Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.469
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39092645

RESUMEN

The truancy of representation of the estrogen, progesterone, and human epidermal growth factor receptors occurs during TNBC. TNBC is recognized for the upper reappearance and has a poorer diagnosis compared with rest breast cancer (BC) types. Presently, as such, no targeted therapy is approved for TNBC and treatment options are subjected to chemotherapy and surgery, which have high mortality rates. Hence, the current article focuses on the scenario of TNBC vital pathways and discusses the latest advances in TNBC treatment, including immune checkpoint inhibitors (ICIs), PARP suppressors, and cancer vaccines. Immunotherapy and ICIs, like PD 1 and PD L1 suppressors, displayed potential in clinical trials (CTs). These suppressors obstruct the mechanisms which allow tumor cells to evade the system thereby boosting the body's defense against TNBC. Immunotherapy, either alone or combined with chemotherapy has demonstrated patient outcomes such as increased survival rates and reduced treatment-related side effects. Additionally, targeted therapy approaches include BRCA/2 mutation poly ribose polymerase inhibitors, Vascular Endothelial Growth Factor Receptor (VEGFR) inhibitors, Epidermal growth factor receptor inhibitors, Fibroblast growth factor inhibitors, Androgen Receptor inhibitors, PIK3/AKT/mTOR pathway inhibitors, Cyclin-dependent kinase (CDK) inhibitors, Notch signaling pathway inhibitors, Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitors, Chimeric antigen receptor T (CAR-T) cell therapy, Transforming growth factor (TGF) -ß inhibitors, Epigenetic modifications (EPM), Aurora Kinase inhibitors and antibody-drug conjugates. We also highlight ongoing clinical trials and potential future directions for TNBC therapy. Despite the challenges in treating TNBC, recent developments in understanding the molecular and immune characteristics of TNBC have opened up new opportunities for targeted therapies, which hold promise for improving outcomes in this aggressive disease.

2.
DNA Repair (Amst) ; 141: 103736, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39096699

RESUMEN

Homologous recombination (HR) is a high-fidelity DNA double-strand break (DSB) repair pathway. Both familial and somatic loss of function mutation(s) in various HR genes predispose to a variety of cancer types, underscoring the importance of error-free repair of DSBs in human physiology. While environmental sources of DSBs have been known, more recent studies have begun to uncover the role of endogenous base damage in leading to these breaks. Base damage repair intermediates often consist of single-strand breaks, which if left unrepaired, can lead to DSBs as the replication fork encounters these lesions. This review summarizes various sources of endogenous base damage and how these lesions are repaired. We highlight how conversion of base repair intermediates, particularly those with 5'or 3' blocked ends, to DSBs can be a predominant source of genomic instability in HR-deficient cancers. We also discuss how endogenous base damage and ensuing DSBs can be exploited to enhance the efficacy of Poly (ADP-ribose) polymerase inhibitors (PARPi), that are widely used in the clinics for the regimen of HR-deficient cancers.

4.
Front Oncol ; 14: 1435029, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104720

RESUMEN

Homologous recombination (HR) is a highly conserved DNA repair system, in which aberrations can lead to the accumulation of DNA damage and genomic scars known as homologous recombination deficiency (HRD). The identification of mutations in key genes (i.e., BRCA1, and BRCA2 (BRCA)) and the quantification of large-scale structural variants (e.g., loss of heterozygosity) are indicators of the HRD phenotype. HRD is a stable biomarker and remains unchanged during recurrence, but fails to reveal the molecular profile of tumor progression. Moreover, interpretation of the current HRD score lacks comprehensiveness, especially for the HR-proficient group. Poly (ADP-ribose) polymerase (PARP) enzymes play an important role in the repair of DNA single-strand breaks, the blockage of which using PARP inhibitors (PARPi) can generate synthetic lethality in cancer cells with HRD. Although numerous studies have demonstrated that the benefit of PARPi is substantial in ovarian cancer (OC) patients, the efficacy is limited by the development of resistance, and seems to be irrespective of HR and/or BRCA mutation status. Moreover, in addition to improving progression-free survival, long-term benefit as overall survival brought by PARPi for advanced, recurrent and refractory OC patients remains unclear. Therefore, further investigations are needed to uncover the role of HR genes beyond BRCA and their interactions with other oncogenic pathways, to determine the value of HRD in the recurrent setting, and to identify alternative strategies for the precise management of advanced, refractory OC patients.

5.
J Pathol Clin Res ; 10(5): e12391, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39104056

RESUMEN

Homologous recombination deficiency (HRD) score is a reliable indicator of genomic instability. The significance of HRD in nasopharyngeal carcinoma (NPC), particularly its influence on prognosis and the immune microenvironment, has yet to be adequately explored. Understanding HRD status comprehensively can offer valuable insights for guiding precision treatment. We utilised three cohorts to investigate HRD status in NPC: the Zhujiang cohort from local collection and the Hong Kong (SRA288429) and Singapore (SRP035573) cohorts from public datasets. The GATK (genome analysis toolkit) best practice process was employed to investigate germline and somatic BRCA1/2 mutations and various bioinformatics tools and algorithms to examine the association between HRD status and clinical molecular characteristics. We found that individuals with a negative HRD status (no-HRD) exhibited a higher risk of recurrence [hazard ratio (HR), 1.43; 95% confidence interval (CI), 2.03-333.76; p = 0.012] in the Zhujiang cohort, whereas, in the Singapore cohort, they experienced a higher risk of mortality (HR, 26.04; 95% CI, 1.43-34.21; p = 0.016) compared with those in the HRD group. In vitro experiments demonstrated that NPC cells with BRCA1 knockdown exhibit heightened sensitivity to chemoradiotherapy. Furthermore, the HRD group showed significantly higher tumour mutational burden and tumour neoantigen burden levels than the no-HRD group. Immune infiltration analysis indicated that HRD tissues tend to have a non-inflamed tumour microenvironment. In conclusion, patients with HRD exhibit a comparatively favourable prognosis in NPC, possibly associated with a non-inflammatory immune microenvironment. These findings have positive implications for treatment stratification, enabling the selection of more precise and effective therapeutic approaches and aiding in the prediction of treatment response and prognosis to a certain extent.


Asunto(s)
Proteína BRCA1 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Microambiente Tumoral , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/mortalidad , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/inmunología , Masculino , Femenino , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/mortalidad , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/inmunología , Pronóstico , Persona de Mediana Edad , Proteína BRCA1/genética , Proteína BRCA2/genética , Mutación , Adulto , Recombinación Homóloga/genética , Biomarcadores de Tumor/genética , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/genética , Inestabilidad Genómica
6.
Cancer Med ; 13(15): e70031, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114948

RESUMEN

BACKGROUND: GP-2250, a novel analog of taurultam (TRLT), has emerged as a potent anti-neoplastic drug; however, the mechanisms underlying its effects are not well understood. Here, we investigated the mechanism of action and the biological effects of GP-2250 using in vitro and in vivo models. METHODS: We carried out a series of in vitro (MTT assay, Annexin V/PI assay, colony formation assay, reverse-phase protein array [RPPA], and HRLC/IC analysis) to determine the biological activity of GP-2250 and investigate the mechanism of action. In vivo experiments were carried out to determine the therapeutic efficacy of GP-2250 alone and in combination with standard-of-care drugs (e.g., paclitaxel, cisplatin, topotecan, and poly ADP-ribose polymerase [PARP] inhibitors). RESULTS: We investigated the cytotoxic effect of GP-2250 in 10 ovarian cancer cell lines and found GP-2250 combined with a PARP inhibitor had the greatest synergy. RPPA revealed that GP-2250 inhibited hypoxia-inducible factor-1α, AKT, and mammalian target of rapamycin (mTOR) activation and expression. High-resolution mass spectrometry revealed that hexokinase2 activity and protein expression were significantly reduced by GP-2250 exposure. Furthermore, GP-2250 reduced glycolysis and ATP synthesis in cancer cells. An in vivo pharmacodynamic experiment using the OVCAR8 mouse model demonstrated that 500 mg/kg GP-2250 was effective in downregulating AKT and mTOR activation and expression. In the in vivo therapy experiment using an orthotopic mouse model, a combination of GP-2250 with either PARP inhibitors or bevacizumab showed a significant reduction of tumor weights and nodules compared to those treated with a vehicle, control IgG groups, or monotherapy groups. CONCLUSIONS: Taken together, our data indicate that GP-2250 exerts profound effects on tumor metabolism and, in combination with PARP inhibitors or bevacizumab, showed promising anti-tumor efficacy. These findings could have implications for the clinical development of GP-2250.


Asunto(s)
Neoplasias Ováricas , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Humanos , Ratones , Línea Celular Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Sinergismo Farmacológico , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Modelos Animales de Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
7.
Cancer ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150003

RESUMEN

INTRODUCTION: Homologous recombination deficiency (HRD) testing is used to determine the appropriateness of poly ADP-ribose polymerase inhibitors for patients with epithelial ovarian cancer and no germline/somatic BRCA1/2 alterations. Myriad MyChoice CDx reports a genomic instability score (GIS) to quantify the level of HRD, with a positive score defined as ≥42. The authors sought to define factors associated with obtaining an inconclusive HRD test result. METHODS: GIS was retrieved for patients at their institution with epithelial ovarian cancer without germline/somatic BRCA1/2 deleterious alterations who underwent HRD testing from April 2020-August 2023. Clinical data were abstracted from the medical record. RESULTS: Of 477 HRD test results identified, 57 (12%) were inconclusive. High-grade serous ovarian cancers had higher GIS than other histologic types (median 29 vs. 21, p < .001). Most HRD cases were of high-grade serous histology; no cases with clear cell or endometrioid histology were HRD-positive. On univariate analysis, interval versus primary cytoreductive surgery, other specimen sources versus surgical specimens, and chemotherapy exposure were risk factors for inconclusive HRD testing. On multivariable analysis, chemotherapy exposure, and tissue source were associated with an inconclusive test result, with surgical specimens more likely to yield a conclusive result than other sources (biopsy, cytology, other). Age, stage, self-reported race, and histology were not associated with an inconclusive result. CONCLUSIONS: Surgical tissue was more likely to yield a conclusive HRD test result versus other sources of epithelial ovarian cancer tissue acquisition. When feasible, laparoscopic biopsy before initiation of neoadjuvant chemotherapy may increase the likelihood of obtaining interpretable HRD test results.

8.
Front Pharmacol ; 15: 1431085, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148542

RESUMEN

Introduction: Glioblastoma, which affects a large number of patients every year and has an average overall lifespan of around 14.6 months following diagnosis stands out as the most lethal primary invasive brain tumor. Currently, surgery, radiation, and chemotherapy with temozolomide (TMZ) are the three major clinical treatment approaches. However, the ability to treat patients effectively is usually limited by TMZ resistance. Naringin, a bioflavonoid with anti-cancer, antioxidant, metal-chelating, and lipid-lowering effects, has emerged as a promising therapeutic option. Methods: To explore the targets and pathways of naringin and TMZ in glioblastoma network pharmacology, cell line-based ELISA, flow cytometry, immunocytochemistry, western blotting, and LC-HRMS based metabolomics study were used. Results: The findings through the network pharmacology suggested that the key targets of naringin in the chemosensitization of glioblastoma would be Poly [ADP-ribose] polymerase 1 (PARP-1), O-6-Methylguanine-DNA Methyltransferase (MGMT), and caspases. The functional enrichment analysis revealed that these targets were significantly enriched in important pathways such as p53 signaling, apoptosis, and DNA sensing. Further, the results of the in-vitro study in U87-MG and T98-G glioblastoma cells demonstrated that TMZ and naringin together significantly reduced the percentage of viability and inhibited the DNA repair enzymes PARP-1 and MGMT, and PI3K/AKT which led to chemosensitization and, in turn, induced apoptosis, which was indicated by increased p53, caspase-3 expression and decreased Bcl2 expression. Additionally, a metabolomics study in T98-G glioblastoma cells using liquid chromatography high-resolution mass spectrometry (LC-HRMS) revealed downregulation of C8-Carnitine (-2.79), L-Hexanoylcarnitine (-4.46), DL-Carnitine (-2.46), Acetyl-L-carnitine (-3.12), Adenine (-1.3), Choline (-2.07), Propionylcarnitine (-1.69), Creatine (-1.33), Adenosine (-0.84), Spermine (-1.42), and upregulation of Palmitic Acid (+1.03) and Sphingosine (+0.89) in the naringin and TMZ treatment groups. Discussion: In conclusion, it can be said that naringin in combination with TMZ chemosensitized TMZ antiglioma response and induced apoptosis in tumor cells.

9.
Eur J Med Chem ; 277: 116726, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39116535

RESUMEN

Structural modification based on natural privileged scaffolds has proven to be an attractive approach to generate potential antitumor candidates with high potency and specific targeting. As a continuation of our efforts to identify potent PARP-1 inhibitors, natural 3-arylcoumarin scaffold was served as the starting point for the construction of novel structural unit for PARP-1 inhibition. Herein, a series of novel 8-carbamyl-3-arylcoumarin derivatives were designed and synthesized. The antiproliferative activities of target compounds against four BRCA-mutated cancer cells (SUM149PT, HCC1937, MDA-MB-436 and Capan-1) were evaluated. Among them, compound 9b exhibited excellent antiproliferative effects against SUM149PT, HCC1937 and Capan-1 cells with IC50 values of 0.62, 1.91 and 4.26 µM, respectively. Moreover, 9b could significantly inhibit the intracellular PARP-1/2 activity in SUM149PT cells with IC50 values of 2.53 nM and 6.45 nM, respectively. Further mechanism studies revealed that 9b could aggravate DNA double-strand breaks, increase ROS production, decrease mitochondrial membrane potential, arrest cell cycle at G2/M phase and ultimately induce apoptosis in SUM149PT cells. In addition, molecular docking study demonstrated that the binding mode of 9b with PARP-1 was similar to that of niraparib, forming multiple hydrogen bond interactions with the active site of PARP-1. Taken together, these findings suggest that 8-carbamyl-3-arylcoumarin scaffold could serve as an effective structural unit for PARP-1 inhibition and offer a valuable paradigm for the structural modification of natural products.

10.
Front Oncol ; 14: 1414112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135999

RESUMEN

Advanced epithelial ovarian cancer is the commonest cause of gynaecological cancer deaths. First-line treatment for advanced disease includes a combination of platinum-taxane chemotherapy (post-operatively or peri-operatively) and maximal debulking surgery whenever feasible. Initial response rate to chemotherapy is high (up to 80%) but most patients will develop recurrence (approximately 70-90%) and succumb to the disease. Recently, poly-ADP-ribose polymerase (PARP) inhibition (by drugs such as Olaparib, Niraparib or Rucaparib) directed synthetic lethality approach in BRCA germline mutant or platinum sensitive disease has generated real hope for patients. PARP inhibitor (PARPi) maintenance therapy can prolong survival but therapeutic response is not sustained due to intrinsic or acquired secondary resistance to PARPi therapy. Reversion of BRCA1/2 mutation can lead to clinical PARPi resistance in BRCA-germline mutated ovarian cancer. However, in the more common platinum sensitive sporadic HGSOC, the clinical mechanisms of development of PARPi resistance remains to be defined. Here we provide a comprehensive review of the current status of PARPi and the mechanisms of resistance to therapy.

11.
J Thorac Oncol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111731

RESUMEN

INTRODUCTION: Squamous cell cancer (SqCC) is a lung cancer subtype with few targeted therapy options. Molecular characterization, i.e., by next generation sequencing (NGS), is needed to identify potential targets. Lung-MAP SWOG S1400 enrolled patients with previously treated stage IV or recurrent SqCC to assess NGS biomarkers for therapeutic substudies. METHODS: Tumors underwent NGS using Foundation Medicine's FoundationOne research platform, which sequenced the exons and/or introns of 313 cancer-related genes. Mutually Exclusive Gene Set Analysis (MEGSA) and Selected Events Linked by Evolutionary Conditions across human Tumors (SELECT) were performed to identify mutually exclusive and co-occurring gene alterations. Comparisons were performed with data on 495 lung SqCC downloaded from The Cancer Genome Atlas. Cox proportional hazards models were used to examine associations between genetic variants and survival. RESULTS: NGS data are reported for 1672 patients enrolled on S1400 between 2014 and 2019. MEGSA identified two non-overlapping sets of mutually exclusive alterations with a false discovery rate < 15%: NFE2L2, KEAP1 and PARP4; and CDKN2A and RB1. PARP4, a relatively uncharacterized gene, showed three frequent mutations suggesting functional significance: 3116T>C (I1039T), 3176A>G (Q1059R) and 3509C>T (T1170I). NFE2L2 and KEAP1 alterations when taken together were associated with poorer survival. CONCLUSIONS: As the largest dataset to-date of lung SqCC profiled on a clinical trial, the S1400 NGS dataset establishes a rich resource for biomarker discovery. Mutual exclusivity of PARP4 and NFE2L2 or KEAP1 alterations suggests that PARP4 may have an uncharacterized role in a key pathway known to impact oxidative stress response and treatment resistance.

12.
Mol Cancer ; 23(1): 166, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138571

RESUMEN

BACKGROUND: Ovarian cancer (OC) remains one of the most challenging and deadly malignancies facing women today. While PARP inhibitors (PARPis) have transformed the treatment landscape for women with advanced OC, many patients will relapse and the PARPi-resistant setting is an area of unmet medical need. Traditional immunotherapies targeting PD-1/PD-L1 have failed to show any benefit in OC. The CD47/TSP-1 axis may be relevant in OC. We aimed to describe changes in CD47 expression with platinum therapy and their relationship with immune features and prognosis. METHODS: Tumor and blood samples collected from OC patients in the CHIVA trial were assessed for CD47 and TSP-1 before and after neoadjuvant chemotherapy (NACT) and multiplex analysis was used to investigate immune markers. Considering the therapeutic relevance of targeting the CD47/TSP-1 axis, we used the CD47-derived TAX2 peptide to selectively antagonize it in a preclinical model of aggressive ovarian carcinoma. RESULTS: Significant reductions in CD47 expression were observed post NACT. Tumor patients having the highest CD47 expression profile at baseline showed the greatest CD4+ and CD8+ T-cell influx post NACT and displayed a better prognosis. In addition, TSP-1 plasma levels decreased significantly under NACT, and high TSP-1 was associated with a worse prognosis. We demonstrated that TAX2 exhibited a selective and favorable biodistribution profile in mice, localizing at the tumor sites. Using a relevant peritoneal carcinomatosis model displaying PARPi resistance, we demonstrated that post-olaparib (post-PARPi) administration of TAX2 significantly reduced tumor burden and prolonged survival. Remarkably, TAX2 used sequentially was also able to increase animal survival even under treatment conditions allowing olaparib efficacy. CONCLUSIONS: Our study thus (1) proposes a CD47-based stratification of patients who may be most likely to benefit from postoperative immunotherapy, and (2) suggests that TAX2 is a potential alternative therapy for patients relapsing on PARP inhibitors.


Asunto(s)
Biomarcadores de Tumor , Antígeno CD47 , Neoplasias Ováricas , Trombospondina 1 , Antígeno CD47/metabolismo , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Biomarcadores de Tumor/metabolismo , Animales , Ratones , Trombospondina 1/metabolismo , Pronóstico , Línea Celular Tumoral , Terapia Neoadyuvante , Ensayos Antitumor por Modelo de Xenoinjerto , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
13.
Cancers (Basel) ; 16(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39123379

RESUMEN

The clinical outcomes in patients with ovarian cancer have been significantly improved by Poly(adenosine diphosphate-ribose) polymerase inhibitors (PARP-is). However, the best therapeutic strategy for recurrence during PARP-i maintenance therapy remains unknown. Herein, we elucidated the efficacy of platinum-based chemotherapy after PARP-i treatment in recurrent ovarian cancer. Eligible patients had experienced relapses during PARP-i maintenance therapy lasting at least 6 months and had received subsequent platinum-based chemotherapy at our institution between January 2019 and March 2024. Progression-free survival (PFS), overall survival (OS), and risk factors for PFS were evaluated. Sixty-six patients were assessed for eligibility and eighteen were enrolled. The median follow-up period was 14.5 months. The PFS and OS of all patients were 6.5 and 17.6 months, respectively. The evaluation of the risk factors for PFS revealed that age, pathological type, duration of PARP-i maintenance therapy, prior lines of chemotherapy, and PARP-i dose reduction were not significant prognostic markers. However, bevacizumab use in subsequent therapies significantly extended the PFS. The median PFS was 3.1 months in the chemotherapy-alone group and 8.9 months in the chemotherapy with bevacizumab group (log-rank p = 0.022). Platinum-based chemotherapy with bevacizumab in subsequent therapies would provide substantial benefits in the PFS of patients with recurrent ovarian cancer.

14.
Expert Opin Drug Saf ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129518

RESUMEN

BACKGROUND: Talazoparib was approved for the treatment of breast cancer. However, the safety of talazoparib in a large population sample over an extended period remained uncertain. The objective of this study is to offer guidance for the secure utilization of talazoparib in clinical settings. Methods: Four algorithms were used to quantify the signals of talazoparib associated adverse events(AEs), using data from the food and drug administration adverse event reporting system(FAERS) between fourth quater of 2018 and second quater of 2023. RESULTS: A total of 7,186,517 records were reported, with 737 indicating talazopraib as the primary suspected (PS) AEs. A total of 40 significant preferred terms (PTs) that adhere to the four algorithms were simultaneously retained. There is a possibility of experiencing unforeseen and noteworthy AEs, including embolism(0.46%), pulmonary embolism(1.06%), hyponatremia(0.46%), hypokalemia(0.40%), hematuria(0.33%), and pericardial effusion(0.26%). Most of the AEs related to talazoparib occurred within the initial month of starting the medication, with a median onset time of 79 days (IQR: 22-207 days). CONCLUSION: Results of our study were consistent with clinical observations, and we also found potential new and unexpected AEs signals for talazoparib, suggesting prospective clinical studies were needed to confirm these results and illustrate their relationship. Our results may provide valuable evidence for further safety studies of talazoparib.

15.
Expert Opin Drug Saf ; : 1-8, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132853

RESUMEN

BACKGROUND: To investigate the pharmacovigilance (PV) and make pairwise comparisons on reporting proportion, seriousness, and severity of outcomes of major adverse cardiovascular events (MACE) among poly(ADP-ribose) polymerase-inhibitors (PARPis) in treating ovarian cancer, fallopian tube carcinoma, and primary peritoneal cancer (collectively named EOC) from the US Food and Drug Administration Adverse Event Reporting System (FAERS). RESEARCH DESIGN AND METHODS: Data on adverse cardiovascular events reports related to EOC treatment submitted to FAERS from the first quarter of 2015 to the second quarter of 2023 were harvested. Three PARPis were identified: olaparib, niraparib, and rucaparib. RESULTS: Eventually, a total of 258,596 eligible records were enrolled with 12,331 reports including 5,292 reports of MACE and 7,039 reports of other cardiovascular events. For the primary composite endpoint, a PV signal associated with MACE was detected in niraparib (ROR = 1.12; IC025 = 0.03), whereas it was not detected in olaparib and rucaparib; For the secondary endpoint, PV signals associated with other cardiovascular events were detected in niraparib (ROR = 1.17;IC025 = 0.04), but not in olaparib and rucaparib. CONCLUSIONS: For EOC patients, close monitoring of blood pressure, heart rate, and coagulation function should be conducted when selecting niraparib for treatment.

16.
Epigenetics Chromatin ; 17(1): 26, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118189

RESUMEN

Poly (ADP-ribose) polymerase 1 (PARP1) is a multifunctional nuclear enzyme that catalyzes poly-ADP ribosylation in eukaryotic cells. In addition to maintaining genomic integrity, this nuclear enzyme is also involved in transcriptional regulation. PARP1 can trigger and maintain changes in the chromatin structure and directly recruit transcription factors. PARP1 also prevents DNA methylation. However, most previous reviews on PARP1 have focused on its involvement in maintaining genome integrity, with less focus on its transcriptional regulatory function. This article comprehensively reviews the transcriptional regulatory function of PARP1 and its application in disease treatment, providing new ideas for targeting PARP1 for the treatment of diseases other than cancer.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1 , Transcripción Genética , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Animales , Neoplasias/genética , Neoplasias/metabolismo , Regulación de la Expresión Génica , Metilación de ADN , Cromatina/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-39145413

RESUMEN

INTRODUCTION: Advances in understanding of tumor biology shed light on hallmarks of cancer development and progression that include dysregulated DNA damage repair (DDR) machinery. Leveraging underlying tumor genomic instability and tumor specific defects in DDR, Poly (ADP-ribose) polymerases (PARP) inhibitors (PARPi) induced DNA damage emerges as a novel non-chemotherapy therapeutic opportunity. PARPis are currently approved in multiple tumor types, with the largest benefit seen in tumors with homologous recombination repair (HRR) deficiency, including germline and somatic mutations in BRCA1/2 genes (BRCA) and other pathway members such as PALB2 and Rad51c. AREAS COVERED: This review article summarizes the current approval landscape and known and proposed mechanisms of resistance to PARPi. Further, therapeutic strategies to overcome PARPi resistance are discussed, including ongoing clinical trials. EXPERT OPINION: PARPi have proven to be a safe and effective therapy and represent a cornerstone treatment across multiple solid tumor types. Elucidating innate and acquired mechanisms of resistance, coupled with the emergence of novel therapeutic options to capitalize on the activity of PARPi and prevent or reverse the acquisition of resistance, provides an opportunity to further expand the role of PARPi in cancer therapy.

18.
Radiother Oncol ; : 110475, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147034

RESUMEN

BACKGROUND AND PURPOSE: The PARP inhibitor (PARPi), Talazoparib (BMN673), effectively and specifically radiosensitizes cancer cells. Radiosensitization is mediated by a shift in the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) toward PARP1-independent, alternative end-joining (alt-EJ). DNA polymerase theta (Polθ) is a key component of this PARP1-independent alt-EJ pathway and we show here that its inhibition can further radiosensitize talazoparib-treated cells. Purpose of the present work is to explore mechanisms and dynamics underpinning enhanced talazoparib radiosensitization by Polθ inhibitors in HR-proficient cancer cells. METHODS AND MATERIALS: Radiosensitization to PARPis, talazoparib, olaparib, rucaparib and veliparib was assessed by clonogenic survival. Polθ-proficient and -deficient cells were treated with PARPis and/or with the Polθ inhibitors ART558 or novobiocin. The role of DNA end-resection was studied by down-regulating CtIP and MRE11 expression using siRNAs. DSB repair was assessed by scoring γH2AX foci. The formation of chromosomal abnormalities was assessed as evidence of alt-EJ function using G2-specific cytogenetic analysis. RESULTS: Talazoparib exerted pronounced radiosensitization that varied among the tested cancer cell lines; however, radiosensitization was undetectable in normal cells. Other commonly used PARPis, olaparib, veliparib or rucaparib were ineffective radiosensitizers under our conditions. Although genetic ablation or pharmacological inhibition of Polθ only mildly radiosensitized cancer cells, talazoparib-treated cells were markedly further radiosensitized. Mechanistically, talazoparib shunted DSBs to Polθ-dependent alt-EJ by enhancing DNA end-resection in a CtIP- and MRE11-dependent manner - an effect detectable at low, but not high IR doses. Chromosomal translocation analysis in talazoparib-treated cells exposed to Polθ inhibitors suggested that PARP1- and Polθ-dependent alt-EJ pathways may complement, but also backup each other. CONCLUSION: We propose that talazoparib promotes low-dose, CtIP/MRE11-dependent resection and increases the reliance of irradiated HR-proficient cancer cells, on Polθ-mediated alt-EJ. Combination of Polθ inhibitors with talazoparib suppresses this option and causes further radiosensitization. The results suggest that Polθ inhibition may be exploited to maximize talazoparib radiosensitization of HR-proficient tumors in the clinic.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39135527

RESUMEN

INTRODUCTION: Prostate cancer has entered the era of precision medicine with the introduction of PARP inhibitors for patients with specific mutations in genes associated with DNA damage repair. Recent studies have shown benefit in combination therapy with PARP inhibitors like olaparib and antiandrogens like abiraterone. AREAS COVERED: This review discusses the pharmacodynamics and pharmacokinetics of olaparib as well as the data supporting combination therapy with olaparib and abiraterone. EXPERT OPINION: Co-targeting the androgen receptor and PARP pathway has shown clear clinical benefit in the management of patients with metastatic castration resistant prostate cancer and mutations in BRCA1, BRCA2 and ATM. The benefit in patients without these mutations is less clear and the benefit of olaparib combination therapy in the management of hormone sensitive disease remains to be seen.

20.
Front Pharmacol ; 15: 1416555, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948462

RESUMEN

Unfortunately, ovarian cancer is still diagnosed most often only in an advanced stage and is also the most lethal gynecological cancer. Another problem is the fact that treated patients have a high risk of disease recurrence. Moreover, ovarian cancer is very diverse in terms of molecular, histological features and mutations. Many patients may also develop platinum resistance, resulting in poor response to subsequent lines of treatment. To improve the prognosis of patients with ovarian cancer, it is expected to make better existing and implement new, promising treatment methods. Targeted therapies seem very promising. Currently, bevacizumab - a VEGF inhibitor and therapy with olaparib - a polyADP-ribose polymerase inhibitor are approved. Other methods worth considering in the future include: folate receptor α, immune checkpoints or other immunotherapy methods. To improve the treatment of ovarian cancer, it is also important to ameliorate the determination of molecular features to describe and understand which group of patients will benefit most from a given treatment method. This is important because a larger group of patients treated for ovarian cancer can have a greater chance of surviving longer without recurrence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA