conditions manifested as an immediate effect of platelet transfusion, the pro-aggregatory circumstances emerged 24 h post-transfusion. A week after surgery, attenuations of pro-inflammatory markers of platelets in transfused patients were shown, which might be due to the immunomodulatory effects of TGF-ß1.


Asunto(s)
Plaquetas , Ligando de CD40 , Puente de Arteria Coronaria , Selectina-P , Transfusión de Plaquetas , Humanos , Puente de Arteria Coronaria/efectos adversos , Plaquetas/metabolismo , Masculino , Femenino , Selectina-P/sangre , Selectina-P/metabolismo , Persona de Mediana Edad , Ligando de CD40/sangre , Ligando de CD40/metabolismo , Anciano , Factor de Crecimiento Transformador beta1/sangre , Factor de Crecimiento Transformador beta1/metabolismo , Inflamación/sangre , Agregación Plaquetaria
2.
Elife ; 132024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145773

RESUMEN

Class-B1 G-protein-coupled receptors (GPCRs) are an important family of clinically relevant drug targets that remain difficult to investigate via high-throughput screening and in animal models. Here, we engineered PAClight1P78A, a novel genetically encoded sensor based on a class-B1 GPCR (the human PAC1 receptor, hmPAC1R) endowed with high dynamic range (ΔF/F0 = 1100%), excellent ligand selectivity, and rapid activation kinetics (τON = 1.15 s). To showcase the utility of this tool for in vitro applications, we thoroughly characterized and compared its expression, brightness and performance between PAClight1P78A-transfected and stably expressing cells. Demonstrating its use in animal models, we show robust expression and fluorescence responses upon exogenous ligand application ex vivo and in vivo in mice, as well as in living zebrafish larvae. Thus, the new GPCR-based sensor can be used for a wide range of applications across the life sciences empowering both basic research and drug development efforts.


Asunto(s)
Pez Cebra , Animales , Pez Cebra/metabolismo , Pez Cebra/genética , Ratones , Humanos , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Células HEK293 , Técnicas Biosensibles/métodos , Ingeniería de Proteínas/métodos , Ligandos
3.
J Headache Pain ; 25(1): 126, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085771

RESUMEN

BACKGROUND: Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide pivotal in migraine pathophysiology and is considered a promising new migraine drug target. Although intravenous PACAP triggers migraine attacks and a recent phase II trial with a PACAP-inhibiting antibody showed efficacy in migraine prevention, targeting the PACAP receptor PAC1 alone has been unsuccessful. The present study investigated the role of three PACAP receptors (PAC1, VPAC1 and VPAC2) in inducing migraine-relevant hypersensitivity in mice. METHODS: Hindpaw hypersensitivity was induced by repeated PACAP38 injections. Tactile sensitivity responses were quantified using von Frey filaments in three knockout (KO) mouse strains, each lacking one of the PACAP-receptors (Ntotal = 160). Additionally, ex vivo wire myography was used to assess vasoactivity of the carotid artery, and gene expression of PACAP receptors was examined by qPCR. RESULTS: PACAP38 induced hypersensitivity in WT controls (p < 0.01) that was diminished in VPAC1 and VPAC2 KO mice (p < 0.05). In contrast, PAC1 KO mice showed similar responses to WT controls (p > 0.05). Myograph experiments supported these findings showing diminished vasoactivity in VPAC1 and VPAC2 KO mice. We found no upregulation of the non-modified PACAP receptors in KO mice. CONCLUSIONS: This study assessed all three PACAP receptors in a migraine mouse model and suggests a significant role of VPAC receptors in migraine pathophysiology. The lack of hypersensitivity reduction in PAC1 KO mice suggests the involvement of other PACAP receptors or compensatory mechanisms. The results indicate that targeting only individual PACAP receptors may not be an effective migraine treatment.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Noqueados , Trastornos Migrañosos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptores de Tipo II del Péptido Intestinal Vasoactivo , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/fisiopatología , Trastornos Migrañosos/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo/genética , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/metabolismo , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/genética , Ratones , Arterias Carótidas/efectos de los fármacos , Arterias Carótidas/fisiopatología , Hiperalgesia/fisiopatología , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Masculino , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Ratones Endogámicos C57BL , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Miembro Posterior/fisiopatología
4.
Br J Pharmacol ; 181(15): 2655-2675, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38616050

RESUMEN

BACKGROUND AND PURPOSE: The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH: Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS: PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS: The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Médula Espinal , Péptido Intestinal Vasoactivo , Animales , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/agonistas , Humanos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Ratones , Ratas , Transducción de Señal/efectos de los fármacos , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Receptores de Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Células Cultivadas , Ratas Sprague-Dawley , Masculino , Ratones Endogámicos C57BL , AMP Cíclico/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo/agonistas
5.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612681

RESUMEN

Small-molecule positive allosteric modulator 1 (SPAM1), which targets pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1-R), has been found to have a neuroprotective effect, and the underlying mechanism was explored in this study. First, using a D-galactose (D-gal)-induced aging mouse model, we confirmed that SPAM1 improves the structure of the hippocampal dentate gyrus and restores the number of neurons. Compared with D-gal model mice, SPAM1-treated mice showed up-regulated expression of Sirtuin 6 (SIRT6) and Lamin B1 and down-regulated expression of YinYang 1 (YY1) and p16. A similar tendency was observed in senescent RGC-5 cells induced by long-term culture, indicating that SPAM1 exhibits significant in vitro and in vivo anti-senescence activity in neurons. Then, using whole-transcriptome sequencing and proteomic analysis, we further explored the mechanism behind SPAM1's neuroprotective effects and found that SPAM is involved in the longevity-regulating pathway. Finally, the up-regulation of neurofilament light and medium polypeptides indicated by the proteomics results was further confirmed by Western blotting. These results help to lay a pharmacological network foundation for the use of SPAM1 as a potent anti-aging therapeutic drug to combat neurodegeneration with anti-senescence, neuroprotective, and nerve regeneration activity.


Asunto(s)
Proteómica , Transcriptoma , Animales , Ratones , Perfilación de la Expresión Génica , Envejecimiento/genética , Longevidad , Galactosa/farmacología
6.
Microvasc Res ; 153: 104669, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38360131

RESUMEN

BACKGROUND: Coronary artery bypass grafting (CABG) is considered the choice treatment for patients suffering from coronary artery disease (CAD). In the inflammatory milieu of cardiopulmonary bypass (CPB), systemic inflammatory response syndrome (SIRS) can induce a platelet pro-inflammatory state which could exacerbate post-CABG inflammatory status while affecting hemostatic function in patients. Therefore, focusing on platelets, the study presented here attempted to evaluate the pro-inflammatory and immunomodulatory profile of platelets as well as pro-aggregatory status during CABG. METHODS: Platelets from patients undergoing CABG were subjected to flowcytometry analysis to evaluate P-selectin and CD40L expressions and PAC-1 binding in five intervals of 24 h before surgery, immediately, 2 h, 24 h, and one week after surgery. Moreover, intra-platelet TGF-ß1 was also examined with western blotting. RESULTS: Data showed increases of P-selectin and CD40L expressions in patients, with the meaningful loss of platelet contents of TGF-ß1 after CABG (p < 0.001), where the changes tended to recover by day 7 of surgery while remaining above baseline (p < 0.001). Meanwhile, no significant change in PAC-1 binding capacity was shown. CONCLUSION: The study presented here suggests that although the release of pro-inflammatory substances from platelets during CABG supports the post-operative inflammatory state, platelets are not pro-aggregatory enough to enhance thrombotic events after surgery. Whilst these observations could be due to successful medical interventions to optimize hemostasis during and after surgery, post-CABG reversal of anticoagulant by protamine is considered as another factor that may also have contributed to preventing pro-aggregatory but not pro-inflammatory and immunomodulatory functions of platelets.


Asunto(s)
Selectina-P , Factor de Crecimiento Transformador beta1 , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Selectina-P/metabolismo , Ligando de CD40 , Puente de Arteria Coronaria/efectos adversos , Fenotipo , Plaquetas/metabolismo
7.
bioRxiv ; 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38328185

RESUMEN

Dedicated assembly factors orchestrate stepwise production of many molecular machines, including the 28-subunit proteasome core particle (CP) that mediates protein degradation. Here, we report cryo-EM reconstructions of seven recombinant human subcomplexes that visualize all five chaperones and the three active site propeptides across a wide swath of the assembly pathway. Comparison of these chaperone-bound intermediates and a matching mature CP reveals molecular mechanisms determining the order of successive subunit additions, and how proteasome subcomplexes and assembly factors structurally adapt upon progressive subunit incorporation to stabilize intermediates, facilitate the formation of subsequent intermediates, and ultimately rearrange to coordinate proteolytic activation with gated access to active sites. The structural findings reported here explain many previous biochemical and genetic observations. This work establishes a methodologic approach for structural analysis of multiprotein complex assembly intermediates, illuminates specific functions of assembly factors, and reveals conceptual principles underlying human proteasome biogenesis.

8.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38396827

RESUMEN

Kidney transplantation is the preferred treatment for end-stage kidney disease (ESKD). However, there is a shortage of transplantable kidneys, and donor organs can be damaged by necessary cold storage (CS). Although CS improves the viability of kidneys from deceased donors, prolonged CS negatively affects transplantation outcomes. Previously, we reported that renal proteasome function decreased after rat kidneys underwent CS followed by transplantation (CS + Tx). Here, we investigated the mechanism underlying proteasome dysfunction and the role of the proteasome in kidney graft outcome using a rat model of CS + Tx. We found that the key proteasome subunits ß5, α3, and Rpt6 are modified, and proteasome assembly is impaired. Specifically, we detected the modification and aggregation of Rpt6 after CS + Tx, and Rpt6 modification was reversed when renal extracts were treated with protein phosphatases. CS + Tx kidneys also displayed increased levels of nitrotyrosine, an indicator of peroxynitrite (a reactive oxygen species, ROS), compared to sham. Because the Rpt6 subunit appeared to aggregate, we investigated the effect of CS + Tx-mediated ROS (peroxynitrite) generation on renal proteasome assembly and function. We treated NRK cells with exogenous peroxynitrite and evaluated PAC1 (proteasome assembly chaperone), Rpt6, and ß5. Peroxynitrite induced a dose-dependent decrease in PAC1 and ß5, but Rpt6 was not affected (protein level or modification). Finally, serum creatinine increased when we inhibited the proteasome in transplanted donor rat kidneys (without CS), recapitulating the effects of CS + Tx. These findings underscore the effects of CS + Tx on renal proteasome subunit dysregulation and also highlight the significance of proteasome activity in maintaining graft function following CS + Tx.


Asunto(s)
Trasplante de Riñón , Ratas , Animales , Trasplante de Riñón/efectos adversos , Complejo de la Endopetidasa Proteasomal/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Peroxinitroso/metabolismo , Riñón/metabolismo , Preservación de Órganos
9.
J Biomol Struct Dyn ; 42(6): 3128-3144, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37216328

RESUMEN

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) belongs to the glucagon/secretin family. PACAP interacts with the pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) and vasoactive intestinal peptide receptors 1 and 2 (VPAC1 and VPAC2), exhibiting functions in the immune, endocrine, and nervous systems. This peptide is upregulated in numerous instances of brain injury, acting as a neuroprotective agent. It can also suppress HIV-1 and SARS-CoV-2 viral replication in vitro. This work aimed to identify, in each peptide-receptor system, the most relevant residues for complex stability and interaction energy communication via Molecular Dynamics (MD), Free Energy calculations, and Protein-energy networks, thus revealing in detail the underlying mechanisms of activation of these receptors. Hydrogen bond formation, interaction energies, and computational alanine scanning between PACAP and its receptors showed that His1, Asp3, Arg12, Arg14, and Lys15 are crucial to the peptide's stability. Furthermore, several PACAP interactions with structurally conserved positions deemed necessary in GPCR B1 activation, including Arg2.60, Lys2.67, and Glu7.42, were significant for the peptide's stability within the receptors. According to the protein-energy network, the connection between Asp3 of PACAP and the receptors' conserved Arg2.60 represents a critical energy communication hub in all complexes. Additionally, the ECDs of the receptors were also found to function as energy communication hubs for PACAP. Although the overall binding mode of PACAP in the three receptors was found to be highly conserved, Arg12 and Tyr13 of PACAP were more prominent in complex with PAC1, while Ser2 of PACAP was with VPAC2. The detailed analyses performed in this work pave the way for using PACAP and its receptors as therapeutic targets.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptores de la Hormona Hipofisaria , Simulación de Dinámica Molecular , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Receptores de la Hormona Hipofisaria/química , Receptores de la Hormona Hipofisaria/metabolismo , Sistema Nervioso
10.
Genes Brain Behav ; 22(6): e12873, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37983568

RESUMEN

The midbrain periaqueductal gray (PAG) region is a critical anatomical regulator of fear-related species-specific defensive reactions (SSDRs). Pituitary adenylate-cyclase-activating polypeptide (PACAP), and its main receptor PAC1, play an important role in fear-related behavior and anxiety disorders. However, the function of the PACAP-PAC1 system within the PAG with regards to SSDRs has received little attention. To address this gap, we used transgenic PAC1flox/flox mice to examine both conditional and unconditional defensive reactions. We performed conditional PAC1 gene deletion within the ventrolateral(vl)PAG of PAC1flox/flox mice using an adeno-associated virus (AAV) coding for Cre recombinase. Following viral expression, we used a white noise fear conditioning preparation that produces both an unconditional activity burst to the onset of noise that is followed by conditional freezing. On Day 1, mice received five white noise foot-shock pairings, whereas on Day 2, they were exposed to white noise five times without shock and we scored the activity burst and freezing to the white noise. Following behavioral testing, histology for immunofluorescent analysis was conducted in order to identify PACAP positive cells and stress-induced c-fos activity respectively. We found that PAC1 deletion in vlPAG increased the unconditional activity burst response but disrupted conditional freezing. PAC1 deletion was accompanied by higher c-fos activity following the behavioral experiments. Furthermore, a significant portion of PACAP-EGFP positive cells showed overlapping expression with VGAT, indicating their association with inhibitory neurons. The findings suggested that intact PACAP-PAC1 mechanisms are essential for SSDRs in vlPAG. Therefore, midbrain PACAP contributes to the underlying molecular mechanisms regulating fear responses.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Animales , Ratones , Miedo/fisiología , Sustancia Gris Periacueductal/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética
11.
Biochem Pharmacol ; 216: 115767, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634599

RESUMEN

Oral lichen planus (OLP) is a T cell-mediated autoimmune disease of oral mucosa concerning with the redox imbalance. Although glutamine uptake mediated by alanine-serine-cysteine transporter 2 (ASCT2) is critical to T cell differentiation, the exact mechanism remains ambiguous. Here, we elucidate a novel regulatory mechanism of ASCT2-mediated uptake in the differentiation and proliferation of T cells through maintaining redox balance in OLP. The results of immunohistochemistry (IHC) showed that both ASCT2 and glutaminase (GLS) were obviously upregulated compared to controls in OLP. Moreover, correlation analyses indicated that ASCT2 expression was significantly related to GLS level. Interestingly, the upregulation of glutamine metabolism in epithelial layer was consistent with that in lamina propria. Functional assays in vitro revealed the positive association between glutamine metabolism and lymphocytes infiltration. Additionally, multiplex immunohistochemistry (mIHC) uncovered a stronger colocalization among ASCT2 and CD4 and IFN-γ, which was further demonstrated by human Th1 differentiation assay in vitro. Mechanistically, targeting glutamine uptake through interference with ASCT2 using L-γ-Glutamyl-p-nitroanilide (GPNA) decreased the glutamine uptake of T cells and leaded to the accumulation of intracellular reactive oxygen species (ROS), which promoted dual specificity phosphatase 2 (DUSP2/PAC1) expression through activation of early growth response 1 (EGR1) to induce dephosphorylation of signal transducer and activator of transcription 3 (STAT3) and inhibit Th1 differentiation in turn. These results demonstrated that glutamine uptake mediated by ASCT2 induced Th1 differentiation by ROS-EGR1-PAC1 pathway, and restoring the redox dynamic balance through targeting ASCT2 may be a potential treatment for T cell-mediated autoimmune diseases.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC , Glutamina , Liquen Plano Oral , Humanos , Alanina , Diferenciación Celular , Cisteína , Proteína 1 de la Respuesta de Crecimiento Precoz , Glutamina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sistema de Transporte de Aminoácidos ASC/metabolismo
12.
Neurooncol Adv ; 5(1): vdad087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554223

RESUMEN

Background: Procaspase-3 (PC-3) is overexpressed in various tumor types, including gliomas. Targeted PC-3 activation combined with chemotherapy is a novel strategy for treating patients with high-grade gliomas, with promising preclinical activity. This study aimed to define safety and tolerability of procaspase-activating compound-1 (PAC-1) in combination with temozolomide (TMZ) for patients with recurrent high-grade astrocytomas. Methods: A modified-Fibonacci dose-escalation 3 + 3 design was used. PAC-1 was administered at increasing dose levels (DL; DL1 = 375 mg) on days 1-21, in combination with TMZ 150 mg/m2/5 days, per 28-day cycle. Dose-limiting toxicity was assessed during the first 2 cycles. Neurocognitive function (NCF) testing was conducted throughout the study. Results: Eighteen patients were enrolled (13 GBM, IDH-wild type; 2 astrocytoma, IDH-mutant, grade 3; 3 astrocytoma, IDH-mutant, grade 4). Dose escalation was discontinued after DL3 (ie, PAC-1, 625 mg) due to lack of additional funding. Grade 3 toxicity was observed in 1 patient at DL1 (elevated liver transaminases) and 1 at DL 2 (headache). Two partial responses were observed at DL1 in patients with GBM, O6-methylguanine-DNA methyltransferase (MGMT) promoter methylated. Two patients had stable disease, and 11 experienced progression. NCF testing did not show a clear relationship between PAC-1 dose, treatment duration, and declines in NCF. Conclusions: Combination of PAC-1 and TMZ was well tolerated up to 625 mg orally daily and TMZ orally 150 mg/m2/5 days per 28-day cycle. The maximum tolerated dose was not reached. Further dose escalation of PAC-1 in combination with TMZ is advised before conducting a formal prospective efficacy study in this patient population.

13.
Acta Pharmacol Sin ; 44(12): 2418-2431, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37563446

RESUMEN

Pain is a common annoying non-motor symptom in Parkinson's disease (PD) that causes distress to patients. Treatment for PD pain remains a big challenge, as its underlying mechanisms are elusive. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1-R play important roles in regulating a variety of pathophysiological processes. In this study, we investigated whether PACAP/PAC1-R signaling was involved in the mechanisms of PD pain. 6-hydroxydopamine (6-OHDA)-induced PD model was established in rats. Behavioral tests, electrophysiological and Western blotting analysis were conducted 3 weeks later. We found that 6-OHDA rats had significantly lower mechanical paw withdrawal 50% threshold in von Frey filament test and shorter tail flick latency, while mRNA levels of Pacap and Adcyap1r1 (gene encoding PAC1-R) in the spinal dorsal horn were significantly upregulated. Whole-cell recordings from coronal spinal cord slices at L4-L6 revealed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in dorsal horn neurons was significantly increased, which was reversed by application of a PAC1-R antagonist PACAP 6-38 (250 nM). Furthermore, we demonstrated that intrathecal microinjection of PACAP 6-38 (0.125, 0.5, 2 µg) dose-dependently ameliorated the mechanical and thermal hyperalgesia in 6-OHDA rats. Inhibition of PACAP/PAC1-R signaling significantly suppressed the activation of Ca2+/calmodulin-dependent protein kinase II and extracellular signal-regulated kinase (ERK) in spinal dorsal horn of 6-OHDA rats. Microinjection of pAAV-Adcyap1r1 into L4-L6 spinal dorsal horn alleviated hyperalgesia in 6-OHDA rats. Intrathecal microinjection of ERK antagonist PD98059 (10 µg) significantly alleviated hyperalgesia in 6-OHDA rats associated with the inhibition of sEPSCs in dorsal horn neurons. In addition, we found that serum PACAP-38 concentration was significantly increased in PD patients with pain, and positively correlated with numerical rating scale score. In conclusion, activation of PACAP/PAC1-R induces the development of PD pain and targeting PACAP/PAC1-R is an alternative strategy for treating PD pain.


Asunto(s)
Enfermedad de Parkinson , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Ratas , Humanos , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Oxidopamina , Enfermedad de Parkinson/tratamiento farmacológico , Transmisión Sináptica , Dolor , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células del Asta Posterior/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo
14.
Pharmacol Biochem Behav ; 230: 173605, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499765

RESUMEN

BACKGROUND: Anxiety disorders are the most prevalent psychiatric disorders, and they are highly comorbid with chronic pain conditions. The central nucleus of the amygdala (CeA) is known not only for its role in the regulation of anxiety but also as an important site for the negative affective dimension of pain. Pituitary adenylate cyclase activating polypeptide (PACAP), a neuropeptide whose terminals are abundant in the CeA, is strongly implicated in the stress response as well as in pain processing. Here, using Cre-dependent viral vectors, we explored in greater detail the role of the PACAP projection to the CeA that originates in the lateral parabrachial nucleus (LPB). METHODS: We first performed a circuit mapping experiment by injecting an anterograde Cre-dependent virus expressing a fluorescent reporter in the LPB of PACAP-Cre mice and observing their projections. Then, we used a chemogenetic approach (a Cre-dependent Designer Receptors Activated by Designer Drugs, DREADDs) to assess the effects of the direct stimulation of the PACAP LPB to CeA projection on general locomotor activity, anxiety-like behavior (using a defensive withdrawal test), and mechanical pain sensitivity (using the von Frey test). RESULTS: We found that the CeA, together with other areas, is one of the major downstream projection targets of PACAP neurons originating in the lateral parabrachial nucleus (LPB). In the DREADD experiment, we then found that the selective activation of this neuronal pathway is sufficient to increase both anxiety-like behavior and mechanical pain sensitivity in mice, without affecting general locomotor activity. CONCLUSION: In conclusion, our data suggest that the dysregulation of this circuit may contribute to a variety of anxiety disorders and chronic pain states, and that PACAP may represent an important therapeutic target for the treatment of these conditions.


Asunto(s)
Núcleo Amigdalino Central , Dolor Crónico , Ratones , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Núcleo Amigdalino Central/metabolismo , Hiperalgesia/metabolismo , Dolor Crónico/metabolismo , Ansiedad/metabolismo , Enfermedad Crónica , Neuronas/metabolismo
15.
J Headache Pain ; 24(1): 66, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37271806

RESUMEN

AIMS: Chronic migraine (CM) is a common neurological disorder with complex pathogenesis. Evidence suggests that pituitary adenylate cyclase-activating peptide (PACAP) induces migraine-like attacks and may be potential a new target for migraine treatment, but the therapeutic results of targeting PACAP and its receptors are not uniform. Therefore, the aim of this study was to investigate the regulatory effect of PACAP type I receptor (PAC1R) antagonist, PACAP6-38, on nitroglycerin (NTG)-induced central sensitization in a CM model. METHODS: Sprague-Dawley (SD) rats received repeated injections of NTG to construct a CM model. Mechanical and thermal thresholds were measured using Von Frey filaments and hot plate tests. C-Fos expression was measured by western blotting and immunofluorescence staining to assess the central sensitization. PACAP6-38 was intracerebrally injected into the trigeminal nucleus caudalis (TNC), and then the changes in c-Fos, the synaptic-associated proteins, phospho-ERK1/2 (p-ERK1/2), phosphorylation of cyclic adenosine monophosphate response element-binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) were detected. Transmission electron microscopy (TEM) and Golgi-Cox staining were used to observe the ultrastructure of synapses and dendritic structures of TNC neurons. RESULTS: The results showed that PACAP and PAC1R expression were significantly raised in the TNC after repeated NTG injections. Additionally, PACAP6-38 treatment alleviated nociceptive sensitization, inhibited NTG-induced overexpression of c-Fos and synaptic-associated proteins in the TNC of CM rat, restored aberrant synaptic structures. Furthermore, the expression of ERK/CREB/BDNF pathway was depressed by PACAP6-38. CONCLUSIONS: Our results demonstrated that abnormal synaptic structure in the TNC of CM, which could be reversed by inhibition of PAC1R via down-regulating the ERK/CREB/BDNF signaling pathway. PACAP6-38 improves NTG-induced central sensitization by regulating synaptic plasticity in the TNC of CM rat, which may provide new insights into the treatments targeting PACAP/PAC1R in migraine.


Asunto(s)
Trastornos Migrañosos , Nitroglicerina , Ratas , Masculino , Animales , Nitroglicerina/toxicidad , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratas Sprague-Dawley , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Sensibilización del Sistema Nervioso Central/fisiología , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Núcleos del Trigémino , Plasticidad Neuronal/fisiología
16.
Neurobiol Learn Mem ; 203: 107792, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37369343

RESUMEN

Pituitary adenylate cyclase-activating peptide (PACAP) is a highly conserved and widely expressed neuropeptide that has emerged as a key regulator of multiple neural and behavioral processes. PACAP systems, including the various PACAP receptor subtypes, have been implicated in neural circuits of learning and memory, stress, emotion, feeding, and pain. Dysregulation within these PACAP systems may play key roles in the etiology of pathological states associated with these circuits, and PACAP function has been implicated in stress-related psychopathology, feeding and metabolic disorders, and migraine. Accordingly, central PACAP systems may represent important therapeutic targets; however, substantial heterogeneity in PACAP systems related to the distribution of multiple PACAP isoforms across multiple brain regions, as well as multiple receptor subtypes with several isoforms, signaling pathways, and brain distributions, provides both challenges and opportunities for the development of new clinically-relevant strategies to target the PACAP system in health and disease. Here we review the heterogeneity of central PACAP systems, as well as the data implicating PACAP systems in clinically-relevant behavioral processes, with a particular focus on the considerable evidence implicating a role of PACAP in stress responding and learning and memory. We also review data suggesting that there are sex differences in PACAP function and its interactions with sex hormones. Finally, we discuss both the challenges and promise of harnessing the PACAP system in the development of new therapeutic avenues and highlight PACAP systems for their critical role in health and disease.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Femenino , Humanos , Masculino , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Aprendizaje , Emociones , Transducción de Señal/fisiología
17.
ASN Neuro ; 15: 17590914231169140, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37071544

RESUMEN

The mechanism of light-induced spatial memory deficits, as well as whether rhythmic expression of the pituitary adenylyl cyclase-activating polypeptides (PACAP)-PAC1 pathway influenced by light is related to this process, remains unclear. Here, we aimed to investigate the role of the PACAP-PAC1 pathway in light-mediated spatial memory deficits. Animals were first housed under a T24 cycle (12 h light:12 h dark), and then light conditions were transformed to a T7 cycle (3.5 h light:3.5 h dark) for at least 4 weeks. The spatial memory function was assessed using the Morris water maze (MWM). In line with behavioral studies, rhythmic expression of the PAC1 receptor and glutamate receptors in the hippocampal CA1 region was assessed by western blotting, and electrophysiology experiments were performed to determine the influence of the PACAP-PAC1 pathway on neuronal excitability and synaptic signaling transmission. Spatial memory was deficient after mice were exposed to the T7 light cycle. Rhythmic expression of the PAC1 receptor was dramatically decreased, and the excitability of CA1 pyramidal cells was decreased in T7 cycle-housed mice. Compensation with PACAP1-38, a PAC1 receptor agonist, helped T7 cycle-housed mouse CA1 pyramidal cells recover neuronal excitability to normal levels, and cannulas injected with PACAP1-38 shortened the time to find the platform in MWM. Importantly, the T7 cycle decreased the frequency of AMPA receptor-mediated excitatory postsynaptic currents. In conclusion, the PACAP-PAC1 pathway is an important protective factor modulating light-induced spatial memory function deficits, affecting CA1 pyramidal cell excitability and excitatory synaptic signaling transmission.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Ratones , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Memoria Espacial , Fotoperiodo , Transducción de Señal , Trastornos de la Memoria/etiología
18.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37108490

RESUMEN

The urinary bladder requires adequate concentrations of extracellular adenosine 5'-triphosphate (ATP) and other purines at receptor sites to function properly. Sequential dephosphorylation of ATP to ADP, AMP and adenosine (ADO) by membrane-bound and soluble ectonucleotidases (s-ENTDs) is essential for achieving suitable extracellular levels of purine mediators. S-ENTDs, in particular, are released in the bladder suburothelium/lamina propria (LP) in a mechanosensitive manner. Using 1,N6-etheno-ATP (eATP) as substrate and sensitive HPLC-FLD methodology, we evaluated the degradation of eATP to eADP, eAMP and eADO in solutions that were in contact with the LP of ex vivo mouse detrusor-free bladders during filling prior to substrate addition. The inhibition of neural activity with tetrodotoxin and ω-conotoxin GVIA, of PIEZO channels with GsMTx4 and D-GsMTx4 and of the pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1) with PACAP6-38 all increased the distention-induced but not spontaneous release of s-ENTDs in LP. It is conceivable, therefore, that the activation of these mechanisms in response to distention restricts the further release of s-ENTDs and prevents excessive hydrolysis of ATP. Together, these data suggest that afferent neurons, PIEZO channels, PAC1 receptors and s-ENTDs form a system that operates a highly regulated homeostatic mechanism to maintain proper extracellular purine concentrations in the LP and ensure normal bladder excitability during bladder filling.


Asunto(s)
Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Vejiga Urinaria , Animales , Ratones , Adenosina/metabolismo , Membrana Mucosa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Células Receptoras Sensoriales/metabolismo , Vejiga Urinaria/metabolismo , Urotelio/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo
19.
Endocrinology ; 164(5)2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36917637

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) and its cognate receptor PAC1R play key roles in energy balance. Central neuropeptide systems like PACAP are critical to the neuroendocrine system that regulates energy homeostasis in regions of the hypothalamus. A thorough investigation into central PACAP's influence on energy balance presents an opportunity to reveal putative causes of energy imbalance that could lead to obesity. In this review, we provide a brief overview of preclinical studies that have examined hypothalamic PACAP's influence on feeding behavior and metabolic regulation. Notably, due to the complexity and pleiotropic nature of the PACAP system, we highlight the need for a nuanced examination of PACAP signaling that utilizes a complex intersection of signaling circuitry in energy regulation that could ultimately offer insights to future therapeutic targets relevant for treating obesity.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Humanos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Hipotálamo/metabolismo , Peso Corporal , Obesidad
20.
Cephalalgia ; 43(4): 3331024231163131, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36946245

RESUMEN

BACKGROUND: Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multipotent neuropeptide widely distributed in the trigeminovascular system (TVS) and higher brain regions. At present, the underlying mechanism of PACAP/PACAP type1 (PAC1) receptor in migraine generation remains unclear. METHODS: The rat model of chronic migraine (CM) was established by repeated intraperitoneal injection of nitroglycerin (NTG). Von Frey filaments and hot plate tests were used to measure the mechanical and thermal thresholds. The expression levels of c-Fos, calcitonin gene-related peptide (CGRP), PACAP, PAC1, protein kinase A (PKA) and phosphorylated extracellular signal-regulated kinase (ERK) were assessed by western blotting or immunofluorescence staining. The internalization of PAC1 receptor was visualized by fluorescence microscope and laser scanning confocal microscope. RESULTS: The results showed that c-Fos and CGRP expression significantly increased after repeated administrations of NTG or PACAP. Pitstop2 notably improved hyperalgesia in CM rats, while PACAP6-38 offered no benefit. In addition, PACAP-induced PAC1 receptor internalization, PKA and ERK pathways activation were blocked by Pitstop2 instead of PACAP6-38. CONCLUSIONS: Our results demonstrate that inhibition of PAC1 receptor internalization could effectively improve allodynia in CM rats by restraining ERK signaling pathway activation in a chronic migraine rat model. Modulation of receptor internalization may be a novel perspective to explore specific mechanisms of PACAP signaling activation in the trigeminal vascular system.


Asunto(s)
Trastornos Migrañosos , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Ratas , Animales , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Quinasas MAP Reguladas por Señal Extracelular , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Hiperalgesia , Sistema de Señalización de MAP Quinasas , Péptido Relacionado con Gen de Calcitonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA