Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 190(1): 46, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36604350

RESUMEN

The design and construction of a visible light-driven photoelectrochemical (PEC) device is described based on a CdSe-Co3O4@TiO2 nanoflower (NF). Moreover, an application to the ultrasensitive detection of viruses, such as hepatitis E virus (HEV), HEV-like particles (HEV-LPs), and SARS-CoV-2 spike protein in complicated lysate solution, is demonstrated. The photocurrent response output of a PEC device based on CdSe-Co3O4@TiO2 is enhanced compared with the individual components, TiO2 and CdSe-Co3O4. This can be attributed to the CdSe quantum dot (QD) sensitization effect and strong visible light absorption to improve overall system stability. A robust oxygen-evolving catalyst (Co3O4) coupled at the hole-trapping site (CdSe) extends the interfacial carrier lifetime, and the energy conversion efficiency was improved. The effective hybridization between the antibody and virus resulted in a linear relationship between the change in photocurrent density and the HEV-LP concentration ranging from 10 fg mL-1 to 10 ng mL-1, with a detection limit of 3.5 fg mL-1. This CdSe-Co3O4@TiO2-based PEC device achieved considerable sensitivity, good specificity, and acceptable stability and demonstrated a significant ability to develop an upgraded device with affordable and portable biosensing capabilities.


Asunto(s)
COVID-19 , Compuestos de Cadmio , Compuestos de Selenio , Humanos , Luz , SARS-CoV-2 , Nanoestructuras
2.
ACS Appl Mater Interfaces ; 9(2): 1479-1487, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-27989115

RESUMEN

Coupling dissimilar oxides in heterostructures allows the engineering of interfacial, optical, charge separation/transport and transfer properties of photoanodes for photoelectrochemical (PEC) water splitting. Here, we demonstrate a double-heterojunction concept based on a BiVO4/WO3/SnO2 triple-layer planar heterojunction (TPH) photoanode, which shows simultaneous improvements in the charge transport (∼93% at 1.23 V vs RHE) and transmittance at longer wavelengths (>500 nm). The TPH photoanode was prepared by a facile solution method: a porous SnO2 film was first deposited on a fluorine-doped tin oxide (FTO)/glass substrate followed by WO3 deposition, leading to the formation of a double layer of dense WO3 and a WO3/SnO2 mixture at the bottom. Subsequently, a BiVO4 nanoparticle film was deposited by spin coating. Importantly, the WO3/(WO3+SnO2) composite bottom layer forms a disordered heterojunction, enabling intimate contact, lower interfacial resistance, and efficient charge transport/transfer. In addition, the top BiVO4/WO3 heterojunction layer improves light absorption and charge separation. The resultant TPH photoanode shows greatly improved internal quantum efficiency (∼80%) and PEC water oxidation performance (∼3.1 mA/cm2 at 1.23 V vs RHE) compared to the previously reported BiVO4/WO3 photoanodes. The PEC performance was further improved by a reactive-ion etching treatment and CoOx electrocatalyst deposition. Finally, we demonstrated a bias-free and stable solar water-splitting by constructing a tandem PEC device with a perovskite solar cell (STH ∼3.5%).

3.
Biosens Bioelectron ; 77: 936-41, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26528808

RESUMEN

An efficient strategy for the sensitive detection of Cd(2+) and Cu(2+) on the same sensing platform was first developed based on the photocurrents generated from the electrodeposited Zn doped CdS (CdZnS) film. The enhancement of the photocurrents, which was directly obtained from the in situ electrodeposited CdZnS on ITO with the gradual addition of Cd(2+), was used an indicator for the content of Cd(2+) with theoretical and technical simplicity. Moreover, the electrodeposited CdZnS was further applied to sensing of Cu(2+) based on the interaction between Cu(2+) and S(2-) by immersing the hetero-structural film electrode into a Cu(2+)-containing sample for an appropriate time, leading to decrease the photocurrent of CdZnS. The decrease extent of photocurrent was depended on the concentration of Cu(2+) in the sample solution. Due to the sensitivity of the photoelectrochemical (PEC) sensor was enhanced obviously through the doping of Zn, the present electrodeposited PEC method demonstrated acceptable linear range of 10(-9)-10(-2)M and 10(-8)-10(-4)M, with low detection limit down to 0.35 nM and 3 nM for Cd(2+) and Cu(2+) respectively, which were lower than the Environmental Protection Agency (EPA) and World Health Organization (WHO) guidelines. The proposed CdZnS-based PEC strategy achieved two metal ions detection on the same sensing platform, which had positive and significant effect on solving the common problems, such as time-consuming, high cost, complex operation and high detection limit in the detection of metal ions. In addition, the proposed PEC device was further successfully applied to an assay of Cd(2+) and Cu(2+) in water sample.


Asunto(s)
Compuestos de Cadmio/química , Cadmio/análisis , Conductometría/instrumentación , Cobre/análisis , Compuestos de Selenio/química , Contaminantes Químicos del Agua/análisis , Zinc/química , Mezclas Complejas/análisis , Mezclas Complejas/química , Galvanoplastia/métodos , Monitoreo del Ambiente/instrumentación , Fotoquímica/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA