Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Pharm Sin B ; 14(9): 4001-4013, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39309493

RESUMEN

Cancer stem cells (CSCs) play a pivotal role in tumor initiation, proliferation, metastasis, drug resistance, and recurrence. Consequently, targeting CSCs has emerged as a promising avenue for cancer therapy. Recently, 3-phosphoglycerate dehydrogenase (PHGDH) has been identified as being intricately associated with the regulation of numerous cancer stem cells. Yet, reports detailing the functional regulators of PHGDH that can mitigate the stemness across cancer types are limited. In this study, the novel "molecular glue" LXH-3-71 was identified, and it robustly induced degradation of PHGDH, thereby modulating the stemness of colorectal cancer cells (CRCs) both in vitro and in vivo. Remarkably, LXH-3-71 was observed to form a dynamic chimera, between PHGDH and the DDB1-CRL E3 ligase. These insights not only elucidate the anti-CSCs mechanism of the lead compound but also suggest that degradation of PHGDH may be a more viable therapeutic strategy than the development of PHGDH inhibitors. Additionally, compound LXH-3-71 was leveraged as a novel ligand for the DDB1-CRL E3 ligase, facilitating the development of new PROTAC molecules targeting EGFR and CDK4 degradation.

2.
Front Pharmacol ; 15: 1405350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257399

RESUMEN

Objective: Biological studies have elucidated that phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme in the serine synthesis pathway in humans that is abnormally expressed in numerous cancers. Inhibition of the PHGDH activity is thought to be an attractive approach for novel anti-cancer therapy. The development of structurally diverse novel PHGDH inhibitors with high efficiency and low toxicity is a promising drug discovery strategy. Methods: A ligand-based 3D-QSAR pharmacophore model was developed using the HypoGen algorithm methodology of Discovery Studio. The selected pharmacophore model was further validated by test set validation, cost analysis, and Fischer randomization validation and was then used as a 3D query to screen compound libraries with various chemical scaffolds. The estimated activity, drug-likeness, molecular docking, growing scaffold, and molecular dynamics simulation processes were applied in combination to reduce the number of virtual hits. Results: The potential candidates against PHGDH were screened based on estimated activity, docking scores, predictive absorption, distribution, metabolism, excretion, and toxicity (ADME/T) properties, and molecular dynamics simulation. Conclusion: Finally, an all-in-one combination was employed successfully to design and develop three potential anti-cancer candidates.

3.
mBio ; : e0209724, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207107

RESUMEN

Classical swine fever virus (CSFV), an obligate intracellular pathogen, hijacks cellular metabolism to evade immune surveillance and facilitate its replication. The precise mechanisms by which CSFV modulates immune metabolism remain largely unknown. Our study reveals that CSFV infection disrupts serine metabolism, which plays a crucial role in antiviral immunity. Notably, we discovered that CSFV infection leads to the deacetylation of PHGDH, a key enzyme in serine metabolism, resulting in autophagic degradation. This deacetylation impairs PHGDH's enzymatic activity, reduces serine biosynthesis, weakens innate immunity, and promotes viral proliferation. Molecularly, CSFV infection induces the association of HDAC3 with PHGDH, leading to deacetylation at the K364 site. This modification attracts the E3 ubiquitin ligase RNF125, which facilitates the addition of K63-linked ubiquitin chains to PHGDH-K364R. Subsequently, PHGDH is targeted for lysosomal degradation by p62 and NDP52. Furthermore, the deacetylation of PHGDH disrupts its interaction with the NAD+ substrate, destabilizing the PHGDH-NAD complex, impeding the active site, and thereby inhibiting de novo serine synthesis. Additionally, our research indicates that deacetylated PHGDH suppresses the mitochondria-MAVS-IRF3 pathway through its regulatory effect on serine metabolism, leading to decreased IFN-ß production and enhanced viral replication. Overall, our findings elucidate the complex interplay between CSFV and serine metabolism, revealing a novel aspect of viral immune evasion through the lens of immune metabolism. IMPORTANCE: Classical swine fever (CSF) seriously restricts the healthy development of China's aquaculture industry, and the unclear pathogenic mechanism and pathogenesis of classical swine fever virus (CSFV) are the main obstacle to CSF prevention, control, and purification. Therefore, it is of great significance to explore the molecular mechanism of CSFV and host interplay, to search for the key signaling pathways and target molecules in the host that regulate the replication of CSFV infection, and to elucidate the mechanism of action of host immune dysfunction and immune escape due to CSFV infection for the development of novel CSFV vaccines and drugs. This study reveals the mechanism of serine metabolizing enzyme post-translational modifications and antiviral signaling proteins in the replication of CSFV and enriches the knowledge of CSFV infection and immune metabolism.

4.
Cell Metab ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39191258

RESUMEN

Metabolic homeostasis is maintained by redundant pathways to ensure adequate nutrient supply during fasting and other stresses. These pathways are regulated locally in tissues and systemically via the liver, kidney, and circulation. Here, we characterize how serine, glycine, and one-carbon (SGOC) metabolism fluxes across the eye, liver, and kidney sustain retinal amino acid levels and function. Individuals with macular telangiectasia (MacTel), an age-related retinal disease with reduced circulating serine and glycine, carrying deleterious alleles in SGOC metabolic enzymes exhibit an exaggerated reduction in circulating serine. A Phgdh+/- mouse model of this haploinsufficiency experiences accelerated retinal defects upon dietary serine/glycine restriction, highlighting how otherwise silent haploinsufficiencies can impact retinal health. We demonstrate that serine-associated retinopathy and peripheral neuropathy are reversible, as both are restored in mice upon serine supplementation. These data provide molecular insights into the genetic and metabolic drivers of neuro-retinal dysfunction while highlighting therapeutic opportunities to ameliorate this pathogenesis.

5.
Int J Gen Med ; 17: 3673-3687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206267

RESUMEN

Background: Coronary artery calcification (CAC) is in almost all patients with coronary artery disease and requires more effective therapies. We aim to explore the effects of phosphoglycerate dehydrogenase (PHGDH) on CAC. Methods: We identified the differentially expressed genes through bioinformatic analysis and selected PHGDH for further verification. Human coronary artery smooth muscle cells (HCASMCs) cultured with calcifying medium were used as models of CAC in vitro. Erastin was administered to induce ferroptosis. We determined the cell viability by the cell count kit-8 assay. The alkaline phosphatase activity, calcium content, and the expression of glutathione were evaluated by the corresponding detection kits. The calcification level was detected by alizarin red staining. Then we performed Western blot to examine the expression of runt-related transcription factor 2, bone morphogenetic protein 2, cyclooxygenase 2, glutathione peroxidase 4, P53, and solute carrier family 7a member 11 (SLC7A11). Results: We acquired 201 differentially expressed genes and selected PHGDH to verify. In calcifying medium-induced HCASMCs, PHGDH overexpression increased the cell viability and decreased the alkaline phosphatase activity, calcium content, calcification level, and the expression of bone morphogenetic protein 2 and runt-related transcription factor 2. Additionally, we found higher levels of glutathione, glutathione peroxidase 4, and SLC7A11 and lower levels of cyclooxygenase 2 and P53 after up-regulating PHGDH. Erastin reversed the effects of PHGDH on calcification of HCASMCs. Conclusion: PHGDH overexpression suppresses the calcification level of HCASMCs by inhibiting ferroptosis through the P53/SLC7A11 signaling pathway, suggesting PHGDH as a promising therapeutic target of CAC.

6.
Arch Biochem Biophys ; 759: 110104, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39059599

RESUMEN

BACKGROUND: Endoplasmic reticulum stress and synthesis of serine are essential for tumor growth, but the mechanism of their interaction is not clarified yet. The overarching goal of this work was to investigate the impact of ERN1 (endoplasmic reticulum to nucleus signaling 1) inhibition on the expression of serine synthesis genes in U87MG glioblastoma cells concerning the suppression of cell proliferation. METHODS: Wild type U87MG glioblastoma cells and their clones with overexpression of transgenes dnERN1 (without cytoplasmic domain of ERN1) and dnrERN1 (with mutation in endoribonuclease of ERN1), and empty vector (as control) were used. The silencing of ERN1 and XBP1 was also used to inhibition of ERN1 and its function. Gene expression was measured by qPCR. RESULTS: We show that the expression of PSAT1 and several other related to serine synthesis genes is suppressed in cells with ERN1 inhibition by dissimilar mechanisms: PHGDH gene through ERN1 protein kinase, because its expression was resistant to inhibition of ERN1 endoribonuclease, but ATF4 gene via endoribonuclease of ERN1. However, in the control of PSAT1 and PSPH genes both enzymatic activities of ERN1 signaling protein are involved. At the same time, ERN1 knockdown strongly increased SHMT1 expression, which controls serine metabolism and enhances the proliferation and invasiveness of glioma cells. The level of microRNAs, which have binding sites in PSAT1, SHMT1, and PSPH mRNAs, was also changed in cells harboring dnERN1 transgene. Inhibition of ERN1 suppressed cell proliferation and enzymatic activity of PHGDH, a rate-limiting enzyme for serine synthesis. CONCLUSION: Changes in the expression of phosphoserine aminotransferase 1 and other genes related to serine synthesis are mediated by diverse ERN1-dependent mechanisms and contributed to suppressed proliferation and enhanced invasiveness of ERN1 knockdown glioblastoma cell.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Proteínas Serina-Treonina Quinasas , Transaminasas , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Línea Celular Tumoral , Transaminasas/genética , Transaminasas/metabolismo , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Técnicas de Silenciamiento del Gen , Serina/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética
7.
Mol Oncol ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874588

RESUMEN

Gemcitabine plus cisplatin (GC) combination chemotherapy is the primary treatment for advanced bladder cancer (BC) with unresectable or metastatic disease. However, most cases develop resistance to this therapy. We investigated whether drug resistance could be targeted through metabolic reprogramming therapies. Metabolomics analyses in our lab's gemcitabine- and cisplatin-resistant cell lines revealed increased phosphoglycerate dehydrogenase (PHGDH) expression in gemcitabine-resistant cells compared with parental cells. Isocitrate dehydrogenase 2 (IDH2) gain of function stabilized hypoxia-inducible factor1α (HIF1α) expression, stimulating aerobic glycolysis. In gemcitabine-resistant cells, elevated fumaric acid suppressed prolyl hydroxylase domain-containing protein 2/Egl nine homolog 1 (PHD2) and stabilized HIF1α expression. PHGDH downregulation or inhibition in gemcitabine-resistant BC cells inhibited their proliferation, migration, and invasion. Cisplatin-resistant cells showed elevated fatty acid metabolism, upregulating fatty acid synthase (FASN) downstream of tyrosine kinase. Using the fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor erdafitinib, we inhibited malonyl-CoA production, which is crucial for fatty acid synthesis, and thereby suppressed upregulated HIF1α expression. Combination treatment with NCT503 and erdafitinib synergistically suppressed tumor cell proliferation and induced apoptosis in vitro and in vivo. Understanding these mechanisms could enable innovative BC therapeutic strategies to be developed.

8.
Discov Oncol ; 15(1): 154, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733440

RESUMEN

Reprogramming of the serine synthesis pathway (SSP) is intricately linked to the progression of epithelial ovarian cancer (EOC). CBR-5884, a selective small-molecule inhibitor targeting phosphoglycerate dehydrogenase (PHGDH), effectively impedes the de novo synthesis of serine within cancer cells. This study aimed to evaluate the inhibitory effect of CBR-5884 on EOC cells and delineate its specific mechanism, thereby proposing a novel therapeutic approach for treating EOC. The suppression of serine biosynthesis after CBR-5884 treatment was evaluated using RNA sequencing and a serine assay kit, and the results showed that CBR-5884 effectively downregulated serine biosynthesis in EOC cells, particularly those expressing high levels of PHGDH. In vitro studies revealed that CBR-5884 demonstrated significant antitumor effects and suppressed migration and invasion of EOC cells through down-regulation of the integrin subunit beta 4 (ITGB4)/extracellular signal-regulated kinase (ERK)/epithelial-mesenchymal transition signal axis. Additionally, CBR-5884 mitigated the stemness of EOC cells and heightened their sensitivity to chemotherapy. Moreover, in vivo studies revealed that CBR-5884 significantly delayed tumor growth, with histological analysis indicating the safety profile of CBR-5884. Finally, the patient-derived organoid (PDO) models were utilized to explore the preclinical efficacy of CBR-5884 against EOC cells, and the results unveiled that CBR-5884 impeded proliferation and downregulated the expression of ITGB4 in EOC PDO models. Our findings supports the anticancer properties of CBR-5884 in EOC cells exhibiting high PHGDH expression, manifesting through the suppression of proliferation, migration, and invasion, while enhancing chemotherapy sensitivity, suggesting that CBR-5884 holds promise as an efficacious strategy for the treatment of EOC.

9.
Biomedicines ; 12(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791048

RESUMEN

Breast cancer (BC) remains one of the leading causes of mortality among women, with triple-negative breast cancer (TNBC) standing out for its aggressive nature and limited treatment options. Metabolic reprogramming, one of cancer's hallmarks, underscores the importance of targeting metabolic vulnerabilities for therapeutic intervention. This study aimed to investigate the impact of de novo serine biosynthetic pathway (SSP) inhibition, specifically targeting phosphoglycerate dehydrogenase (PHGDH) with NCT-503, on three TNBC cell lines: MDA-MB-231, MDA-MB-468 and Hs 578T. First, MS-based proteomics was used to confirm the distinct expression of PHGDH and other SSP enzymes using the intracellular proteome profiles of untreated cells. Furthermore, to characterize the response of the TNBC cell lines to the inhibitor, both in vitro assays and label-free, bottom-up proteomics were employed. NCT-503 exhibited significant cytotoxic effects on all three cell lines, with MDA-MB-468 being the most susceptible (IC50 20.2 ± 2.8 µM), while MDA-MB-231 and Hs 578T showed higher, comparable IC50s. Notably, differentially expressed proteins (DEPs) induced by NCT-503 treatment were mostly cell line-specific, both in terms of the intracellular and secreted proteins. Through overrepresentation and Reactome GSEA analysis, modifications of the intracellular proteins associated with cell cycle pathways were observed in the MDA-MBs following treatment. Distinctive dysregulation of signaling pathways were seen in all TNBC cell lines, while modifications of proteins associated with the extracellular matrix organization characterizing both MDA-MB-231 and Hs 578T cell lines were highlighted through the treatment-induced modifications of the secreted proteins. Lastly, an analysis was conducted on the DEPs that exhibited greater abundance in the NCT-503 treatment groups to evaluate the potential chemo-sensitizing properties of NCT-503 and the druggability of these promising targets.

10.
J Cancer ; 15(9): 2538-2548, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577610

RESUMEN

As a rate-limiting enzyme for the serine biosynthesis pathway (SSP) in the initial step, phosphoglycerate dehydrogenase (PHGDH) is overexpressed in many different tumors, and pharmacological or genetic inhibition of PHGDH promotes antitumor effects. In the present research, by analyzing several acute myeloid leukemia (AML) datasets in the Gene Expression Omnibus (GEO), we identified prognosis-related genes and constructed a multigene signature by univariate, multivariate Cox regression and LASSO regression. Subsequently, the multigene signature was confirmed through Cox, Kaplan-Meier, and ROC analyses in the validation cohort. Moreover, PHGDH acted as a risk factor and was correlated with inferior overall survival. We further analysed other datasets and found that PHGDH was overexpressed in AML. Importantly, the expression of PHGDH was higher in drug-resistant AML compared to drug-sensitive ones. In vitro experiments showed that inhibition of PHGDH induced apoptosis and reduced proliferation in AML cells, and these antitumor effects could be related to the Bcl-2/Bax signaling pathway by the noncanonical or nonmetabolic functions of PHGDH. In summary, we constructed a twenty-gene signature that could predicate prognosis of AML patients and found that PHGDH may be a potential target for AML treatment.

11.
Bioorg Chem ; 146: 107330, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579615

RESUMEN

The increased de novo serine biosynthesis confers many advantages for tumorigenesis and metastasis. Phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in serine biogenesis, exhibits hyperactivity across multiple tumors and emerges as a promising target for cancer treatment. Through screening our in-house compound library, we identified compound Stattic as a potent PHGDH inhibitor (IC50 = 1.98 ± 0.66 µM). Subsequent exploration in structural activity relationships led to the discovery of compound B12 that demonstrated the increased enzymatic inhibitory activity (IC50 = 0.29 ± 0.02 µM). Furthermore, B12 exhibited robust inhibitory effects on the proliferation of MDA-MB-468, NCI-H1975, HT1080 and PC9 cells that overexpress PHGDH. Additionally, using a [U-13C6]-glucose tracing assay, B12 was found to reduce the production of glucose-derived serine in MDA-MB-468 cells. Finally, mass spectrometry-based peptide profiling, mutagenesis experiment and molecular docking study collectively suggested that B12 formed a covalent bond with Cys421 of PHGDH.


Asunto(s)
Inhibidores Enzimáticos , Fosfoglicerato-Deshidrogenasa , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Serina , Glucosa , Línea Celular Tumoral
12.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659816

RESUMEN

Overexpression of PHGDH, the rate-limiting enzyme in the serine synthesis pathway, promotes melanomagenesis, melanoma cell proliferation, and survival of metastases in serine-low environments such as the brain. While PHGDH amplification explains PHGDH overexpression in a subset of melanomas, we find that PHGDH levels are universally increased in melanoma cells due to oncogenic BRAFV600E promoting PHGDH transcription through mTORC1-mediated translation of ATF4. Importantly, PHGDH expression was critical for melanomagenesis as depletion of PHGDH in genetic mouse models blocked melanoma formation. Despite BRAFV600E-mediated upregulation, PHGDH was further induced by exogenous serine restriction. Surprisingly, BRAFV600E inhibition diminished serine restriction-mediated PHGDH expression by preventing ATF4 induction, creating a potential vulnerability whereby melanoma cells could be specifically starved of serine by combining BRAFV600E inhibition with exogenous serine restriction. Indeed, we show that this combination promoted cell death in vitro and attenuated melanoma growth in vivo. This study identified a melanoma cell-specific PHGDH-dependent vulnerability.

13.
J Cell Mol Med ; 28(8): e18122, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652110

RESUMEN

Bi-allelic variants in VWA1, encoding Von Willebrand Factor A domain containing 1 protein localized to the extracellular matrix (ECM), were linked to a neuromuscular disorder with manifestation in child- or adulthood. Clinical findings indicate a neuromyopathy presenting with muscle weakness. Given that pathophysiological processes are still incompletely understood, and biomarkers are still missing, we aimed to identify blood biomarkers of pathophysiological relevance: white blood cells (WBC) and plasma derived from six VWA1-patients were investigated by proteomics. Four proteins, BET1, HNRNPDL, NEFM and PHGDH, known to be involved in neurological diseases and dysregulated in WBC were further validated by muscle-immunostainings unravelling HNRNPDL as a protein showing differences between VWA1-patients, healthy controls and patients suffering from neurogenic muscular atrophy and BICD2-related neuromyopathy. Immunostaining studies of PHGDH indicate its involvement in apoptotic processes via co-localisation with caspase-3. NEFM showed an increase in cells within the ECM in biopsies of all patients studied. Plasma proteomics unravelled dysregulation of 15 proteins serving as biomarker candidates among which a profound proportion of increased ones (6/11) are mostly related to antioxidative processes and have even partially been described as blood biomarkers for other entities of neuromuscular disorders before. CRP elevated in plasma also showed an increase in the extracellular space of VWA1-mutant muscle. Results of our combined studies for the first time describe pathophysiologically relevant biomarkers for VWA1-related neuromyopathy and suggest that VWA1-patient derived blood might hold the potential to study disease processes of clinical relevance, an important aspect for further preclinical studies.


Asunto(s)
Biomarcadores , Proteómica , Humanos , Biomarcadores/sangre , Proteómica/métodos , Femenino , Masculino , Adulto , Enfermedades Neuromusculares/sangre , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/metabolismo , Persona de Mediana Edad , Proteoma/metabolismo , Leucocitos/metabolismo
14.
Curr Issues Mol Biol ; 46(4): 2856-2870, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38666909

RESUMEN

Tissue regeneration therapy based on human dental pulp cells (hDPCs) faces the distinct challenge of cellular senescence during massive expansion in vitro. To further explore the regulatory mechanism of cellular senescence in hDPCs, we conduct experiments on young cells (Passage 5, P5) and replicative senescent (Passage 12, P12) hDPCs. The results confirm that hDPCs undergo replicative senescence with passaging, during which their ability to proliferate and osteogenic differentiation decreases. Notably, during replicative senescence, phosphoglycerate dehydrogenase (PHGDH), the key enzyme of the serine synthesis pathway (SSP), is significantly downregulated, as well as S-adenosylmethionine (SAM) levels, resulting in reduced H3K36me3 modification on Sirtuin 1 (SIRT1)and Runt-related transcription factor 2 (RUNX2) promoters. Inhibition of PHGDH leads to the same phenotype as replicative senescence. Serine supplementation fails to rescue the senescence phenotype caused by replicative senescence and inhibitors, in which folate metabolism-related genes, including serine hydroxymethyl transferase 2 (SHMT2), methylenetetrahydrofolate dehydrogenase 1(MTHFD1), methylenetetrahydrofolate dehydrogenase 2(MTHFD2), are notably decreased. Our research raised a possibility that PHGDH may be involved in cellular senescence by affecting folate metabolism and histone methylation in addition to serine biosynthesis, providing potential targets to prevent senescence.

15.
Cell Mol Immunol ; 21(5): 448-465, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38409249

RESUMEN

Phosphoglycerate dehydrogenase (PHGDH) has emerged as a crucial factor in macromolecule synthesis, neutralizing oxidative stress, and regulating methylation reactions in cancer cells, lymphocytes, and endothelial cells. However, the role of PHGDH in tumor-associated macrophages (TAMs) is poorly understood. Here, we found that the T helper 2 (Th2) cytokine interleukin-4 and tumor-conditioned media upregulate the expression of PHGDH in macrophages and promote immunosuppressive M2 macrophage activation and proliferation. Loss of PHGDH disrupts cellular metabolism and mitochondrial respiration, which are essential for immunosuppressive macrophages. Mechanistically, PHGDH-mediated serine biosynthesis promotes α-ketoglutarate production, which activates mTORC1 signaling and contributes to the maintenance of an M2-like macrophage phenotype in the tumor microenvironment. Genetic ablation of PHGDH in macrophages from tumor-bearing mice results in attenuated tumor growth, reduced TAM infiltration, a phenotypic shift of M2-like TAMs toward an M1-like phenotype, downregulated PD-L1 expression and enhanced antitumor T-cell immunity. Our study provides a strong basis for further exploration of PHGDH as a potential target to counteract TAM-mediated immunosuppression and hinder tumor progression.


Asunto(s)
Ácidos Cetoglutáricos , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosfoglicerato-Deshidrogenasa , Transducción de Señal , Microambiente Tumoral , Macrófagos Asociados a Tumores , Animales , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Ratones , Ácidos Cetoglutáricos/metabolismo , Humanos , Ratones Endogámicos C57BL , Fenotipo , Línea Celular Tumoral , Activación de Macrófagos
16.
FEBS J ; 291(8): 1780-1794, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38317509

RESUMEN

Colorectal cancer (CRC) has emerged as the third most prevalent and second deadliest cancer worldwide. Metabolic reprogramming is a key hallmark of cancer cells. Phosphoglycerate dehydrogenase (PHGDH) is over-expressed in multiple cancers, including CRC. Although the role of PHGDH in metabolism has been extensively investigated, its effects on CRC development remains to be elucidated. In the present study, it was demonstrated that PHGDH expression was significantly up-regulated in colorectal cancer. PHGDH expression was positively correlated with that of the aryl hydrocarbon receptor (AhR) and its target genes, CYP1A1 and CYP1B1, in CRC cells. Knockdown of PHGDH reduced AhR levels and activity, as well as the ratio of reduced to oxidized glutathione. The selective AhR antagonist stemregenin 1 induced cell death through reactive oxygen species-dependent autophagy in CRC cells. PHGDH knockdown induced CRC cell sensitivity to stemregenin 1 via the autophagy pathway. Our findings suggest that PHGDH modulates AhR signaling and the redox-dependent autophagy pathway in CRC, and that the combination of inhibition of both PHGDH and AhR may be a novel therapeutic strategy for CRC.


Asunto(s)
Neoplasias Colorrectales , Receptores de Hidrocarburo de Aril , Humanos , Autofagia/genética , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Fosfoglicerato-Deshidrogenasa/deficiencia , Fosfoglicerato-Deshidrogenasa/genética , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
17.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119697, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382845

RESUMEN

Metastasis, the major cause of cancer mortality, requires cancer cells to reprogram their metabolism to adapt to and thrive in different environments, thereby leaving metastatic cells metabolic characteristics different from their parental cells. Mounting research has revealed that the de novo serine synthesis pathway (SSP), a glycolytic branching pathway that consumes glucose carbons for serine makeup and α-ketoglutarate generation and thus supports the proliferation, survival, and motility of cancer cells, is one such reprogrammed metabolic pathway. During different metastatic cascades, the SSP enzyme proteins or their enzymatic activity are both dynamically altered; manipulating their expression or catalytic activity could effectively prevent the progression of cancer metastasis; and the SSP enzymatic proteins could even conduce to metastasis via their nonenzymatic functions. In this article we overview the SSP dynamics during cancer metastasis and put the focuses on the regulatory role of the SSP in metastasis and the underlying mechanisms that mainly involve cellular anabolism/catabolism, redox balance, and epigenetics, aiming to provide a theoretical basis for the development of therapeutic strategies for targeting metastatic lesions.


Asunto(s)
Neoplasias , Serina , Serina/metabolismo , Oxidación-Reducción , Redes y Vías Metabólicas , Neoplasias/genética , Neoplasias/metabolismo
18.
Biol Trace Elem Res ; 202(11): 5145-5156, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38277119

RESUMEN

The purpose of this study is to explore the glycolytic remodeling under high-selenium (Se) stress. Three groups of male C57BL/6J mice were fed on diets with different Se contents (0.03, 0.15, and 0.30 mg Se/kg). Glucose tolerance test (GTT) and insulin tolerance test (ITT) were measured at the third month. Mice were killed at the fourth month. Plasma, liver, and muscle tissues were fetched for biochemistry and Se analysis. The expressions of insulin signaling pathway (PI3K-AKT-mTOR), glutathione peroxidase 1 (GPX1), selenoprotein N (SELENON), 3-phosphoglycerate dehydrogenase (PHGDH), serine hydroxymethyltransferases 1 (SHMT1), 5,10-methylenetetrahydrofolate reductase (MTHFR), and methionine synthase (MS) were analyzed by western blotting (WB) in liver and muscle tissues. The results of GTT and ITT showed that glucose tolerance and insulin tolerance were both abnormal in the 0.03 mg Se/kg and 0.3 mg Se/kg groups. Se concentrations in plasma, liver, and muscle of 0.03 mg Se/kg group were significantly lower than that of 0.15 mg Se/kg and 0.30 mg Se/kg groups (p < 0.05 or p < 0.01). The expressions of P-Akt (Thr-308) in muscle (p < 0.05) and PI3K and mTOR in liver (p < 0.001) of 0.30 mg Se/kg group were downregulated. The expressions of GPX1 in liver and muscle (p < 0.05 and p < 0.001), SELENON in muscle (p < 0.05), PHGDH in liver and muscle (p < 0.05), and SHMT1 (p < 0.05), MTHFR (p < 0.001), and MS (p < 0.001) in muscle of 0.3 mg Se/kg group were upregulated. The de novo serine synthesis pathway (SSP) was found to be activated in liver and muscle tissues of mice with a high-Se diet for the first time.


Asunto(s)
Ratones Endogámicos C57BL , Fosfoglicerato-Deshidrogenasa , Selenio , Animales , Masculino , Selenio/metabolismo , Ratones , Fosfoglicerato-Deshidrogenasa/metabolismo , Hígado/metabolismo , Transducción de Señal , Prueba de Tolerancia a la Glucosa
19.
Cell Tissue Res ; 395(3): 271-283, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38183459

RESUMEN

In skeletal muscle, the Hippo effector Yap promotes satellite cell, myoblast, and rhabdomyoblast proliferation but prevents myogenic differentiation into multinucleated muscle fibres. We previously noted that Yap drives expression of the first enzyme of the serine biosynthesis pathway, phosphoglycerate dehydrogenase (Phgdh). Here, we examined the regulation and function of Phgdh in satellite cells and myoblasts and found that Phgdh protein increased during satellite cell activation. Analysis of published data reveal that Phgdh mRNA in mouse tibialis anterior muscle was highly expressed at day 3 of regeneration after cardiotoxin injection, when markers of proliferation are also robustly expressed and in the first week of synergist-ablated muscle. Finally, siRNA-mediated knockdown of PHGDH significantly reduced myoblast numbers and the proliferation rate. Collectively, our data suggest that Phgdh is a proliferation-enhancing metabolic enzyme that is induced when quiescent satellite cells become activated.


Asunto(s)
Fosfoglicerato-Deshidrogenasa , Células Satélite del Músculo Esquelético , Ratones , Animales , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Proliferación Celular/fisiología , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Células Satélite del Músculo Esquelético/metabolismo
20.
Brain Behav Immun ; 117: 155-166, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38215888

RESUMEN

A "switch" in the metabolic pattern of microglia is considered to be required to meet the metabolic demands of cell survival and functions. However, how metabolic switches regulate microglial function remains controversial. We found here that exposure to amyloid-ß triggers microglial inflammation accompanied by increasing GAPDH levels. The increase of GAPDH, a glycolysis enzyme, leads to the reduced release of interferon-γ (IFN-γ) from inflammatory microglia. Such alternation is translational and is regulated by the binding of glycolysis enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through influencing IFN-γ expression, regulates microglia functions, including phagocytosis and cytokine production. Phosphoglycerate dehydrogenase (PHGDH), screened from different state microglia by metabolomics combined with METARECON analysis, is a metabolic enzyme adjacent downstream of GAPDH and synthesizes serine on the collateral pathway derived from glycolysis. Polarization of microglial with PHGDH as a metabolic checkpoint can be bidirectionally regulated by adding IL-4 or giving PHGDH inhibitors. Therefore, regulation of metabolic enzymes not only reprograms metabolic patterns, but also manipulates microglia functions. Further study should be performed to explore the mechanism of metabolic checkpoints in human microglia or more in vivo animal experiments, and may expand to the effects of various metabolic substrates or enzyme, such as lipids and amino acids, on the functions of microglia.


Asunto(s)
Microglía , Fosfoglicerato-Deshidrogenasa , Animales , Humanos , Fosfoglicerato-Deshidrogenasa/genética , Interferón gamma , Multiómica , Gliceraldehído-3-Fosfato Deshidrogenasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA