Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 533
Filtrar
1.
Semin Cell Dev Biol ; 164: 1-12, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823219

RESUMEN

Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.


Asunto(s)
Elementos Transponibles de ADN , ARN Interferente Pequeño , Elementos Transponibles de ADN/genética , Animales , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Evolución Molecular , ARN de Interacción con Piwi
2.
FEBS Lett ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358781

RESUMEN

PIWI-interacting RNAs (piRNAs) were discovered in the early 2000s and became known for their role in protecting the germline genome against mobile genetic elements. Successively, piRNAs were also detected in the somatic cells of gonads in multiple animal species. In recent years, piRNAs have been reported in non-gonadal tissues in various arthropods, contrary to the initial assumptions of piRNAs being exclusive to gonads. Here, we performed an extensive literature review, which revealed that reports on non-gonadal somatic piRNA expression are not limited to a few specific species. Instead, when multiple studies are considered collectively, it appears to be a widespread phenomenon across arthropods. Furthermore, we systematically analyzed 168 publicly available small RNA-seq datasets from diverse tissues in 17 species, which further supported the bibliographic reports that piRNAs are expressed across tissues and species in Arthropoda.

3.
Sci China Life Sci ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39276255

RESUMEN

Sexual reproduction first appeared in unicellular protists and has continued to be an essential biological process in almost all eukaryotes. Ciliated protists, which contain both germline and somatic genomes within a single cell, have evolved a special form of sexual reproduction called conjugation that involves mitosis, meiosis, fertilization, nuclear differentiation, genome rearrangement, and the development of unique cellular structures. The molecular basis and mechanisms of conjugation vary dramatically among ciliates, and many details of the process and its regulation are still largely unknown. In order to better comprehend these processes and mechanisms from an evolutionary perspective, this study provides the first comprehensive overview of the transcriptome and proteome profiles during the entire life cycle of the newly-established marine model ciliate Euplotes vannus. Transcriptome analyses from 14 life cycle stages (three vegetative stages and 11 sexual stages) revealed over 26,000 genes that are specifically expressed at different stages, many of which are related to DNA replication, transcription, translation, mitosis, meiosis, nuclear differentiation, and/or genome rearrangement. Quantitative proteomic analyses identified 338 proteins with homologs associated with conjugation and/or somatic nuclear development in other ciliates, including dicer-like proteins, Hsp90 proteins, RNA polymerase II and transcription elongation factors, ribosomal-associated proteins, and ubiquitin-related proteins. Four of these homologs belong to the PIWI family, each with different expression patterns identified and confirmed by RT-qPCR, which may function in small RNA-mediated genome rearrangement. Proteins involved in the nonhomologous end-joining pathway are induced early during meiosis and accumulate in the developing new somatic nucleus, where more than 80% of the germline sequences are eliminated from the somatic genome. A number of new candidate genes and proteins likely to play roles in conjugation and its related genome rearrangements have also been revealed. The gene expression profiles reported here will be valuable resources for further studies of the origin and evolution of sexual reproduction in this new model species.

4.
Life Sci ; 357: 123065, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299387

RESUMEN

Gynecological cancers are currently a major public health concern due to increase in incidence and mortality globally. PIWI-interacting RNA (piRNA) are small non-coding RNA consisting of 24-32 nucleotides that plays regulatory role by interacting with piwi family of protein. Recent studies have revealed that piRNAs are expressed in various kinds of human tissues and influences key signalling pathways at transcriptional and post transcriptional levels. Studies have also that suggested piRNA and PIWI proteins display frequently altered expression in several cancers. Recent research has indicated that abnormal expression of piRNA may play a significant role in development and progression of gynecological cancers. Clinical studies suggested that, abnormally expressed piRNAs may serve as diagnostic and prognostic marker, and as potential therapeutic targets in these cancers. In the present review article, we discussed the emerging role of piRNA and their utility as diagnostic and prognostic marker in gynecological cancers.

5.
Cell Rep ; 43(10): 114777, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39302833

RESUMEN

PIWI-interacting RNAs (piRNAs) play a crucial role in safeguarding genome integrity by silencing mobile genetic elements. From flies to humans, piRNAs originate from long single-stranded precursors encoded by genomic piRNA clusters. How piRNA clusters form to adapt to genomic invaders and evolve to maintain protection remain key outstanding questions. Here, we generate a roadmap of piRNA clusters across seven species that highlights both similarities and variations. In mammals, we identify transcriptional readthrough as a mechanism to generate piRNAs from transposon insertions (piCs) downstream of genes (DoG). Together with the well-known stress-dependent DoG transcripts, our findings suggest a molecular mechanism for the formation of piRNA clusters in response to retroviral invasion. Finally, we identify a class of dynamic piRNA clusters in humans, underscoring unique features of human germ cell biology. Our results advance the understanding of conserved principles and species-specific variations in piRNA biology and provide tools for future studies.

6.
Plants (Basel) ; 13(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39339549

RESUMEN

PIWI, from the German word Pilzwiderstandsfähig, meaning "fungus-resistant", refers to grapevine cultivars bred for resistance to fungal pathogens such as Erysiphe necator (the causal agent of powdery mildew) and Plasmopara viticola (the causal agent of downy mildew), two major diseases in viticulture. These varieties are typically developed through traditional breeding, often crossbreeding European Vitis vinifera with American or Asian species that carry natural disease resistance. This study investigates the transcriptional profiles of exocarp tissues in mature berries from four PIWI grapevine varieties compared to their elite parental counterparts using RNA-seq analysis. We performed RNA-seq on four PIWI varieties (two red and two white) and their noble parents to identify differential gene expression patterns. Comprehensive analyses, including Differential Gene Expression (DEGs), Gene Set Enrichment Analysis (GSEA), Weighted Gene Co-expression Network Analysis (WGCNA), and tau analysis, revealed distinct gene clusters and individual genes characterizing the transcriptional landscape of PIWI varieties. Differentially expressed genes indicated significant changes in pathways related to organic acid metabolism and membrane transport, potentially contributing to enhanced resilience. WGCNA and k-means clustering highlighted co-expression modules linked to PIWI genotypes and their unique tolerance profiles. Tau analysis identified genes uniquely expressed in specific genotypes, with several already known for their defense roles. These findings offer insights into the molecular mechanisms underlying grapevine resistance and suggest promising avenues for breeding strategies to enhance disease resistance and overall grape quality in viticulture.

7.
Cell Mol Life Sci ; 81(1): 379, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222270

RESUMEN

As the most abundant small RNAs, piwi-interacting RNAs (piRNAs) have been identified as a new class of non-coding RNAs with 24-32 nucleotides in length, and they are expressed at high levels in male germ cells. PiRNAs have been implicated in the regulation of several biological processes, including cell differentiation, development, and male reproduction. In this review, we focused on the functions and molecular mechanisms of piRNAs in controlling spermatogenesis, including genome stability, regulation of gene expression, and male germ cell development. The piRNA pathways include two major pathways, namely the pre-pachytene piRNA pathway and the pachytene piRNA pathway. In the pre-pachytene stage, piRNAs are involved in chromosome remodeling and gene expression regulation to maintain genome stability by inhibiting transposon activity. In the pachytene stage, piRNAs mediate the development of male germ cells via regulating gene expression by binding to mRNA and RNA cleavage. We further discussed the correlations between the abnormalities of piRNAs and male infertility and the prospective of piRNAs' applications in reproductive medicine and future studies. This review provides novel insights into mechanisms underlying mammalian spermatogenesis and offers new targets for diagnosing and treating male infertility.


Asunto(s)
Infertilidad Masculina , ARN Interferente Pequeño , Espermatogénesis , Espermatogénesis/genética , Masculino , Humanos , Animales , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Medicina Reproductiva , Mamíferos/genética , Mamíferos/metabolismo , ARN de Interacción con Piwi
8.
Artículo en Inglés | MEDLINE | ID: mdl-39179021

RESUMEN

Fish skeletal muscle is a component of the human diet, and understanding the mechanisms that control muscle growth can contribute to improving production in this sector and benefits the human health. In this sense, fish such as tambacu can represent a valuable source for exploring muscle growth regulators due to the indeterminate muscle growth pattern. In this context, the genes responsible for the indeterminate and determinate muscle growth pattern of fish are little explored, with piwi genes being possible candidates involved with these growth patterns. Piwi genes are associated with the proliferation and self-renewal of germ cells, and there are descriptions of these same functions in somatic cells from different tissues. However, little is known about the function of these genes in fish somatic cells. Considering this, our objective was to analyze the expression pattern of piwi 1 and 2 genes in cardiac muscle, skeletal muscle, liver, and gonad of zebrafish (species with determinate growth) and tambacu (species with indeterminate growth). We observed a distinct expression of piwi1 and piwi2 between tambacu and zebrafish, with both genes more expressed in tambacu in all tissues evaluated. Piwi genes can represent potential candidates involved with indeterminate muscle growth control.


Asunto(s)
Proteínas Argonautas , Characiformes , Músculo Esquelético , Pez Cebra , Animales , Masculino , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hígado/metabolismo , Hígado/crecimiento & desarrollo , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Characiformes/genética , Characiformes/crecimiento & desarrollo , Characiformes/metabolismo
9.
Andrology ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120570

RESUMEN

BACKGROUND: Small RNAs interacting with PIWI (piRNAs) play a crucial role in regulating transposable elements and translation during spermatogenesis and are essential in male germ cell development. Disruptions in the piRNA pathway typically lead to severe spermatogenic defects and thus male infertility. The HENMT1 gene is a key player in piRNAs primary biogenesis and dysfunction of HENMT1 protein in meiotic and haploid germ cells resulted in the loss of piRNA methylation, piRNA instability, and TE de-repression. Henmt1-knockout mice exhibit a severe oligo-astheno-teratozoospermia (OAT) phenotype, whereas patients with HENMT1 variants display more severe azoospermia phenotypes, ranging from meiotic arrest to hypospermatogenesis. Through whole-exome sequencing (WES) of infertile patient cohorts, we identified two new patients with variants in the HENMT1 gene presenting spermatozoa in their ejcaulate, providing us the opportunity to study spermatozoa from these patients. OBJECTIVES: Investigate the spermatozoa of two patients harboring an HENMT1 variant to determine whether or not these scarce spermatozoa could be used with assisted reproductive technologies. MATERIALS AND METHODS: HENMT1 variants identified by WES were validated through Sanger sequencing. Comprehensive semen analysis was conducted, and sperm cells were subjected to transmission electron microscopy for structural examination, in situ hybridization for aneuploidy assessment, and aniline blue staining for DNA compaction status. Subsequently, we assessed their suitability for in vitro fertilization using intracytoplasmic sperm injection (IVF-ICSI). RESULTS: Our investigations revealed a severe OAT phenotype similar to knockout mice, revealing altered sperm concentration, mobility, morphology, aneuploidy and nuclear compaction defects. Multiple IVF-ICSI attempts were also performed, but no live births were achieved. DISCUSSION: We confirm the crucial role of HENMT1 in spermatogenesis and highlight a phenotypic continuum associated with HENMT1 variants. Unfortunately, the clinical outcome of these genetic predispositions remains unfavorable, regardless of the patient's phenotype. CONCLUSION: The presence of spermatozoa is insufficient to anticipate ICSI pregnancy success in HENMT1 patients.

10.
Cell Signal ; 122: 111333, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102928

RESUMEN

PIWI-interacting RNAs (piRNAs) are involved in the regulation of hypertrophic cardiomyopathy, heart failure and myocardial methylation. However, their functions and the underlying molecular mechanisms in diabetic cardiomyopathy (DCM) have yet to be fully elucidated. In the present study, a pyroptosis-associated piRNA (piR112710) was identified that ameliorates cardiac remodeling through targeting the activation of inflammasomes and mitochondrial dysfunction that are mediated via the thioredoxin-interacting protein (Txnip)/NLRP3 signaling axis. Subsequently, the cardioprotective effects of piR112710 on both the myocardium from db/db mice and cardiomyocytes from neonatal mice that were incubated with a high concentration of glucose combined with palmitate were examined. piR112710 was found to significantly improve cardiac dysfunction in db/db mice, characterized by improved echocardiography, lower levels of fibrosis, attenuated expression levels of inflammatory factors and pyroptosis-associated proteins (namely, Txnip, ASC, NLRP3, caspase-1 and GSDMD-N), and enhanced myocardial mitochondrial respiratory functions. In cultured neonatal mice cardiomyocytes, piR112710 deficiency and high glucose along with palmitate treatment led to significantly upregulated expression levels of pyroptosis associated proteins and collagens, oxidative stress, mitochondrial dysfunction and increased levels of inflammatory factors. Supplementation with piR112710, however, led to a reversal of the aforementioned changes induced by high glucose and palmitate. Mechanistically, the cardioprotective effect of piR112710 appears to be dependent upon effective elimination of reactive oxygen species and inactivation of the Txnip/NLRP3 signaling axis. Taken together, the findings of the present study have revealed that the piRNA-mediated inhibitory mechanism involving the Txnip/NLRP3 axis may participate in the regulation of pyroptosis, which protects against DCM both in vivo and in vitro. piR112710 may therefore be a potential therapeutic target for the reduction of myocardial injury caused by cardiomyocyte pyroptosis in DCM.


Asunto(s)
Proteínas Portadoras , Cardiomiopatías Diabéticas , Miocitos Cardíacos , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/efectos de los fármacos , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Proteínas Portadoras/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Masculino , ARN Interferente Pequeño/metabolismo , Ratones Endogámicos C57BL , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Transducción de Señal/efectos de los fármacos , Inflamasomas/metabolismo
11.
Front Cell Dev Biol ; 12: 1449353, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188528

RESUMEN

PIWI proteins are stem cell-associated RNA-binding proteins crucial for survival of germ stem cells. In cancer, PIWI proteins are overexpressed. Specifically, PIWIL4 is highly expressed in multiple cancers with the highest levels found in acute myeloid leukemia (AML), an aggressive malignancy propagated by a population of leukemia stem cells (LSCs). Bamezai et al. (Blood Journal, blood, 2023, 142, 90-105) demonstrated that PIWIL4 supports AML blasts and LSCs but is not necessary for healthy human hematopoietic progenitor stem cells (HSPCs) function in vivo. PIWIL4 in AML acts by preventing the accumulation of R-loops in key genes for LSCs persistence implicated in: DNA damage, replicative stress, and transcription arrest. We report that PIWIL4 expression significantly decreases in THP-1 monocytes exposed to a differentiating agent, suggesting a potential role for PIWIL4 in maintaining the undifferentiated state of myeloid cells. PIWIL4 overexpression could lead to the emergence of LSCs, driving leukemia propagation and maintenance. Our findings correlate with the persistent overexpression of PIWIL4 in myeloid cancers as reported by Bamezai et al., and suggest that PIWIL4 may be involved in myeloid cell differentiation. In this perspective, we highlight recent findings on the implication of PIWI pathway in maintaining AML stemness. Additionally, we propose further investigation on the role of PIWI pathway in oncogenesis and cellular differentiation as a strategy to identify biomarkers and therapeutic targets for AML.

12.
Adv Sci (Weinh) ; 11(33): e2402954, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38962952

RESUMEN

Genetic and epigenetic alterations occur in many physiological and pathological processes. The existing knowledge regarding the association of PIWI-interacting RNAs (piRNAs) and their genetic variants on risk and progression of prostate cancer (PCa) is limited. In this study, three genome-wide association study datasets are combined, including 85,707 PCa cases and 166,247 controls, to uncover genetic variants in piRNAs. Functional investigations involved manipulating piRNA expression in cellular and mouse models to study its oncogenetic role in PCa. A specific genetic variant, rs17201241 is identified, associated with increased expression of PROPER (piRNA overexpressed in prostate cancer) in tumors and are located within the gene, conferring an increased risk and malignant progression of PCa. Mechanistically, PROPER coupled with YTHDF2 to recognize N6-methyladenosine (m6A) and facilitated RNA-binding protein interactions between EIF2S3 at 5'-untranslated region (UTR) and YTHDF2/YBX3 at 3'-UTR to promote DUSP1 circularization. This m6A-dependent mRNA-looping pattern enhanced DUSP1 degradation and inhibited DUSP1 translation, ultimately reducing DUSP1 expression and promoting PCa metastasis via the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Inhibition of PROPER expression using antagoPROPER effectively suppressed xenograft growth, suggesting its potential as a therapeutic target. Thus, targeting piRNA PROPER-mediated genetic and epigenetic fine control is a promising strategy for the concurrent prevention and treatment of PCa.


Asunto(s)
Adenosina , Carcinogénesis , Fosfatasa 1 de Especificidad Dual , Neoplasias de la Próstata , ARN Interferente Pequeño , Masculino , Humanos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Ratones , Animales , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Línea Celular Tumoral , ARN de Interacción con Piwi
13.
Eur J Cell Biol ; 103(3): 151444, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39024988

RESUMEN

Piwi proteins and Piwi interacting RNAs, piRNAs, presented in germline cells play a role in transposon silencing during germline development. In contrast, the role of somatic Piwi proteins and piRNAs still remains obscure. Here, we characterize the expression pattern and distribution of piRNAs in human renal cells in terms of their potential role in kidney development. Further, we show that all PIWI genes are expressed at the RNA level, however, only PIWIL1 gene is detected at the protein level by western blotting in healthy and cancerous renal cells. So far, the expression of human Piwil1 protein has only been shown in testes and cancer cells, but not in healthy somatic cell lines. Since we observe only Piwil1 protein, the regulation of other PIWI genes is probably more intricated, and depends on environmental conditions. Next, we demonstrate that downregulation of Piwil1 protein results in a decrease in the rate of cell proliferation, while no change in the level of apoptotic cells is observed. Confocal microscopy analysis reveals that Piwil1 protein is located in both cellular compartments, cytoplasm and nucleus in renal cells. Interestingly, in nucleus region Piwil1 is observed close to the spindle during all phases of mitosis in all tested cell lines. It strongly indicates that Piwil1 protein plays an essential role in proliferation of somatic cells. Moreover, involvement of Piwil1 in cell division could, at least partly, explain invasion and metastasis of many types of cancer cells with upregulation of PIWIL1 gene expression. It also makes Piwil1 protein as a potential target in the anticancer therapy.


Asunto(s)
Proteínas Argonautas , Riñón , Mitosis , ARN de Interacción con Piwi , Humanos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proliferación Celular , Riñón/citología , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Mitosis/genética , ARN de Interacción con Piwi/genética , ARN de Interacción con Piwi/metabolismo
14.
Int J Biol Sci ; 20(9): 3638-3655, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993562

RESUMEN

Castration-resistant prostate cancer (CRPC) is the leading cause of prostate cancer (PCa)-related death in males, which occurs after the failure of androgen deprivation therapy (ADT). PIWI-interacting RNAs (piRNAs) are crucial regulators in many human cancers, but their expression patterns and roles in CRPC remain unknown. In this study, we performed small RNA sequencing to explore CRPC-associated piRNAs using 10 benign prostate tissues, and 9 paired hormone-sensitive PCa (HSPCa) and CRPC tissues from the same patients. PiRNA-4447944 (piR-4447944) was discovered to be highly expressed in CRPC group compared with HSPCa and benign groups. Functional analyses revealed that piR-4447944 overexpression endowed PCa cells with castration resistance ability in vitro and in vivo, whereas knockdown of piR-4447944 using anti-sense RNA suppressed the proliferation, migration and invasion of CRPC cells. Additionally, enforced piR-4447944 expression promoted in vitro migration and invasion of PCa cells, and reduced cell apoptosis. Mechanistically, piR-4447944 bound to PIWIL2 to form a piR-4447944/PIWIL2 complex and inhibited tumor suppressor NEFH through direct interaction at the post-transcriptional level. Collectively, our study indicates that piR-4447944 is essential for prostate tumor-propagating cells and mediates androgen-independent growth of PCa, which extends current understanding of piRNAs in cancer biology and provides a potential approach for CRPC treatment.


Asunto(s)
Proteínas Argonautas , Proliferación Celular , Neoplasias de la Próstata Resistentes a la Castración , ARN Interferente Pequeño , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , ARN Interferente Pequeño/metabolismo , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Ratones , Apoptosis , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , ARN de Interacción con Piwi
15.
Placenta ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38955620

RESUMEN

Preeclampsia is a major contributor to maternal and fetal morbidity and mortality. The disorder can be classified into early- and late-onset subtypes, both of which evolve in two stages. The first stage comprises the development of pre-clinical, utero-placental malperfusion. Early and late utero-placental malperfusion have different causes and time courses. Early-onset preeclampsia (20 % of cases) is driven by dysfunctional placentation in the first half of pregnancy. In late-onset preeclampsia (80 % of cases), malperfusion is a consequence of placental compression within the confines of a limited uterine cavity. In both subtypes, the malperfused placenta releases stress signals into the maternal circulation. These stress signals trigger onset of the clinical syndrome (the second stage). Small RNA molecules, which are implicated in cellular stress responses in general, may be involved at different stages. Micro RNAs contribute to abnormal trophoblast invasion, immune dysregulation, angiogenic imbalance, and syncytiotrophoblast-derived extracellular vesicle signalling in preeclampsia. Transfer RNA fragments are placental signals known to be specifically involved in cell stress responses. Disorder-specific differences in small nucleolar RNAs and piwi-interacting RNAs have also been reported. Here, we summarise key small RNA advances in preeclampsia pathogenesis. We propose that existing small RNA classifications are unhelpful and that non-biased assessment of RNA expression, incorporation of non-annotated molecules and consideration of chemical modifications to RNAs may be important in elucidating preeclampsia pathogenesis.

16.
World J Gastroenterol ; 30(22): 2843-2848, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38947286

RESUMEN

Hepatocellular carcinoma (HCC) is the most common and deadliest subtype of liver cancer worldwide and, therefore, poses an enormous threat to global health. Understanding the molecular mechanisms underlying the development and progression of HCC is central to improving our clinical approaches. PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that bind to PIWI family proteins to regulate gene expression at transcriptional and post-transcriptional levels. A growing body of work shows that the dysregulation of piRNAs plays a crucial role in the progression of various human cancers. In this editorial, we report on the current knowledge of HCC-associated piRNAs and their potential clinical utility. Based on the editorial by Papadopoulos and Trifylli, on the role and clinical evaluation of exosomal circular RNAs in HCC, we highlight this other emerging class of non-coding RNAs.


Asunto(s)
Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , ARN Interferente Pequeño , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , ARN Interferente Pequeño/metabolismo , Exosomas/metabolismo , Exosomas/genética , ARN Circular/metabolismo , ARN Circular/genética , Progresión de la Enfermedad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
17.
Nano Lett ; 24(28): 8732-8740, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38958407

RESUMEN

Piwi-interacting RNAs (piRNAs) are small noncoding RNAs that repress transposable elements to maintain genome integrity. The canonical catalytic hairpin assembly (CHA) circuit relies on random collisions of free-diffused reactant probes, which substantially slow down reaction efficiency and kinetics. Herein, we demonstrate the construction of a spatial-confined self-stacking catalytic circuit for rapid and sensitive imaging of piRNA in living cells based on intramolecular and intermolecular hybridization-accelerated CHA. We rationally design a 3WJ probe that not only accelerates the reaction kinetics by increasing the local concentration of reactant probes but also eliminates background signal leakage caused by cross-entanglement of preassembled probes. This strategy achieves high sensitivity and good specificity with shortened assay time. It can quantify intracellular piRNA expression at a single-cell level, discriminate piRNA expression in tissues of breast cancer patients and healthy persons, and in situ image piRNA in living cells, offering a new approach for early diagnosis and postoperative monitoring.


Asunto(s)
ARN Interferente Pequeño , Humanos , ARN Interferente Pequeño/genética , Catálisis , Hibridación de Ácido Nucleico , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Cinética , ARN de Interacción con Piwi
18.
DNA (Basel) ; 4(2): 104-128, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39076684

RESUMEN

Mosquitoes, like Drosophila, are dipterans, the order of "true flies" characterized by a single set of two wings. Drosophila are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in Drosophila but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of Drosophila and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in Drosophila. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in Drosophila, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.

19.
Heliyon ; 10(13): e33767, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040379

RESUMEN

Cancers affecting the biliary tract, such as gallbladder cancer and cholangiocarcinoma, make up a small percentage of adult gastrointestinal malignancies, but their incidence is on the rise. Due to the lack of dependable molecular biomarkers for diagnosis and prognosis, these cancers are often not detected until later stages and have limited treatment options. Piwi-interacting RNAs (piRNAs) are a type of small noncoding RNA that interacts with Piwi proteins and has been linked to various diseases, especially cancer. Manipulation of piRNA expression has the potential to serve as an important biomarker and target for therapy. This review uncovers the relationship between PIWI-interacting RNA (piRNA) and a variety of gastrointestinal cancers, including biliary tract cancer (BTC). It is evident that piRNAs have the ability to impact gene expression and regulate key genes and pathways related to the advancement of digestive cancers. Abnormal expression of piRNAs plays a significant role in the development and progression of digestive-related malignancies. The potential of piRNAs as potential biomarkers for diagnosis and prognosis, as well as therapeutic targets in BTC, is noteworthy. Nevertheless, there are obstacles and limitations that require further exploration to fully comprehend piRNAs' role in BTC and to devise effective diagnostic and therapeutic approaches using piRNAs. In summary, this review underscores the value of piRNAs as valuable biomarkers and promising targets for treating BTC, as we delve into the association between piRNAs and various gastrointestinal cancers, including BTC, and how piRNAs can impact gene expression and control essential pathways for digestive cancer advancement. The present research consists of a thorough evaluation presented in a storytelling style. The databases utilized to locate original sources were PubMed, MEDLINE, and Google Scholar, and the search was conducted using the designated keywords.

20.
BMC Genomics ; 25(1): 678, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977960

RESUMEN

BACKGROUND: The piRNA pathway in animal gonads functions as an 'RNA-based immune system', serving to silence transposable elements and prevent inheritance of novel invaders. In Drosophila, this pathway relies on three gonad-specific Argonaute proteins (Argonaute-3, Aubergine and Piwi) that associate with 23-28 nucleotide piRNAs, directing the silencing of transposon-derived transcripts. Transposons constitute a primary driver of genome evolution, yet the evolution of piRNA pathway factors has not received in-depth exploration. Specifically, channel nuclear pore proteins, which impact piRNA processing, exhibit regions of rapid evolution in their promoters. Consequently, the question arises whether such a mode of evolution is a general feature of transposon silencing pathways. RESULTS: By employing genomic analysis of coding and promoter regions within genes that function in transposon silencing in Drosophila, we demonstrate that the promoters of germ cell-specific piRNA factors are undergoing rapid evolution. Our findings indicate that rapid promoter evolution is a common trait among piRNA factors engaged in germline silencing across insect species, potentially contributing to gene expression divergence in closely related taxa. Furthermore, we observe that the promoters of genes exclusively expressed in germ cells generally exhibit rapid evolution, with some divergence in gene expression. CONCLUSION: Our results suggest that increased germline promoter evolution, in partnership with other factors, could contribute to transposon silencing and evolution of species through differential expression of genes driven by invading transposons.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Silenciador del Gen , Células Germinativas , Regiones Promotoras Genéticas , ARN Interferente Pequeño , Animales , Elementos Transponibles de ADN/genética , Células Germinativas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Drosophila/genética , Drosophila/genética , Proteínas Argonautas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA