Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
BMC Genomics ; 25(1): 668, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961367

RESUMEN

Hb H disease is the most severe form of α-thalassemia compatible with post-natal life. Compound heterozygous α0-thalassemia- SEA deletion/α+-thalassemia- 3.7kb deletion is the commonest cause of Hb H disease in Thailand. Preimplantation genetics testing for monogenic disorders (PGT-M) is an alternative for couples at risk of the disorder to begin a pregnancy with a healthy baby. This study aims to develop a novel PCR protocol for PGT-M of Hb H disease- SEA/-3.7kb using multiplex fluorescent PCR. A novel set of primers for α+-thalassemia- 3.7kb deletion was developed and tested. The PCR protocol for α0-thalassemia- SEA deletion was combined for Hb H disease- SEA/-3.7kb genotyping. The PCR protocols were applied to genomic DNA extracted from subjects with different thalassemia genotypes and on whole genome amplification (WGA) products from clinical PGT-M cycles of the families at risk of Hb Bart's. The results were compared and discussed. The results showed three PCR products from α+-thalassemia- 3.7kb primer set, and three from α0thalassemiaSEA primer set. The results were consistent with the known thalassemia genotypes. The novel -α3.7 primers protocol was also tested on 37 WGA products from clinical PGT-M cycles giving accurate genotyping results and a satisfying amplification efficiency with the ADO rates of 2.7%, 0%, and 0% for HBA2, HBA1, and internal control fragments, respectively. This novel PCR protocol can precisely distinguish Hb H disease- SEA/-3.7kb from other genotypes. Additionally, this is the first PCR protocol for Hb H disease- SEA/-3.7kb which is optimal for PGT-M.


Asunto(s)
Pruebas Genéticas , Diagnóstico Preimplantación , Talasemia alfa , Humanos , Talasemia alfa/genética , Talasemia alfa/diagnóstico , Diagnóstico Preimplantación/métodos , Pruebas Genéticas/métodos , Femenino , Embarazo , Genotipo
2.
BMC Med Genomics ; 17(1): 177, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961467

RESUMEN

BACKGROUND: GATA1-related cytopenia (GRC) is characterized by thrombocytopaenia and/or anaemia ranging from mild to severe. Haematopoietic stem cell transplantation (HSCT) is a healing therapeutic choice for GRC patients. We identified a novel pathogenic variant (GATA1: c.1019delG) in a boy with GATA1-related cytopenia. Then we performed preimplantation genetic testing (PGT) in this GRC family. After a mosaic embryo transfered, a healthy and HLA-compatible with the proband baby was delivered. CASE PRESENTATION: The proband is a 6-year-old boy who was diagnosed to have transfusion-dependent anaemia since 3 year old. Whole-exome sequencing (WES) showed that the proband has a hemizygous variant c.1019delG in GATA1, which is inherited from his mother. His parents decided to undergo PGT to have a health and HLA-compatible offspring. After whole genome amplification (WGA) of biopsied trophectoderm (TE) cells, next generation sequencing (NGS)-based PGT was preformed to analyse embryos on chromosomal aneuploidy, target mutation and HLA typing. There were 3 embryos HLA-matched to the proband. The genotypes of the 3 embryos were heterozygous variant, hemizygous variant, normal respectively. After a heterozygous, mosaic partial trisomy (chr)16, and HLA-matched embryo transfer, a healthy baby was delivered and whose HSCT is compatible with the proband. CONCLUSIONS: NGS-based PGT-HLA is a valuable procedure for the treatment of GATA1-related cytopenia caused by GATA1 variants, or other haematological disorders, oncological and immunological diseases. Furthermore, our study reconfirms that mosaic embryos transfer would bring healthy offspring.


Asunto(s)
Transferencia de Embrión , Factor de Transcripción GATA1 , Nacimiento Vivo , Mosaicismo , Diagnóstico Preimplantación , Niño , Femenino , Humanos , Masculino , Embarazo , Factor de Transcripción GATA1/genética , Pruebas Genéticas , Prueba de Histocompatibilidad , Nacimiento Vivo/genética , Preescolar
3.
Genes (Basel) ; 15(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39062716

RESUMEN

Cystic fibrosis is a highly prevalent genetic disorder caused by biallelic pathogenic variants in the CFTR gene, causing an altered function of the exocrine glands and a subsequent spectrum of hypofunctional and degenerative manifestations. The increasing availability of carrier screening programmes, the enhanced life expectancy of patients due to improved treatment and care strategies and the development of more precise and affordable molecular diagnostic tools have prompted a rise in demand of prenatal diagnosis procedures for at-risk couples, including Preimplantation Genetic Testing (PGT). However, challenges remain: heterogeneity among screening programmes, nuances of variant interpretation and availability of novel treatments demand a considerate and knowledgeable approach to genetic counselling. In this work, we retrospectively evaluated the molecular data of 92 unselected couples who received a diagnosis of CFTR-related status and were referred to the genetics clinic at the University Hospital of Padua for genetic counselling on eligibility for PGT. A total of 50 couples were considered eligible for the procedure based on risk of transmitting biallelic pathogenic variants. We report and discuss our experience with this case series in the context of the Italian medical care system and present an overview of the most relevant issues regarding genetic counselling for PGT in CFTR-related disorders.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Asesoramiento Genético , Diagnóstico Preimplantación , Humanos , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Masculino , Adulto , Estudios Retrospectivos , Embarazo , Pruebas Genéticas/métodos
4.
BMC Pregnancy Childbirth ; 24(1): 491, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039447

RESUMEN

BACKGROUND: Ornithine carbamoyltransferase deficiency (OTCD) is a kind of X-linked metabolic disease caused by a deficiency in ornithine transcarbamylase leading to urea cycle disorders. The main reason is that the OTC gene variants lead to the loss or decrease of OTC enzyme function, which hinders the ammonia conversion to urea, resulting in hyperammonemia and severe neurological dysfunction. Here, we studied one Chinese family of three generations who consecutively gave birth to two babies with OTCD. This study aims to explore the pathogenicity of two missense variants in the OTC gene and investigate the application of preimplantation genetic testing for monogenic (PGT-M) for a family troubled by Ornithine carbamoyltransferase deficiency (OTCD). METHODS: The retrospective method was used to classify the pathogenicity of two missense variants in the OTC gene in a family tortured by OTCD. Sanger sequencing was used to validate the variants in the OTC gene, and then the pathogenicity of variants was confirmed through family analysis and bioinformatics software. We used PGT-M to target the OTC gene and select a suitable embryo for transplantation. Prenatal diagnosis was recommended to confirm previous results using Sanger sequencing and karyotyping at an appropriate gestational stage. Tandem mass spectrometry (MS-MS) and gas chromatography-mass spectrometry (GC-MS) were used to detect fetal metabolism after birth. The number of the study cohort is ChiCTR2100053616. RESULTS: Two missense variants, c.959G > C (p.Arg320Pro) and c.634G > A (p.Gly212Arg), were validated in the OTC gene in this family. According to the ACMG genetic variation classification criteria, the missense variant c.959G > C can be considered as "pathogenic", and the missense variant c.634G > A can be regarded as "likely benign." PGT-M identified a female embryo carrying the heterozygous variant c.959G > C (p.Arg320Pro), which was selected for transplantation. Prenatal diagnosis revealed the same variant in the fetus, and continued pregnancy was recommended. A female baby was born, and her blood amino acid testing and urine organic acid testing were regular. Follow-up was conducted after six months and indicated the girl was healthy. CONCLUSION: Our research first validated the segregation of both c.959G > C and c.634G > A variants in the OTC gene in a Chinese OTCD family. Then, we classified variant c.959G > C as "pathogenic" and variant c.634G > A as "likely benign", providing corresponding theoretical support for genetic counseling and fertility guidance in this family. PGT-M and prenatal diagnosis were recommended to help the couple receive a female baby successfully with a six-month follow-up.


Asunto(s)
Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Ornitina Carbamoiltransferasa , Adulto , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , China , Pueblos del Este de Asia/genética , Pruebas Genéticas , Mutación Missense , Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Linaje , Diagnóstico Prenatal , Estudios Retrospectivos
5.
Porto Biomed J ; 9(4): 262, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993950

RESUMEN

Preimplantation genetic testing (PGT) is a diagnostic procedure that has become a powerful complement to assisted reproduction techniques. PGT has numerous indications, and there is a wide range of techniques that can be used, each with advantages and limitations that should be considered before choosing the more adequate one. In this article, it is reviewed the indications for PGT, biopsy and diagnostic technologies, along with their evolution, while also broaching new emerging methods.

6.
Fertil Steril ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069217

RESUMEN

OBJECTIVE: To compare aneuploidy rates among IVF cycles using preimplantation genetic testing for monogenic disorders (PGT-M) and aneuploidy (PGT-A) compared to IVF cycles using PGT-A alone, and to determine the likelihood of obtaining at least one usable embryo in cycles using PGT-M+PGT-A compared with cycles using PGT-A alone. DESIGN: Retrospective cohort study SUBJECTS: All IVF cycles for patients aged 18-45 undergoing PGT-A with or without concurrent PGT-M at a single genetics laboratory from November 2019 to March 2023. EXPOSURE: Use of PGT-M+PGT-A versus use of PGT-A alone MAIN OUTCOME MEASURES: Per-cycle aneuploidy rate stratified by age, and per-cycle likelihood of obtaining at least one usable embryo stratified by age and inheritance pattern of monogenic disease RESULTS: A total of 72,522 IVF cycles were included; 4,255 cycles (5.9%) using PGT-M+PGT-A and 68,267 cycles (94.1%) using PGT-A alone. The PGT-M+PGT-A group was younger than the PGT-A alone group (<35 years old: 56.1% vs 30.5%, p<0.001). The majority of PGT-M cycles were performed for autosomal dominant pathogenic variants (42.4%), followed by autosomal recessive (36.5%), X-linked dominant (13.3%), and X-linked recessive (7.5%). The median number of embryos biopsied was higher in PGT-A alone compared to PGT-M+PGT-A cycles for patients aged <35, but it was equivalent in all other age groups. Age stratified aneuploidy rates did not significantly differ between PGT-M+PGT-A compared with PGT-A alone cycles. The probability of having a usable embryo declined with increasing age across all inheritance patterns. Compared with PGT-A alone, PGT-M+PGT-A cycles for patients aged ≤40 across all inheritance patterns were significantly less likely to yield a usable embryo (p<0.01), except in cycles for autosomal recessive diseases in the 38-40 age group and X-linked recessive diseases in the 35-37 age group. There were no consistent differences seen between groups in patients over 40. Cycles for patients with autosomal dominant diseases had the lowest likelihood of yielding a usable embryo for patients aged <43. CONCLUSION: IVF cycles using PGT-M+PGT-A have similar age-specific aneuploidy rates to those using PGT-A alone. Cycles for patients ≤ 40 using PGT-M+PGT-A are significantly less likely to yield a usable embryo compared to those using PGT-A alone.

7.
Fertil Steril ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38944787

RESUMEN

Preimplantation genetic testing for monogenic diseases for adult-onset conditions is ethically permissible for various conditions, including when the condition is fully penetrant or confers disease predisposition. The Committee strongly recommends that a genetic counselor experienced with both preimplantation genetic testing for monogenic diseases and assisted reproductive technology therapies counsel patients considering such procedures.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38935178

RESUMEN

PURPOSE: To showcase the successful use of ICSI with PGT-M to overcome Beckwith-Wiedemann syndrome (BWS)-related reproductive challenges, resulting in the birth of a healthy baby boy. By targeting the maternally inherited CDKN1C pathogenic gene variant, this report highlights the genetic interventions in BWS reproductive risk management. METHODS: This case report describes a 41-year-old woman seeking fertility assistance after a previous pregnancy revealed a fetal anomaly related to BWS. Families with BWS recurrence face challenges, as maternally inherited CDKN1C pathogenic variants contribute to approximately 40% of genetic alterations, with a potential recurrence risk as high as 50%. Genetic analysis identified a pathogenic variant in the CDKN1C gene of the fetus that was maternally inherited. The pregnancy was terminated due to the fetal anomalies. The couple underwent intra-cytoplasmic sperm injection (ICSI) combined with preimplantation genetic testing for monogenic diseases (PGT-M) and preimplantation genetic testing for aneuploidy (PGT-A). RESULTS: Two embryos from IVF with low-risk PGT-M and euploid status. One transferred via frozen embryo transfer (FET) in February 2023 resulted in the successful birth of a healthy baby boy. This study reports the first successful delivery of a healthy boy after PGT-M for the CDKN1C gene variant c.79_100delinsGTGACC, contributing to the limited literature on successful outcomes for BWS. CONCLUSION: Utilizing PGT-M in combination with IVF can lead to favorable outcomes in managing BWS-associated reproductive challenges, offering insights into potential genetic interventions and successful birth.

9.
Front Med (Lausanne) ; 11: 1400694, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933105

RESUMEN

Background: Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a rare autosomal dominant inheritable disease caused by Fumarate hydratase (FH) gene germline mutation. It is speculated that for HRLCC infertility women with multiple uterine leiomyomas, preimplantation genetic testing may help block transmission of mutated FH gene during pregnancy. Case presentation: We present the case of a 26-year-old nulligravida with a history of early-onset uterine leiomyomatosis had a heterozygous nonsense mutation [NM_000143.4 (FH): c.1027C > T(p.Arg343Ter)] in the HRLLC gene. After ovulation induction and in vitro fertilization, preimplantation genetic testing for monogenic disorders (PGT-M) on embryos revealed the absence of the pathogenic allele in two blastomeres. Uterine fibroids were identified before embryo transfer, leading to a submucosal myomectomy and long period of pituitary suppression by Gonadotropin-releasing hormone analog (GnRHa). The patient achieved a healthy live birth after the second cycle of frozen-thawed embryo transfer. Conclusion: This case details the successful treatment of an infertile patient with an HRLLC family history, resulting in a healthy birth through myomectomy and PGT-M selected embryo transplantation. Our literature search indicates the first reported live birth after HRLLC-PGT-M.

10.
J Assist Reprod Genet ; 41(7): 1907-1915, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38753088

RESUMEN

PURPOSE: Our objective is to predict the cumulative live birth rate (CLBR) and identify the specific subset within the population undergoing preimplantation genetic testing for monogenic disorders (PGT-M) and chromosomal structural rearrangements (PGT-SR) which is likely to exhibit a diminished expected CLBR based on various patient demographics. METHODS: We performed a single-centre retrospective cohort study including 1522 women undergoing 3130 PGT cycles at a referral centre for PGT. A logistic regression analysis was performed to predict the CLBR per ovarian stimulation in women undergoing PGT-M by polymerase chain reaction (PCR) or single-nucleotide polymorphism (SNP) array, and in women undergoing PGT-SR by SNP array, array comparative genomic hybridization (CGH) or next-generation sequencing (NGS). RESULTS: The mean age of women was 32.6 years, with a mean AMH of 2.75 µg/L. Female age and AMH significantly affected the expected CLBR irrespective of the inheritance mode or PGT technology. An expected CLBR < 10% was reached above the age of 42 years and AMH ≤ 1.25 µg/L. We found no significant difference in outcome per ovarian stimulation between the different PGT technologies, i.e. PCR, SNP array, array CGH and NGS. Whereas per embryo transfer, we noticed a significantly higher probability of live birth when SNP array, array CGH and NGS were used as compared to PCR. CONCLUSION: In a PGT-setting, couples with an unfavourable female age and AMH should be informed of the prognosis to allow other reproductive choices. The heatmap produced in this study can be used as a visual tool for PGT couples.


Asunto(s)
Pruebas Genéticas , Nacimiento Vivo , Diagnóstico Preimplantación , Humanos , Femenino , Diagnóstico Preimplantación/métodos , Adulto , Embarazo , Nacimiento Vivo/genética , Nacimiento Vivo/epidemiología , Pruebas Genéticas/métodos , Tasa de Natalidad , Polimorfismo de Nucleótido Simple/genética , Hibridación Genómica Comparativa , Estudios Retrospectivos , Índice de Embarazo , Transferencia de Embrión , Fertilización In Vitro , Aberraciones Cromosómicas , Secuenciación de Nucleótidos de Alto Rendimiento , Inducción de la Ovulación , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/epidemiología
11.
Eur J Obstet Gynecol Reprod Biol ; 298: 35-40, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718702

RESUMEN

OBJECTIVES: To study the effect of double trophectoderm biopsy on clinical outcomes following single euploid blastocyst transfer. STUDY DESIGN: Retrospective cohort study of 2046 single euploid frozen-thawed blastocyst transfers from January 2015 to June 2022 in a single centre. All patients undergoing a frozen-thawed embryo transfer (FTET) cycle with euploid blastocysts, biopsied for any indication, were included. The outcomes were compared for blastocysts which were biopsied and vitrified once (Group 1, n = 1684), biopsied once but vitrified twice (Group 2, n = 312) and biopsied and vitrified twice (Group 3n = 50). We adjusted for confounders and performed subgroup analysis for PGT-A, PGT-M and PGT-SR cycles. The primary outcome was live birth rate. Secondary outcomes included pregnancy, clinical pregnancy, birthweight and sex ratio. RESULTS: After adjusting for confounders (previous failed euploid implantations, embryo quality and day of biopsy), embryos which were biopsied twice had lower OR for clinical pregnancy (0.48, CI 0.26-0.88, p = 0.019) and for live birth (0.50 CI 0.27-0.92, p = 0.025) compared to controls. Embryos which were biopsied once but vitrified twice had no different ORs for all reproductive outcomes compared to controls. No significant difference was observed for neonatal birthweight or sex ratio amongst the three groups. This is a retrospective single centre study with inherent bias and results may not be transferable to all settings. CONCLUSION: This study is the largest to date assessing the outcomes of FTET cycles following double trophectoderm biopsy. The results are in keeping with the existing literature and can be incorporated into patient counselling. Whilst double biopsy seems to adversely impact LBR, it is only one of the many factors that can affect success rates. The subfertility background and embryo characteristics should not be overlooked. This study provides reassuring evidence since double biopsied embryos still result in live births with no difference in sex ratio or birthweight. However, long term follow up of the off-springs is lacking and should be reported in future studies.


Asunto(s)
Transferencia de Embrión , Diagnóstico Preimplantación , Humanos , Femenino , Estudios Retrospectivos , Embarazo , Adulto , Biopsia , Transferencia de Embrión/métodos , Blastocisto/patología , Índice de Embarazo , Nacimiento Vivo , Vitrificación , Resultado del Embarazo
12.
J Assist Reprod Genet ; 41(5): 1273-1283, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38578603

RESUMEN

PURPOSE: To present the developed preimplantation genetic testing (PGT) for spinocerebellar ataxia type 1 (SCA1) and the outcomes of IVF with PGT. METHODS: PGT was performed for two unrelated couples from the Republic of Sakha (Yakutia) with the risk of SCA1 in one spouse. We have developed a system for PGT of a monogenic disease (PGT-M) for SCA1, which includes the analysis of a panel of 11 polymorphic STR markers linked to the ATXN1 gene and a pathogenic variant of the ATXN1 gene using nested PCR and fragment analysis. IVF/ICSI programs were performed according to standard protocols. Multiple displacement amplification (MDA) was used for whole genome amplification (WGA) and array comparative genomic hybridization (aCGH) for aneuploidy testing (PGT-A). RESULTS: Eight STRs were informative for the first couple and ten for the second. Similarity of the haplotypes carrying pathogenic variants of the ATXN1 gene was noted. In the first case, during IVF/ICSI-PGT, three embryos reached the blastocyst stage and were biopsied. One embryo was diagnosed as normal by maternal STR haplotype and the ATXN1 allele. PGT-A revealed euploidy. The embryo transfer resulted in a singleton pregnancy, and a healthy boy was born. Postnatal diagnosis confirmed normal ATXN1. In the second case, two blastocysts were biopsied. Both were diagnosed as normal by PGT-M, but PGT-A revealed aneuploidy. CONCLUSION: Birth of a healthy child after PGT for SCA1 was the first case of successful preimplantation prevention of SCA1 for the Yakut couple and the first case of successful PGT for SCA1 in Russia.


Asunto(s)
Ataxina-1 , Repeticiones de Microsatélite , Diagnóstico Preimplantación , Ataxias Espinocerebelosas , Humanos , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/diagnóstico , Femenino , Ataxina-1/genética , Masculino , Adulto , Embarazo , Repeticiones de Microsatélite/genética , Pruebas Genéticas , Hibridación Genómica Comparativa , Aneuploidia , Fertilización In Vitro , Transferencia de Embrión
13.
J Assist Reprod Genet ; 41(5): 1245-1259, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38470552

RESUMEN

BACKGROUND: Preimplantation genetic testing for monogenic disorders (PGT-M) is now widely used as an effective strategy to prevent various monogenic or chromosomal diseases. MATERIAL AND METHODS: In this retrospective study, couples with a family history of hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes and/or carrying the pathogenic genes underwent PGT-M to prevent children from inheriting disease-causing gene mutations from their parents and developing known genetic diseases. After PGT-M, unaffected (i.e., normal) embryos after genetic detection were transferred into the uterus of their corresponding mothers. RESULTS: A total of 43 carrier couples with the following hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes underwent PGT-M: Duchenne muscular dystrophy (13 families); methylmalonic acidemia (7 families); spinal muscular atrophy (5 families); infantile neuroaxonal dystrophy and intellectual developmental disorder (3 families each); Cockayne syndrome (2 families); Menkes disease, spinocerebellar ataxia, glycine encephalopathy with epilepsy, Charcot-Marie-Tooth disease, mucopolysaccharidosis, Aicardi-Goutieres syndrome, adrenoleukodystrophy, phenylketonuria, amyotrophic lateral sclerosis, and Dravet syndrome (1 family each). After 53 PGT-M cycles, the final transferable embryo rate was 12.45%, the clinical pregnancy rate was 74.19%, and the live birth rate was 89.47%; a total of 18 unaffected (i.e., healthy) children were born to these families. CONCLUSIONS: This study highlights the importance of PGT-M in preventing children born with hereditary neurological diseases or metabolic diseases dominated by nervous system phenotypes.


Asunto(s)
Pruebas Genéticas , Enfermedades Metabólicas , Diagnóstico Preimplantación , Humanos , Diagnóstico Preimplantación/métodos , Femenino , Embarazo , Pruebas Genéticas/métodos , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/patología , Estudios Retrospectivos , Masculino , Enfermedades del Sistema Nervioso/genética , Fenotipo , Adulto , Niño , Transferencia de Embrión , Mutación/genética
14.
Mol Genet Genomic Med ; 12(3): e2409, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511267

RESUMEN

BACKGROUND: Congenital myasthenic syndrome is a heterogeneous group of inherited neuromuscular transmission disorders. Variants in RAPSN are a common cause of CMS, accounting for approximately 14%-27% of all CMS cases. Whether preimplantation genetic testing for monogenic disease (PGT-M) could be used to prevent the potential birth of CMS-affected children is unclear. METHODS: Application of WES (whole-exome sequencing) for carrier testing and guidance for the PGT-M in the absence of a genetically characterized index patient as well as assisted reproductive technology were employed to prevent the occurrence of birth defects in subsequent pregnancy. The clinical phenotypes of stillborn fetuses were also assessed. RESULTS: The family carried two likely pathogenic variants in RAPSN(NM_005055.5): c.133G>A (p.V45M) and c.280G>A (p.E94K). And the potential birth of CMS-affected child was successfully prevented, allowing the family to have offspring devoid of disease-associated variants and exhibiting a normal phenotype. CONCLUSION: This report constitutes the first documented case of achieving a CMS-free offspring through PGT-M in a CMS-affected family. By broadening the known variant spectrum of RAPSN in the Chinese population, our findings underscore the feasibility and effectiveness of PGT-M for preventing CMS, offering valuable insights for similarly affected families.


Asunto(s)
Síndromes Miasténicos Congénitos , Niño , Femenino , Embarazo , Humanos , Síndromes Miasténicos Congénitos/diagnóstico , Síndromes Miasténicos Congénitos/genética , Pruebas Genéticas , Fenotipo
15.
Front Genet ; 15: 1344051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38404665

RESUMEN

Ganglioside-monosialic acid (GM1) gangliosidosis (ICD-10: E75.1; OMIM: 230500, 230600, 230650) is a rare autosomal recessive hereditary disease, lysosomal storage disorder caused by mutations in the GLB1 gene that lead to the absence or insufficiency of ß-galactosidase. In this study, we report a case of a Russian family with a history of GM1 gangliosidosis. The family had a child who, from the age of 6 months, experienced a gradual loss of developmental skills, marked by muscle flaccidity, psychomotor retardation, hepatosplenomegaly, and the onset of tonic seizures by the age of 8 months. Funduscopic examination revealed a «cherry red spot¼ in the macula, which is crucial for the diagnosis of lipid storage disorders. To find the pathogenic variants responsible for these clinical symptoms, the next-generation sequencing approach was used. The analysis revealed two variants in the heterozygous state: a frameshift variant c.699delG (rs1452318343, ClinVar ID 928700) in exon 6 and a missense variant c.809A>C (rs371546950, ClinVar ID 198727) in exon 8 of the GLB1 gene. The spouses were advised to plan the pregnancy with assisted reproductive technology (ART), followed by preimplantation genetic testing for monogenic disorder (PGT-M) on the embryos. Trophectoderm biopsy was performed on 8 out of 10 resulting embryos at the blastocyst stage. To perform PGT-M, we developed a novel testing system, allowing for direct analysis of disease-causing mutations, as well as haplotype analysis based on the study of polymorphic markers-short tandem repeats (STR), located upstream and downstream of the GLB1 gene. The results showed that four embryos were heterozygous carriers of pathogenic variants in the GLB1 gene (#1, 2, 5, 8). Two embryos had a compound heterozygous genotype (#3, 4), while the embryos #7 and 9 did not carry disease-causing alleles of the GLB1 gene. The embryo #7 without pathogenic variants was transferred after consideration of its morphology and growth rate. Prenatal diagnosis in the first trimester showed the absence of the variants analyzed in the GLB1 gene in the fetus. The pregnancy resulted in the delivery of a female infant who did not inherit the disease-causing variants in the GLB1 gene.

16.
Arch Gynecol Obstet ; 309(5): 1787-1799, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38376520

RESUMEN

BACKGROUND: Preimplantation genetic testing (PGT), also referred to as preimplantation genetic diagnosis (PGD), is an advanced reproductive technology used during in vitro fertilization (IVF) cycles to identify genetic abnormalities in embryos prior to their implantation. PGT is used to screen embryos for chromosomal abnormalities, monogenic disorders, and structural rearrangements. DEVELOPMENT OF PGT: Over the past few decades, PGT has undergone tremendous development, resulting in three primary forms: PGT-A, PGT-M, and PGT-SR. PGT-A is utilized for screening embryos for aneuploidies, PGT-M is used to detect disorders caused by a single gene, and PGT-SR is used to detect chromosomal abnormalities caused by structural rearrangements in the genome. PURPOSE OF REVIEW: In this review, we thoroughly summarized and reviewed PGT and discussed its pros and cons down to the minutest aspects. Additionally, recent studies that highlight the advancements of PGT in the current era, including their future perspectives, were reviewed. CONCLUSIONS: This comprehensive review aims to provide new insights into the understanding of techniques used in PGT, thereby contributing to the field of reproductive genetics.


Asunto(s)
Pruebas Genéticas , Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Pruebas Genéticas/métodos , Diagnóstico Preimplantación/métodos , Implantación del Embrión , Fertilización In Vitro , Aneuploidia
17.
Mol Genet Genomic Med ; 12(1): e2340, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38073519

RESUMEN

BACKGROUND: Meckel-Gruber syndrome (MKS) is a perinatally lethal, genetically heterogeneous, autosomal recessive condition caused by defective primary cilium formation. So far, the association of TXNDC15-related MKS has been reported in only five independent families from diverse ethnic origins, including Saudi, Pakistani, Estonian, and Indian. Here, we report a fetus diagnosed with MKS at 12 weeks, exhibiting typical ultrasound findings. METHODS: Low-coverage whole-genome sequencing was used to identify chromosomal abnormalities. Trio-base whole exome sequencing (trio-WES) was performed to investigate the potential pathogenic variants associated with MKS. Preimplantation genetic testing for monogenic disorders (PGT-M) was applied to prevent the transmission of the pathogenic variant. RESULTS: A novel homozygous pathogenic variant in the TXNDC15 gene was identified through trio-WES. The application of PGT-M successfully prevented the transmission of the pathogenic variant and resulted in an ongoing pregnancy. CONCLUSION: This is the first report of a TXNDC15 variant in the Chinese population and the first PGT case of TXNDC15-related MKS worldwide. The successful application of PGT-M in this family provides a potential approach for other monogenic diseases. Our case expands the variant spectrum of TXNDC15 and contributes to the molecular diagnosis and genetic counseling for MKS. This case underscores the importance of appropriate genetic testing methods and accurate genetic counseling in the diagnosis of rare monogenic diseases.


Asunto(s)
Trastornos de la Motilidad Ciliar , Encefalocele , Enfermedades Renales Poliquísticas , Retinitis Pigmentosa , Embarazo , Femenino , Humanos , Pruebas Genéticas , Enfermedades Renales Poliquísticas/genética , Trastornos de la Motilidad Ciliar/diagnóstico , Trastornos de la Motilidad Ciliar/genética , China
18.
Front Endocrinol (Lausanne) ; 14: 1224574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929040

RESUMEN

Background: Preimplantation genetic testing (PGT) serves as a tool to avoid genetic disorders in patients with known genetic conditions. However, once a selected embryo is transferred, implantation success is attained independent of embryo quality. Using PGT alone is unable to tackle implantation failure caused by endometrial receptivity (ER) abnormalities in these patients. Methods: We validated our newly developed RNA-seq-based ER test (rsERT) in a retrospective cohort study including 511 PGT cycles and reported experience in treating an infertile female patient complicated by multiple endocrine neoplasia type 1 (MEN1). Results: Significant improvement in the clinical pregnancy rate was found in the performed personalized embryo transfer (pET) group (CR, 69.7%; P = 0.035). In the rare MEN1 case, pET was done according to the prediction of the optimal time of window of implantation after unaffected blastocysts were obtained by PGT-M, which ultimately led to a healthy live birth. However, none of the mRNA variants identified in the patient showed a strong association with the MEN1 gene. Conclusions: Applying the new rsERT along with PGT improved ART outcomes and brought awareness of the importance of the ER examination in MEN1 infertile female patients. MEN1-induced endocrine disorder rather than MEN1 mutation contributes to the ER abnormality. Trial Registration: Reproductive Medicine Ethics Committee of Xiangya Hospital Registry No.: 2022010.


Asunto(s)
Infertilidad Femenina , Neoplasia Endocrina Múltiple Tipo 1 , Diagnóstico Preimplantación , Embarazo , Humanos , Femenino , Estudios Retrospectivos , RNA-Seq , Infertilidad Femenina/genética , Infertilidad Femenina/terapia
19.
Genes (Basel) ; 14(11)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-38003012

RESUMEN

Cancer Predisposition Syndromes (CPSs), also known as Hereditary Cancer Syndromes (HCSs), represent a group of genetic disorders associated with an increased lifetime risk of developing cancer. In this article, we provide an overview of the reproductive options for patients diagnosed with CPS, focusing on the emerging role of Preimplantation Genetic Testing for Monogenic disorders (PGT-M). Specifically, we conducted a literature review about the awareness and acceptability of its application to CPSs. Based on the available data, the awareness of the applicability of PGT-M for CPSs appears to be limited among both patients and physicians, and a heterogeneous set of factors seems to influence the acceptability of the procedure. Our findings highlight the need for increasing education about the use of PGT-M for CPSs. In this context, guidelines developed by professional or institutional bodies would represent a useful reference tool to assist healthcare professionals in providing proper preconception counseling.


Asunto(s)
Neoplasias , Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Diagnóstico Preimplantación/métodos , Pruebas Genéticas/métodos , Reproducción , Neoplasias/diagnóstico , Neoplasias/genética , Susceptibilidad a Enfermedades
20.
Genes (Basel) ; 14(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003038

RESUMEN

Preimplantation genetic testing (PGT) has emerged as a revolutionary technique in the field of reproductive medicine, allowing for the selection and transfer of healthy embryos, thus reducing the risk of transmitting genetic diseases. However, despite remarkable advancements, the implementation of PGT faces a series of limitations and challenges that require careful consideration. This review aims to foster a comprehensive reflection on the constraints of preimplantation genetic diagnosis, encouraging a broader discussion about its utility and implications. The objective is to inform and guide medical professionals, patients, and society overall in the conscious and responsible adoption of this innovative technology, taking into account its potential benefits and the ethical and practical challenges that it presents.


Asunto(s)
Pruebas Genéticas , Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Pruebas Genéticas/métodos , Diagnóstico Preimplantación/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA