Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell Commun Signal ; 22(1): 422, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223673

RESUMEN

Post-translational SUMOylation of nuclear and cytosolic proteins maintains homeostasis in eukaryotic cells and orchestrates programmed responses to changes in metabolic demand or extracellular stimuli. In excitable cells, SUMOylation tunes the biophysical properties and trafficking of ion channels. Ion channel SUMOylation status is determined by the opposing enzyme activities of SUMO ligases and deconjugases. Phosphorylation also plays a permissive role in SUMOylation. SUMO deconjugases have been identified for several ion channels, but their corresponding E3 ligases remain unknown. This study shows PIAS3, a.k.a. KChAP, is a bona fide SUMO E3 ligase for Kv4.2 and HCN2 channels in HEK cells, and endogenous Kv4.2 and Kv4.3 channels in cardiomyocytes. PIAS3-mediated SUMOylation at Kv4.2-K579 increases channel surface expression through a rab11a-dependent recycling mechanism. PKA phosphorylation at Kv4.2-S552 reduces the current mediated by Kv4 channels in HEK293 cells, cardiomyocytes, and neurons. This study shows PKA mediated phosphorylation blocks Kv4.2-K579 SUMOylation in HEK cells and cardiomyocytes. Together, these data identify PIAS3 as a key downstream mediator in signaling cascades that control ion channel surface expression.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Miocitos Cardíacos , Proteínas Inhibidoras de STAT Activados , Canales de Potasio Shal , Sumoilación , Humanos , Células HEK293 , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Animales , Miocitos Cardíacos/metabolismo , Canales de Potasio Shal/metabolismo , Canales de Potasio Shal/genética , Fosforilación , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
2.
Biomedicines ; 12(9)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39335615

RESUMEN

BACKGROUND: Signal transducer and activator of transcription 3 (STAT3) is a member of the cytoplasmic inducible transcription factors and plays an important role in mediating signals from cytokines, chemokines, and growth factors. We and others have found that STAT3 directly regulates pro-fibrotic signaling in the kidney. The STAT3 protein-protein interaction plays an important role in activating its transcriptional activity. It is necessary to identify these interactions to investigate their function in kidney disease. Here, we investigated the protein-protein interaction among three species to find crucial interactions that can be targeted to alleviate kidney disease. METHOD: In this study, we examined common protein-protein interactions leading to the activation or downregulation of STAT3 among three different species: humans (Homo sapiens), mice (Mus musculus), and rabbits (Oryctolagus cuniculus). Further, we chose to investigate the P300 and STAT3 interaction and performed studies of the activation of STAT3 using IL-6 and inhibition of the P300 by its specific inhibitor A-485 in pericytes. Next, we performed immunoprecipitation to confirm whether A-485 inhibits the binding of P300 to STAT3. RESULTS: Using the STRING application from ExPASy, we found that six proteins, including PIAS3, JAK1, JAK2, EGFR, SRC, and EP300, showed highly confident interactions with STAT3 in humans, mice, and rabbits. We also found that IL-6 treatment increased the acetylation of STAT3 and increased histone 3 lysine acetylation (H3K27ac). Furthermore, we found that the disruption of STAT3 and P300 interaction by the P300 inhibitor A-485 decreased STAT3 acetylation and H3K27ac. Finally, we confirmed that the P300 inhibitor A-485 inhibited the binding of STAT3 with P300, which inhibited its transcriptional activity by reducing the expression of Ccnd1 (Cyclin D1). CONCLUSIONS: Targeting the P300 protein interaction with STAT3 may alleviate STAT3-mediated fibrotic signaling in humans and other species.

3.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119771, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38844181

RESUMEN

AMP-activated protein kinase (AMPK) is a typical sensor of intracellular energy metabolism. Our previous study revealed the role of activated AMPK in the suppression of osteogenic differentiation and traumatic heterotopic ossification, but the underlying mechanism remains poorly understood. The E3 ubiquitin ligase Smurf1 is a crucial regulator of osteogenic differentiation and bone formation. We report here that Smurf1 is primarily SUMOylated at a C-terminal lysine residue (K324), which enhances its activity, facilitating ALK2 proteolysis and subsequent bone morphogenetic protein (BMP) signaling pathway inhibition. Furthermore, SUMOylation of the SUMO E3 ligase PIAS3 and Smurf1 SUMOylation was suppressed during the osteogenic differentiation and traumatic heterotopic ossification. More importantly, we found that AMPK activation enhances the SUMOylation of Smurf1, which is mediated by PIAS3 and increases the association between PIAS3 and AMPK. Overall, our study revealed that Smurf1 can be SUMOylated by PIAS3, Furthermore, Smurf1 SUMOylation mediates osteogenic differentiation and traumatic heterotopic ossification through suppression of the BMP signaling pathway. This study revealed that promotion of Smurf1 SUMOylation by AMPK activation may be implicated in traumatic heterotopic ossification treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diferenciación Celular , Osificación Heterotópica , Osteogénesis , Proteínas Inhibidoras de STAT Activados , Sumoilación , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Osteogénesis/genética , Animales , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Osificación Heterotópica/metabolismo , Osificación Heterotópica/genética , Osificación Heterotópica/patología , Transducción de Señal , Ratones , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Células HEK293
4.
Free Radic Biol Med ; 221: 188-202, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38750767

RESUMEN

Alterations in zinc transporter expression in response to zinc loss protect cardiac cells from ischemia/reperfusion (I/R) injury. However, the underlying molecular mechanisms how cardiac cells sense zinc loss remains unclear. Here, we found that zinc deficiency induced ubiquitination and degradation of the protein inhibitor of activated STAT3 (PIAS3), which can alleviate myocardial I/R injury by activating STAT3 to promote the expression of ZIP family zinc transporter genes. The RING finger domain within PIAS3 is vital for PIAS3 degradation, as PIAS3-dRing (missing the RING domain) and PIAS3-Mut (zinc-binding site mutation) were resistant to degradation in the setting of zinc deficiency. Meanwhile, the RING finger domain within PIAS3 is critical for the inhibition of STAT3 activation. Moreover, PIAS3 knockdown increased cardiac Zn2+ levels and reduced myocardial infarction in mouse hearts subjected to I/R, whereas wild-type PIAS3 overexpression, but not PIAS3-Mut, reduced cardiac Zn2+ levels, and exacerbated myocardial infarction. These findings elucidate a unique mechanism of zinc sensing, showing that fast degradation of the zinc-binding regulatory protein PIAS3 during zinc deficiency can correct zinc dyshomeostasis and alleviate reperfusion injury.


Asunto(s)
Daño por Reperfusión Miocárdica , Proteínas Inhibidoras de STAT Activados , Factor de Transcripción STAT3 , Ubiquitinación , Zinc , Animales , Zinc/metabolismo , Zinc/deficiencia , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Ratones , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Masculino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Humanos , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
5.
Cell Biochem Biophys ; 82(2): 1381-1387, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733503

RESUMEN

Oxidative stress is involved in the pathological processes of many neurodegenerative diseases. Protein modification by small ubiquitin-like modifiers (SUMOs) has been implicated in oxidative stress injury. By conjugating SUMOs to their selective protein substrates, SUMO ligases play critical roles in regulating functions of proteins involved in oxidative stress injury. In this study, we screened siRNAs to knockdown the SUMO ligase PIAS3 to assess its role in H2O2-induced injury in HT22 cells. H2O2 stimulation increased total protein SUMOylation, facilitated intracellular reactive oxygen species (ROS) release, increased cleaved caspase-3 levels, promoted p38 and JNK activation (phosphorylation), upregulated apoptosis, and decreased cell viability. The siRNA against PIAS3 329-347 (siPIAS3-329) markedly downregulated the protein expression of PIAS3 and reversed these effects, whereas siNC (negative control) had no effect. Our findings demonstrate that PIAS3-mediated SUMOylation facilitates oxidative stress injury and p38/JNK-mediated cell apoptosis and that PIAS3 is a potential target to protect against oxidative stress injury.


Asunto(s)
Apoptosis , Peróxido de Hidrógeno , Estrés Oxidativo , Proteínas Inhibidoras de STAT Activados , Sumoilación , Proteínas Quinasas p38 Activadas por Mitógenos , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Animales , Ratones , Apoptosis/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Línea Celular , ARN Interferente Pequeño/metabolismo , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Chaperonas Moleculares/metabolismo
6.
J Nat Med ; 78(2): 285-295, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38082192

RESUMEN

The natural product Honokiol exhibits robust antitumor activity against a range of cancers, and it has also received approval to undergo phase I clinical trial testing. We confrmed that honokiol can promote the apoptotic death of tumor cells through cell experiments. Then siRNA constructs specific for PIAS3, PIAS3 overexpression plasmid and the mutation of the STAT3 Tyr705 residue were used to confirm the mechanism of Honokiol-induced apoptosis. Finally, we confrmed that honokiol can promote PIAS3 upregulation, in turn suppressing STAT3 Tyr705 phosphorylation through the in vivo and in vitro experiments. Honokiol was ultimately found to reduce tumor cell viability by promoting apoptosis through a mechanism dependent on the ability of Honokiol to promote PIAS3 upregulation and the selective inhibition of p-STAT3 (Tyr705) without affecting p-STAT3 (Ser727) or p-STAT1 (Tyr701) levels. PIAS3 knockdown and overexpression in tumor cells altered STAT3 activation and associated DNA binding activity through the control of Tyr705 phosphorylation via PIAS3-STAT3 complex formation, ultimately shaping Honokiol-induced tumor cell apoptosis. Honokiol was also confirmed to significantly prolong the survival of mice bearing xenograft tumors in a PIAS3-dependent fashion. Together, these findings highlight a novel pathway through which Honokiol can promote PIAS3 upregulation, in turn suppressing STAT3 Tyr705 phosphorylation and promoting the apoptotic death of tumor cells.


Asunto(s)
Compuestos Alílicos , Apoptosis , Compuestos de Bifenilo , Fenoles , Tirosina , Humanos , Animales , Ratones , Fosforilación , Regulación hacia Arriba , Línea Celular Tumoral , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
7.
Pharmacol Res ; 196: 106915, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37689128

RESUMEN

Ferroptosis has been suggested to play a potential role in cancer therapy as an iron-dependent programmed cell death mechanism distinct from other forms. Hepatocellular carcinoma (HCC) remains a great threat, with high mortality and limited therapeutic options. The induction of ferroptosis has emerged as a novel and promising therapeutic strategy for HCC. In the present study, we identified protein inhibitor of activated STAT3 (PIAS3) as a driver of ferroptosis in HCC using TMT-based quantitative proteomics and ferroptosis-related functional assays. Mechanistically, thioredoxin-interacting protein (TXNIP) was confirmed to be PIAS3 in promoting ferroptotic cell death, based on RNA-seq analysis. Knockdown of TXNIP degrades ferroptotic susceptibility caused by PIAS3-overexpression, whereas transfection-forced reexpression of TXNIP restores sensitivity to ferroptosis in PIAS3-downregulated cells. PIAS3 interacts with SMAD2/3 to activate transforming growth factor (TGF)-ß signaling, leading to increased TXNIP expression. Our study revealed the critical role of PIAS3 in ferroptosis and a novel actionable axis-PIAS3/TGF-ß/TXNIP that could govern ferroptotic sensitivity, paving the path for using ferroptosis as an efficient approach in HCC therapies.

8.
Atherosclerosis ; 380: 117195, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37586220

RESUMEN

BACKGROUND AND AIMS: Phenotypic switching of vascular smooth muscle cells (VSMCs) plays an essential role in the development of atherosclerosis. Protein inhibitor of activated STAT (Pias) regulates VSMCs phenotype via acting as sumo E3 ligase to promote protein sumoylation. Our previous study indicated that Pias3 expression decreased in atherosclerotic lesions. Therefore, this study aimed to explore the role of Pias3 on VSMCs phenotype switching during atherosclerosis. METHODS: ApoE-/- and ApoE-/-Pias3-/- double-deficient mice were fed with high-fat/high-cholesterol diet to induce atherosclerosis. Aorta tissues and primary VSMCs were collected to assess plaque formation and VSMCs phenotype. In vitro, Pias3 was overexpressed in A7r5, a VSMCs cell line, by transfection with Pias3 plasmid. Real-time quantitative PCR, immunoblotting, immunoprecipitation, were used to analyze the effect of Pias3 on VSMCs phenotypic switching. RESULTS: Pias3 deficiency significantly exacerbated atherosclerotic plaque formation and promoted VSMCs phenotypic switching to a synthetic state within lesion. In vitro, overexpressing Pias3 in VSMCs increased the expression of contractile markers (myosin heavy chain 11, calponin 1), while it decreased the level of synthetic marker (vimentin). Additionally, Pias3 overexpression blocked PDGF-BB-induced VSMCs proliferation and migration. Immunoprecipitation and mass spectrometry results showed that Pias3 enhanced sumoylation and ubiquitination of vimentin, and shortened its half-life. Moreover, the ubiquitination level of vimentin was impaired by 2-D08, a sumoylation inhibitor. This suggests that Pias3 might accelerate the ubiquitination-degradation of vimentin by promoting its sumoylation. CONCLUSIONS: These results indicate that Pias3 might ameliorate atherosclerosis progression by suppressing VSMCs phenotypic switching and reducing vimentin protein stability.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Ratones , Animales , Vimentina/genética , Vimentina/metabolismo , Músculo Liso Vascular/patología , Aterosclerosis/patología , Fenotipo , Apolipoproteínas E/genética , Miocitos del Músculo Liso/patología , Proliferación Celular , Células Cultivadas
9.
J Dermatol ; 50(10): 1262-1271, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37392066

RESUMEN

Psoriasis is a common chronic inflammatory multisystem disease accompanied by hyperproliferation and inflammation of epidermal keratinocytes. Signal transducer and activator of transcription 3 (STAT3) is constitutively activated and plays an important role in epidermal keratinocytes of human psoriatic skin lesions. In this study, we investigated the effects of an endogenous STAT3 inhibitor, a protein inhibitor of activated STAT3 (PIAS3), on the proliferation and inflammation of psoriatic cells. The expression of PIAS3 in psoriatic tissues and healthy skin was analyzed using the Gene Expression Omnibus database and clinical samples. The human immortalized epidermal (HaCaT) cells were used to establish an in vitro psoriasis-like cell model. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-thethrazolium (MTS) assay was used to detect cell proliferation. Flow cytometry was used to determine apoptosis levels. Real-time PCR, western blotting, and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression levels of related factors. Furthermore, a mouse model of imiquimod (IMQ)-induced psoriatic dermatitis was established to verify the in vitro experimental results. The results showed that the mRNA and protein expression levels of PIAS3 were lower in psoriatic lesions than in normal tissues. PIAS3 inhibited the proliferation and promoted apoptosis of M5-induced HaCaT cells. Simultaneously, the mRNA and protein expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and keratin 17 (K17) were significantly decreased and that of p53 was increased, thereby inhibiting the inflammatory response and promoting apoptosis. PIAS3 inhibited the transcription activity of STAT3 and noncanonical nuclear factor-kappaB (NF-κB). Furthermore, PIAS3 attenuated IMQ-induced psoriasis-like inflammation in mice. Our findings suggest that PIAS3 plays an important role in psoriasis by regulating the STAT3/NF-κB signaling pathway and p53. The lack of PIAS3 may represent a novel mechanism underlying the pathogenesis of psoriasis.

10.
J Thorac Dis ; 15(4): 2141-2160, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37197494

RESUMEN

Background: Esophageal cancer, especially esophageal squamous cell carcinoma (ESCC), is a common malignant tumor of the digestive tract. Bufalin is an effective anti-tumor compound. However, little is known about the regulatory mechanisms of Bufalin in ESCC. To investigate the effect and molecular mechanism of Bufalin on the proliferation, migration and invasion of ESCC cells will provide a more reliable basis for the application of Bufalin in clinical tumor therapy. Methods: First, the half-inhibitory concentration (IC50) of Bufalin was evaluated by Cell Counting Kit-8 (CCK-8) assays. In vitro, the effects of Bufalin on the proliferation of the ECA109 cells was measured using CCK-8 and 5-ethynyl-2'-deoxyuridine assays. Wound-healing and transwell assays were used to evaluate the effects of Bufalin on the migration and invasion of the ECA109 cells. Further, to determine the mechanisms underlying the Bufalin-mediated suppression of cell progression in ESCC, total RNA was extracted from negative control (NC) and Bufalin treated cells to perform RNA-sequencing (RNA-seq) to screen for abnormally expressed genes. In vivo, the ECA 109 cells were subcutaneously injected into BALB/c nude mice to determine the effects of Bufalin on tumor cell proliferation. The protein inhibitor of activated signal transducer and activator of transcription 3 (PIAS3), signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 (p-STAT3) protein expression levels in the ECA109 cells were detected by Western blot. Results: The CCK-8 assays showed that the IC50 of Bufalin was 200 nM. The proliferation, migration, and invasion ability of the ECA109 cells was significantly inhibited in the Bufalin group in a concentration-dependent manner. In vivo, the Xenograft tumor model showed that Bufalin decreased the tumor volume and weight of the subcutaneous tumors. The RNA-seq results showed that the expression of PIAS3 was upregulated in the Bufalin group. Additionally, down-regulation of PIAS3 decreased the inhibition of STAT3, thereby increasing p-STAT3 expression. Finally, PIAS3 knockdown reversed the inhibitory effects of Bufalin on the proliferation, migration, and invasion of the ECA109 cells. Conclusions: Bufalin may inhibit the proliferation, migration, and invasion of the ECA109 cells through the PIAS3/STAT3 signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA