Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.551
Filtrar
1.
Open Med (Wars) ; 19(1): 20240991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091610

RESUMEN

Src-homology region 2 domain-containing phosphatase 1 (SHP-1) is considered an anti-inflammatory factor, but its role in chronic obstructive pulmonary disease (COPD) remains unknown. Herein, overexpression of SHP-1 was utilized to explore the functions of SHP-1 in COPD models established by stimulating 16HBE cells with cigarette smoke extracts (CSE) in vitro. SHP-1 was downregulated in both COPD patients and CES-treated 16HBE cells. SHP-1 overexpression reinforced cell viability and significantly prevented CSE-induced cell apoptosis in 16HBE cells. Furthermore, SHP-1 overexpression greatly reversed the CSE-induced migration, epithelial-mesenchymal transition (EMT), and pro-inflammatory factor production in 16HBE cells. In addition, CSE activated the P65 and PI3K/AKT pathways in 16HBE cells, which was also reversed by SHP-1 overexpression. Our findings indicated that SHP-1 alleviated CSE-induced EMT and inflammation in 16HBE cells, suggesting that SHP-1 regulated the development of COPD, and these functions may be linked to the inhibition of the PI3K/AKT pathway.

2.
Arch Pharm (Weinheim) ; : e2400418, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086040

RESUMEN

Green seaweed (Ulva sp.) is frequently used as a food component and nutraceutical agent because of its high polysaccharide and natural fiber content in Asian countries. This study investigates both metabolomic profiling of Ulva sp. and the neuroprotective efficacy of its ethanol extract and its underlying mechanisms in a rotenone-induced rat model of neurodegeneration, mimicking Parkinson's disease (PD) in humans. Metabolomic profiling of Ulva sp. extract was done using liquid chromatography high resolution electrospray ionization mass spectrometry and led to the identification of 22 compounds belonging to different chemical classes.Catenin Beta Additionally, this study demonstrated the neuroprotective properties against rotenone-induced PD, which was achieved through the suppression of elevated levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 together with the inhibition of reactive oxygen species (ROS) generation, apoptosis, inflammatory mediators, and the phosphoinositide 3-kinases/serine/threonine protein kinase (PI3K/AKT) pathway. Using a protein-protein interaction network, AKT1, GAPDH, TNF-α, IL-6, caspase 3, signal transducer and activator of transcription 3, Catenin Beta 1, epidermal growth factor receptor, B-cell lymphoma -2, and HSP90AA1 were identified as the top 10 most significant genes. Finally, molecular docking results showed that compounds 1, 3, and 7 might possess a promising anti-parkinsonism effect by binding to active sites of selected hub genes. Therefore, it is hypothesized that the Ulva sp. extract has the potential to be further developed as a potential therapeutic agent for the treatment of PD.

3.
Discov Oncol ; 15(1): 326, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090419

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) poses a serious threat to human health worldwide. lncRNA dysregulation is frequently observed in various cancers, including HCC. However, the function of LINC01370 in HCC progression and its underlying mechanisms remain unclear. METHODS: LINC01370 expression in HCC tissues with cells was analyzed by applying the GEO and GEPIA databases and qRT-PCR. CCK-8 and Transwell assays were used to assess HCC cell proliferation, migration, and invasion. The PI3K, AKT, with p-AKT protein expression were analyzed by western blotting. RESULTS: Gene Expression Omnibus (GEO) and Gene Expression Profiling Interactive Analysis (GEPIA) showed that LINC01370 expression was significantly lower in HCC tissues than in normal tissues. LINC01370 overexpression markedly repressed HepG2 SMMC-7721 cells proliferation, migration, and invasion. To understand the downstream mechanism of LINC01370 regulation, we further analyzed the genes co-expressed with LINC01370 in GSE136247 and GSE132037 and then performed KEGG analysis. The PA pathway was found to be a downstream pathway regulated by LINC01370 in GSE136247 and GSE132037 via gene co-expression and KEGG analysis. Furthermore, PI3K and p-AKT protein levels decreased after LINC01370 overexpression. Importantly, rescue experiments showed that activation of the PI3K/AKT pathway disrupted the repressive effect of LINC01370 overexpression on the proliferation, migration, and invasion of HepG2 of SMMC-7721 cells. CONCLUSIONS: This study verified that LINC01370 suppresses HCC proliferation with metastasis by regulating the PI3K/AKT pathway.

4.
Front Pharmacol ; 15: 1374720, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108752

RESUMEN

Cystathionine γ-lyase (CSE) is a major enzyme that produces hydrogen sulfide (H2S). Herein, we report how CSE plays a previously unknown role in regulating the antioxidant effects of the mitochondria in human umbilical vein endothelial cells by releasing H2S nearby under stress conditions. We found that H2S partially promoted angiogenesis in the endothelial cells through the AKT/nuclear factor erythroid 2-related factor 2 (AKT/NRF2) signaling pathway. H2S improved mitochondrial function by altering the expressions of the mitofusin2 and dynamin-1-like mitochondrial fission proteins to inhibit oxidative stress and enhance NRF2 nuclear translocation. CSE is located only in the cytoplasm and not in the mitochondria, but it is transported to the vicinity of the mitochondria to produce H2S, which plays an antioxidant role in human umbilical vein endothelial cells under stress. The CSE mutant (with mutated CSE activity center: CSED187A) partially decreased the effects on promoting angiogenesis, resisting oxidative stress, and entering the mitochondria. These results show that CSE translocation is a unique mechanism that promotes H2S production inside the mitochondria under stress stimulation. Therefore, the CSE mutant site (CSED187A) may be a potential target for drug therapy.

5.
Cell Commun Signal ; 22(1): 392, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118068

RESUMEN

Epithelial-mesenchymal transition (EMT) is a cellular process in embryonic development, wound healing, organ fibrosis, and cancer metastasis. Previously, we and others have reported that proinflammatory cytokine interleukin-1ß (IL-1ß) induces EMT. However, the exact mechanisms, especially the signal transduction pathways, underlying IL-1ß-mediated EMT are not yet completely understood. Here, we found that IL-1ß stimulation leads to the partial EMT-like phenotype in human lung epithelial A549 cells, including the gain of mesenchymal marker (vimentin) and high migratory potential, without the complete loss of epithelial marker (E-cadherin). IL-1ß-mediated partial EMT induction was repressed by PI3K inhibitor LY294002, indicating that the PI3K/AKT pathway plays a significant role in the induction. In addition, ERK1/2 inhibitor FR180204 markedly inhibited the IL-1ß-mediated partial EMT induction, demonstrating that the MEK/ERK pathway was also involved in the induction. Furthermore, we found that the activation of the PI3K/AKT and MEK/ERK pathways occurred downstream of the epidermal growth factor receptor (EGFR) pathway and the IL-1 receptor (IL-1R) pathway, respectively. Our findings suggest that the PI3K/AKT and MEK/ERK pathways coordinately promote the IL-1ß-mediated partial EMT induction. The inhibition of not one but both pathways is expected yield clinical benefits by preventing partial EMT-related disorders such as organ fibrosis and cancer metastasis.


Asunto(s)
Transición Epitelial-Mesenquimal , Interleucina-1beta , Sistema de Señalización de MAP Quinasas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Humanos , Interleucina-1beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células A549 , Receptores ErbB/metabolismo
6.
Placenta ; 155: 32-41, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39121585

RESUMEN

INTRODUCTION: Preeclampsia is a pregnancy-specific disorder characterized by de novo development of hypertension and proteinuria over 20 weeks gestation that has been associated with the dysfunction of trophoblasts. Current evidence suggests that syncytin-1 plays an important role in the non-fusogenic biological activity of trophoblasts, except for specific fusogenic function. However, the underlying mechanism remains unclear. METHODS: The expression and location of syncytin-1 in normal and the late-onset preeclampsia placentas were detected by quantitative real-time PCR, western blotting and immunofluorescence. Morphological and apoptosis analysis were processed in placentas. The ex vivo extravillous explant culture model was used to explore the effect of syncytin-1 on EVT outgrowths. Real-time quantitative PCR and immunoblotting were used to calculate syncytin-1 levels in the trophoblast cells before and after syncytin-1 knockdown or overexpression. CCK-8 assay was used to detect the cell viability. TUNEL staining and immunoblotting were processed in trophoblast cells. Transwell assays and wound healing assays were utilize to assess the invasion and migration of trophoblastic cells. Conditional knockout of syncytin-a mouse model was conducted to present the change of placentas in vivo. The ex vivo extravillous explant culture model was used to explore the effect of syncytin-1 on EVT outgrowths. Western blotting was used to identify the key proteins of PI3K/Akt pathways and invasion-related proteins in trophoblast cells. RESULTS AND DISCUSSION: Here, reduced syncytin-1 was identified in the late-onset preeclampsia placentas. Reduced syncytin-1 may attenuates the EMT process by promoting apoptosis, inhibiting proliferation and invasion by suppressed PI3K/Akt pathway in trophoblast cells. Our findings provide novel insights into the non-fusogenic biological function of reduced syncytin-1 that may be involves in the pathogenesis of preeclampsia.

7.
Neuropharmacology ; : 110119, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197819

RESUMEN

Perioperative neurocognitive disorders (PND) are intractable, indistinct, and considerably diminish the postoperative quality of life of patients. It has been proved that Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was involved in neurodegenerative diseases by regulating mitochondrial biogenesis. The underlying mechanisms of PGC-1α and Nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome in PND are not well understood. In this study, we constructed a model of laparotomy in aged mice, and then examined the cognition changes with novel object recognition tests and fear condition tests. The protein levels of PGC-1α and NLRP3 in the hippocampus were detect after surgery. Our results showed that NLRP3 and downstream PI3K/AKT pathway expressions were augmented in the hippocampus after surgery, whereas, the expressions of PGC-1α/estrogen-related receptor α (ERRα)/Unc-51-like autophagy activating kinase 1 (ULK1) pathway were diminished after surgery. In addition, we found that NLRP3 was mainly co-localized with neurons in the hippocampus, and synaptic-related proteins were reduced after surgery. At the same time, transmission electron microscopy (TEM) showed that mitochondria were impaired after surgery. Pharmacological treatment of MCC950, a selective NLRP3 inhibitor, effectively alleviated PND. Activation of PGC-1α with ZLN005 significantly ameliorated PND by enhancing the PGC-1α/ERRα/ULK1 signaling pathway, and further suppressing NLRP3 activation. As a result, we conclude that suppression of the PGC-1α/ERRα/ULK1 signaling pathway is the primary mechanism of PND which caused mitochondrial dysfunction, and activated NLRP3 inflammasome and downstream PI3K/AKT pathway, eventually improved cognitive dysfunction.

8.
Front Pharmacol ; 15: 1418588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130629

RESUMEN

Background: Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes mellitus that can lead to end-stage renal disease. Colquhounia root tablet (CRT) has shown therapeutic potential in treating DKD, but its efficacy and underlying mechanisms remain to be elucidated. Methods: A randomized controlled clinical trial was conducted on 61 DKD patients. The treatment group received CRT in addition to standard therapy, while the control group received standard therapy alone. Treatment efficacy and adverse events were evaluated after 3 months. Additionally, in vitro experiments using human renal tubular epithelial cells (HK-2) were performed to investigate the effect of CRT on high glucose (HG)-induced epithelial-mesenchymal transition (EMT) and the involvement of the PTEN/PI3K/AKT signaling pathway. Results: CRT treatment significantly improved proteinuria and increased the effective treatment rate in DKD patients compared to the control group, with no significant difference in adverse events. Moreover, CRT reversed HG-induced EMT in HK-2 cells, as evidenced by the downregulation of α-SMA and upregulation of E-cadherin at both mRNA and protein levels. Mechanistically, CRT increased PTEN expression and inhibited the PI3K/AKT pathway, similar to the effects of the PI3K inhibitor LY29400. The combination of CRT and LY29400 further enhanced PTEN mRNA expression under HG conditions. Conclusion: CRT effectively improves proteinuria in DKD patients and ameliorates HG-induced EMT in HK-2 cells. The underlying mechanism may involve the upregulation of PTEN and subsequent inhibition of the PI3K/AKT signaling pathway. These findings provide new insights into the therapeutic potential of CRT for DKD treatment.

9.
J Pharm Pharmacol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39173028

RESUMEN

OBJECTIVES: To unveil the mechanism of the Bufei Huoxue formula (BHF) for chronic obstructive pulmonary disease (COPD) through integrated network pharmacology (NP) and experimental verification. METHODS: LC-MS was first applied to the analysis of both in vitro and in vivo samples from BHF for chemical profiling. Then a ligand library was prepared for NP to reveal the mechanism of BHF against COPD. Finally, verification was performed using an animal model related to the results from the NP. KEY FINDINGS: A ligand library containing 170 compounds from BHF was obtained, while 357 targets related to COPD were filtered to construct a PPI network. GO and KEGG analysis demonstrated that bavachin, paeoniflorin, and demethylation of formononetin were the major compounds for BHF against COPD, which mainly by regulating the PI3K/Akt pathway. The experiments proved that BHF could alleviate lung injury and attenuate the release of TNF-α and IL-6 in the lung and BALF in a dose-dependent manner. Western blot further demonstrated the down-regulated effect of BHF on p-PI3K. CONCLUSION: BHF provides a potent alternative for the treatment of COPD, and the mechanism is probably associated with regulating the PI3K/AKT pathway to alleviate inflammatory injury by bavachin, paeoniflorin, and demethylation of formononetin.

10.
Int J Immunopathol Pharmacol ; 38: 3946320241276336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39180753

RESUMEN

Background: Spinal cord glioma (SCG), a rare subset of central nervous system (CNS) glioma, represents a complex challenge in neuro-oncology. There has been research showing that Retinol Dehydrogenase 10 (RDH10) may be a tumor promoting factor in brain glioma, but the biological effects of RDH10 remain undefined in SCG. Methods: We performed gene set enrichment analysis (GSEA) and unsupervised clustering analysis to investigate the roles of EMT (epithelial-mesenchymal transition) in glioma. DEG (differently expressed gene) screening and correlation analysis were conducted to filter the candidate genes which were closely associated with EMT process in SCG. Enrichment analysis and GSVA (Gene Set Variation Analysis) were conducted to investigate the potential mechanism of RDH10 for SCG. Trans-well and healing assay were performed to explore the role of RDH10 in the invasion of SCG. Western blotting was performed to evaluate the levels of markers in PI3K-AKT and EMT pathway. In vivo tests were conducted to verify the role of RDH10 in EMT process. Results: Bioinformatic analysis demonstrated the EMT pathway was associated with dismal prognosis of glioma. Further analysis demonstrated that RDH10 showed the strongest correlation with the EMT process. Retinol Dehydrogenase 10 expression was significantly increased in SCG tissues, correlating with advanced tumor grade and unfavorable prognosis. Functional analysis indicated that decreasing RDH10 levels impeded the invasive and migratory abilities of SCG cells, whereas increasing RDH10 levels augmented them. Enrichment analysis and western blot revealed that RDH10 regulated EMT process of SCG by PI3K-AKT pathway. We observed that the enhanced invasion ability and increased EMT-related protein induced by RDH10 overexpression can be suppressed by PI3K-AKT pathway inhibitor (LY294002). Conclusion: Our research found that RDH10 was an effective biomarker associated with tumor grade and prognosis of SCG. RDH10 could regulate EMT process of SCG through PI3K-AKT pathway.


Asunto(s)
Oxidorreductasas de Alcohol , Transición Epitelial-Mesenquimal , Glioma , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Humanos , Glioma/patología , Glioma/genética , Glioma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Animales , Neoplasias de la Médula Espinal/patología , Neoplasias de la Médula Espinal/genética , Neoplasias de la Médula Espinal/metabolismo , Movimiento Celular , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica , Masculino , Ratones
11.
Int Immunopharmacol ; 141: 112915, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146784

RESUMEN

Cerebral ischemia-reperfusion injury (CI/RI) is a leading cause of disability and mortality worldwide, with limited therapeutic options available. Erianin, a natural compound derived from traditional Chinese medicine, has been reported to possess anti-inflammatory and neuroprotective properties. This study aimed to investigate the therapeutic potential of Erianin in CI/RI and elucidate its underlying mechanisms. Network pharmacology analysis predicted that Erianin could target the PI3K/AKT pathway, which are closely associated with CI/RI. In vivo experiments using a rat model of CI/RI demonstrated that Erianin treatment significantly alleviated neurological deficits, reduced infarct volume, and attenuated neuronal damage. Mechanistically, Erianin inhibited microglial cell polarization towards the pro-inflammatory M1 phenotype, as evidenced by the modulation of specific markers. Furthermore, Erianin suppressed the expression of pro-inflammatory cytokines and mediators, such as TNF-α, IL-6, and COX-2, while enhancing the production of anti-inflammatory factors, including Arg1, CD206, IL-4 and IL-10. In vitro studies using oxygen-glucose deprivation/reoxygenation (OGD/R)-stimulated microglial cells corroborated the anti-inflammatory and anti-apoptotic effects of Erianin. Notably, Erianin inhibited the NF-κB signaling pathway by inhibiting p65 phosphorylation and preventing the nuclear translocation of the p65 subunit. Collectively, these findings suggest that Erianin represents a promising therapeutic candidate for CI/RI by targeting microglial cell polarization and inflammation.

12.
Front Cell Dev Biol ; 12: 1431423, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156976

RESUMEN

The PI3K/AKT/GSK-3ß signaling pathway plays a pivotal role in numerous physiological and pathological processes, including cell proliferation, apoptosis, differentiation, and metabolic regulation. Aberrant activation of the PI3K/AKT pathway is intricately linked to development of tumor. GSK-3ß, belonging to the serine/threonine protein kinase family, is crucial in the pathogenesis of liver cancer. As a key rate-limiting enzyme in the glucose metabolism pathway, GSK-3ß significantly impacts the growth, proliferation, metastasis, and apoptosis of liver cancer cells. It is also implicated in chemotherapy resistance. Elevated expression of GSK-3ß diminishes the sensitivity of liver cancer cells to chemotherapeutic agents, thereby playing a substantial role in the development of drug resistance. Consequently, targeting of GSK-3ß, particularly within the PI3K/AKT signaling pathway, is regarded as a promising therapeutic strategy for liver cancer. The precise identification and subsequent modulation of this pathway represent a substantial potential for innovative clinical interventions in the management of liver cancer.

13.
Front Cell Dev Biol ; 12: 1442193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161590

RESUMEN

The role of long noncoding RNA (lncRNA) in tumors, particularly in gastrointestinal tumors, has gained significant attention. Accumulating evidence underscores the interaction between various lncRNAs and diverse molecular pathways involved in cancer progression. One such pivotal pathway is the PI3K/AKT pathway, which serves as a crucial intracellular mechanism maintaining the balance among various cellular physiological processes for normal cell growth and survival. Frequent dysregulation of the PI3K/AKT pathway in cancer, along with aberrant activation, plays a critical role in driving tumorigenesis. LncRNAs modulate the PI3K/AKT signaling pathway through diverse mechanisms, primarily by acting as competing endogenous RNA to regulate miRNA expression and associated genes. This interaction significantly influences fundamental biological behaviors such as cell proliferation, metastasis, and drug resistance. Abnormal expression of numerous lncRNAs in gastrointestinal tumors often correlates with clinical outcomes and pathological features in patients with cancer. Additionally, these lncRNAs influence the sensitivity of tumor cells to chemotherapy in multiple types of gastrointestinal tumors through the abnormal activation of the PI3K/AKT pathway. These findings provide valuable insights into the mechanisms underlying gastrointestinal tumors and potential therapeutic targets. However, gastrointestinal tumors remain a significant global health concern, with increasing incidence and mortality rates of gastrointestinal tumors over recent decades. This review provides a comprehensive summary of the latest research on the interactions of lncRNA and the PI3K/AKT pathway in gastrointestinal tumor development. Additionally, it focuses on the functions of lncRNAs and the PI3K/AKT pathway in carcinogenesis, exploring expression profiles, clinicopathological characteristics, interaction mechanisms with the PI3K/AKT pathway, and potential clinical applications.

14.
Pathol Res Pract ; 262: 155540, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142241

RESUMEN

The PI3K/Akt pathway plays a critical role in the progression and treatment of oral squamous cell carcinoma (OSCC). Recent research has uncovered the involvement of long non-coding RNAs (lncRNAs) in regulating this pathway, influencing OSCC cell proliferation, survival, and metastasis. This review explores the latest findings on how certain lncRNAs act as either cancer promoters or cancer inhibitors within the PI3K/Akt signaling pathway. Certain lncRNAs act as oncogenic or tumor-suppressive agents, making them potential diagnostic and prognostic markers. Targeting these lncRNAs may lead to novel therapeutic strategies. The evolving fields of precision medicine and artificial intelligence promise advancements in OSCC diagnosis and treatment, enabling more personalized and effective patient care.

15.
Immunol Lett ; 269: 106907, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122094

RESUMEN

The present study focused on the efficacy and role of triptolide (TPL) in relieving symptoms of acute gouty arthritis (AGA) in vivo and in vitro. The effects of TPL in AGA were investigated in monosodium urate (MSU)-treated rat ankles, RAW264.7 macrophages, and neutrophils isolated from mouse peritoneal cavity. Observation of pathological changes in the ankle joint of rats. Enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (RT-qPCR) were performed to detect the expression levels of inflammatory factors and chemokines. The levels of the indicators of macrophage M1/M2 polarization, and the mechanistic targets of Akt and rapamycin complex 2, were determined via western blotting and RT-qPCR. The expression levels of CD86 and CD206 were detected using immunohistochemistry. Neutrophil migration was observed via air pouch experiments in vivo and Transwell cell migration assay in vitro. Myeloperoxidase (MPO) and Neutrophil elastase (NE) release was analyzed by via immunohistochemistry and immunofluorescence. The expression levels of beclin-1, LC3B, Bax, Bcl-2, and cleaved caspase-3 in neutrophils were determined via western blotting and immunofluorescence. Neutrophil apoptosis was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Our results suggest that TPL inhibited inflammatory cell infiltration in rat ankle joints and inflammatory factor and chemokine secretion in rat serum, regulated macrophage polarization through the PI3K/AKT signaling pathway, suppressed inflammatory factor and chemokine expression in neutrophils, and inhibited neutrophil migration, neutrophil extracellular trap formation, transitional autophagy, and apoptosis. This suggests that TPL can prevent and treat MSU-induced AGA by regulating macrophage polarization through the PI3K/Akt pathway and modulating neutrophil activity.

16.
Toxicology ; 508: 153924, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147091

RESUMEN

Nicotine, the primary constituent of tobacco, is one of the important factors that induce the occurrence of hepatocellular carcinoma (HCC). The ß2-adrenergic receptor (ß2-AR) is implicated in the growth and advancement of tumors. However, the role of ß2-AR and its mediated cascades in nicotine-induced HCC remains unclear. This present study aims to observe the effects of nicotine on the proliferation, migration, and invasion of immortalized human liver epithelial (THLE-2) cells, as well as to explore the underlying mechanisms of action. The results of cell counting kit-8 (CCK-8) assay showed that 0.3125 µM nicotine had the ability to promote the proliferation of THLE-2 cells with a significant time-dependent manner. Therefore, THLE-2 cells were mainly selected for chronic treatment with 0.3125 µM nicotine in the later stage to cause transformation. After 30 passages of THLE-2 cells with 0.3125 µM nicotine treatment, chronic exposure to nicotine significantly enhanced the proliferation, metastasis, and invasion of cells. Besides, it also upregulated the intracellular levels of ß2-AR, phosphoinositide 3-kinase (PI3K), AKT, matrix metalloproteinase-2 (MMP-2) and Cyclin D1, as well as downregulated the expression of p53. More importantly, the ß2-AR/PI3K/AKT pathway was found to mediate the expression of MMP-2, Cyclin D1, and p53 in THLE-2 cells, playing a crucial role in their proliferation, migration, and invasion after continuous exposure to nicotine. Simply put, it demonstrated the role of ß2-AR/PI3K/AKT pathway in the transformation of THLE-2 cells induced by nicotine. This study could provide valuable insights into the relationship between nicotine and HCC. Additionally, it lays the groundwork for investigating potential anticancer treatments for liver cancer linked to tobacco consumption.

17.
Biomolecules ; 14(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39199428

RESUMEN

PURPOSE: This study aims to explore the potential mechanisms of esculin in the treatment of renal cell carcinoma (RCC). METHODS: We employed network pharmacology to predict the potential mechanisms and targets of esculin in RCC. Molecular docking techniques were then employed to validate the predicted targets. Additionally, a series of in vitro experiments were conducted to verify the anticancer effects of esculin on RCC cells, including the CCK-8 assay, EdU assay, wound healing assay, apoptosis assay, and Western blot. RESULTS: Network pharmacology and molecular docking results identified GAPDH, TNF, GSK3B, CCND1, MCL1, IL2, and CDK2 as core targets. GO and KEGG analyses suggested that esculin may influence apoptotic processes and target the PI3K/Akt pathway in RCC. Furthermore, the CCK-8 assay demonstrated that esculin inhibited RCC cell viability. Microscopic observations revealed that following esculin treatment, there was an increase in cell crumpling, a reduction in cell density, and an accumulation of floating dead cells. Additionally, with increasing esculin concentrations, the proportion of EdU-positive cells decreased, the wound closure ratio decreased, the proportion of PI-positive cells increased, the expression levels of BAX and cleaved-caspase-3 proteins increased, and the expression level of Bcl2 protein decreased. These findings suggested that esculin inhibits the proliferation and migration of RCC cells while promoting apoptosis. Moreover, esculin was found to target GAPDH and inhibit the PI3K/Akt pathway. CONCLUSIONS: This study is the first to elucidate the therapeutic effects of esculin on RCC cells. The results provide evidence supporting the clinical application of esculin and introduce a promising new candidate for RCC treatment.


Asunto(s)
Apoptosis , Carcinoma de Células Renales , Esculina , Neoplasias Renales , Simulación del Acoplamiento Molecular , Farmacología en Red , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Esculina/farmacología , Esculina/química , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Movimiento Celular/efectos de los fármacos
18.
Cancers (Basel) ; 16(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39199570

RESUMEN

This review delves into the intricate roles of interleukin-8 (IL-8) and its receptors, CXCR1 and CXCR2, in prostate cancer (PCa), particularly in castration-resistant (CRPC) and metastatic CRPC (mCRPC). This review emphasizes the crucial role of the tumour microenvironment (TME) and inflammatory cytokines in promoting tumour progression and response to tumour cell targeting agents. IL-8, acting through C-X-C chemokine receptor type 1 (CXCR1) and type 2 (CXCR2), modulates multiple signalling pathways, enhancing the angiogenesis, proliferation, and migration of cancer cells. This review highlights the shift in PCa research focus from solely tumour cells to the non-cancer-cell components, including vascular endothelial cells, the extracellular matrix, immune cells, and the dynamic interactions within the TME. The immunosuppressive nature of the PCa TME significantly influences tumour progression and resistance to emerging therapies. Current treatment modalities, including androgen deprivation therapy and chemotherapeutics, encounter persistent resistance and are complicated by prostate cancer's notably "immune-cold" nature, which limits immune system response to the tumour. These challenges underscore the critical need for novel approaches that both overcome resistance and enhance immune engagement within the TME. The therapeutic potential of inhibiting IL-8 signalling is explored, with studies showing enhanced sensitivity of PCa cells to treatments, including radiation and androgen receptor inhibitors. Clinical trials, such as the ACE trial, demonstrate the efficacy of combining CXCR2 inhibitors with existing treatments, offering significant benefits, especially for patients with resistant PCa. This review also addresses the challenges in targeting cytokines and chemokines, noting the complexity of the TME and the need for precision in therapeutic targeting to avoid side effects and optimize outcomes.

19.
Int J Biol Macromol ; 278(Pt 4): 134838, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159798

RESUMEN

Fucoxanthin (FX), a non-provitamin-A carotenoid, is a well-known major xanthophyll contained in edible brown algae. The nanoencapsulation of FX was motivated due to its multiple activities. Here, nano-encapsulated-FX (nano-FX) was prepared according to our early method by using whey protein and flaxseed gum as the biomacromolecule carrier material, then in vivo antitumor effect and mechanism of nano-FX on xenograft mice were investigated. Thirty 4-week-old male BALB/c nude mice were fed adaptively for 7 days to establish xenograft tumor model with Huh-7 cells. The tumor-bearing mice consumed nano-FX (50, 25, and 12.5 mg kg-1) and doxorubicin hydrochloride (DOX, 1 mg kg-1) or did not consume (Control) for 21 days, n = 6. The tumor inhibition rates of nano-FX were as high as 54.67 ± 1.04 %. Nano-FX intervention promoted apoptosis and induced hyperchromatic pyknosis and focal necrosis in tumor tissue by down-regulating the expression of p-JNK, p-ERK, PI3Kp85α, p-AKT, p-p38MAPK, Bcl-2, CyclinD1 and Ki-67, while up-regulating the expression of cleaved caspase-3 and Bax. Nano-FX inhibited tumor growth and protected liver function of tumor bearing mice in a dose-dependent manner, up-regulate the level of apoptosis-related proteins, inhibit the MAPK-PI3K/Akt pathways, and promote tumor cell apoptosis.

20.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1117-1125, 2024 Jun 20.
Artículo en Chino | MEDLINE | ID: mdl-38977341

RESUMEN

OBJECTIVE: To investigate the mechanism by which CDHR2 overexpression inhibits breast cancer cell growth and cell cycle pragression via the PI3K/Akt signaling pathway. METHODS: Bioinformatic analysis was performed to investigate CDHR2 expression in breast cancer and its correlation with survival outcomes of the patients. Immunohistochemistry was used to examine CDHR2 expressions in surgical specimens of tumor and adjacent tissues from 10 patients with breast cancer. CDHR2 expression levels were also detected in 5 breast cancer cell lines and a normal human mammary epithelial cell line using qRT-PCR and Western blotting. Breast cancer cell lines MDA-MB-231 and MCF7 with low CDHR2 expression were transfected with a CDHR2-overexpressing plasmid, and the changes in cell proliferation and cell cycle were evaluated using CCK-8 assay, EdU assay, and cell cycle assay; the changes in expressions of PI3K/Akt signaling pathway and cell cycle pathway proteins were detected with Western blotting. RESULTS: Bioinformatic analysis showed low CDHR2 expression level in both breast cancer and adjacent tissues without significant difference between them (P > 0.05), but breast cancer patients with a high expression of CDHR2 had a more favorable prognosis. Immunohistochemistry, qRT-PCR and Western blotting showed that the expression of CDHR2 was significantly down-regulated in breast cancer tissues and breast cancer cells (P < 0.01), and its overexpression strongly inhibited cell proliferation, caused cell cycle arrest, and significantly inhibited PI3K and Akt phosphorylation and the expression of cyclin D1. CONCLUSION: Overexpression of CDHR2 inhibits proliferation and causes cell cycle arrest in breast cancer cells possibly by inhibiting the PI3K/Akt signaling pathway.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Femenino , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Ciclo Celular , Células MCF-7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA