Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 24(9): e55060, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37477088

RESUMEN

Inflammation plays an important role in the initiation and progression of colorectal cancer (CRC) and leads to ß-catenin accumulation in colitis-related CRC. However, the mechanism remains largely unknown. Here, pancreatic progenitor cell differentiation and proliferation factor (PPDPF) is found to be upregulated in CRC and significantly correlated with tumor-node-metastasis (TNM) stages and survival time. Knockout of PPDPF in the intestinal epithelium shortens crypts, decreases the number of stem cells, and inhibits the growth of organoids and the occurrence of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC. Mechanistically, PPDPF is found to interact with Casein kinase 1α (CK1α), thereby disrupting its binding to Axin, disassociating the ß-catenin destruction complex, decreasing the phosphorylation of ß-catenin, and activating the Wnt/ß-catenin pathway. Furthermore, interleukin 6 (IL6)/Janus kinase 2 (JAK2)-mediated inflammatory signals lead to phosphorylation of PPDPF at Tyr16 and Tyr17, stabilizing the protein. In summary, this study demonstrates that PPDPF is a key molecule in CRC carcinogenesis and progression that connects inflammatory signals to the Wnt/ß-catenin signaling pathway, providing a potential novel therapeutic target.


Asunto(s)
Neoplasias Colorrectales , Interleucina-6 , Humanos , Interleucina-6/efectos adversos , Interleucina-6/metabolismo , Fosforilación , beta Catenina/metabolismo , Vía de Señalización Wnt , Janus Quinasa 2/metabolismo , Neoplasias Colorrectales/genética , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
2.
Cell Rep ; 42(4): 112340, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37027301

RESUMEN

Pancreatic progenitor cell differentiation and proliferation factor (PPDPF) has been reported to play a role in tumorigenesis. However, its function in hepatocellular carcinoma (HCC) remains poorly understood. In this study, we report that PPDPF is significantly downregulated in HCC and the decreased PPDPF expression indicates poor prognosis. In the dimethylnitrosamine (DEN)-induced HCC mouse model, hepatocyte-specific depletion of Ppdpf promotes hepatocarcinogenesis, and reintroduction of PPDPF into liver-specific Ppdpf knockout (LKO) mice inhibits the accelerated HCC development. Mechanistic study shows that PPDPF regulates nuclear factor κB (NF-κB) signaling through modulation of RIPK1 ubiquitination. PPDPF interacts with RIPK1 and facilitates K63-linked ubiquitination of RIPK1 via recruiting the E3 ligase TRIM21, which catalyzes K63-linked ubiquitination of RIPK1 at K140. In addition, liver-specific overexpression of PPDPF activates NF-κB signaling and attenuates apoptosis and compensatory proliferation in mice, which significantly suppresses HCC development. This work identifies PPDPF as a regulator of NF-κB signaling and provides a potential therapeutic candidate for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinogénesis/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , FN-kappa B/metabolismo , Ubiquitinación
3.
Int J Biol Sci ; 18(1): 214-228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34975328

RESUMEN

Resistance to radiotherapy is frequently observed in the clinic and leads to poor prognosis of non-small cell lung cancer (NSCLC). How to overcome resistance to radiotherapy is a challenge in the treatment of NSCLC. In this study, PPDPF was found to be upregulated in NSCLC tissues and cell lines, and its expression negatively correlated with the overall survival of patients with NSCLC. PPDPF promoted the growth, colony formation and invasion of lung cancer cells. Moreover, knockout of PPDPF inhibited tumorigenesis in the KL (KrasG12D; LKB1f/f) mouse model of lung cancer. Additionally, overexpression of PPDPF led to radioresistance in lung cancer cells, and knockdown of PPDPF sensitized lung cancer cells to radiotherapy. Mechanistically, PPDPF interacted with BABAM2 (an antiapoptotic protein) and blocked its ubiquitination by MDM2, thus stabilizing BABAM2 and promoting the radioresistance of lung cancer cells. Our present study suggested PPDPF as a therapeutic target in NSCLC.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Animales , Carcinogénesis , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación hacia Abajo , Humanos , Ratones , Ratones Desnudos , Pronóstico , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Front Oncol ; 11: 669603, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34041032

RESUMEN

The Exocrine Differentiation and Proliferation Factor (EXDPF) gene could promote exocrine while inhibit endocrine functions. Although it is well known that ovary is an endocrine organ, the functions of EXDPF in ovarian cancer development is still unknown. This study demonstrated that EXDPF gene is significantly higher expressed in ovarian tumors compared to normal ovarian tissue controls. EXDPF DNA amplification was exhibited in lots of human tumors including 7.19% of ovarian tumors. Also, high expression of EXDPF positively correlated with poor overall survival (OS) of ovarian cancer patients. EXDPF expression could be universally detected in most epithelial ovarian cancer cells (SKOV3, IGROV1, MACS, HO8910PM, ES2, COV362 and A2780) tested in this study. Knock-down of EXDPF by siRNA delivered by plasmid or lentivirus largely inhibited ovarian cancer cells, IGROV1 and SKOV3 proliferation, migration and tumorigenesis in vitro and/or in vivo. Knock-down of EXDPF sensitized SKOV3 cells to the treatment of the front-line drug, paclitaxel. Mechanism study showed that EXDPF enhanced DNA replication pathway to promote ovarian cancer tumorigenesis. In conclusion, this study demonstrated that EXDPF could be a potential therapeutic target as a pro-oncogene of ovarian cancer.

5.
Biochem Biophys Res Commun ; 513(1): 207-212, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30954221

RESUMEN

Circular RNAs (circRNAs) have recently been considered as key regulators in carcinogenesis. Nevertheless, the study of circRNAs involved in non-small cell lung cancer (NSCLC) remains largely unclear. In this study, we aim to explore the clinical significance, regulatory effect and mechanism of circ-FOXM1 in NSCLC. The results indicated that circ-FOXM1 overexpression was observed in NSCLC tissues and closely associated with lymph node invasion, higher TNM stage, and unfavorable prognosis. Furthermore, knockdown and ectopic expression of circ-FOXM1 significantly inhibited and promoted the growth, migration and invasion of NSCLC cells, respectively. Mechanistically, miR-1304-5p was discovered as a direct target of circ-FOXM1. Circ-FOXM1 upregulated the level of pancreatic progenitor cell differentiation and proliferation factor (PPDPF) and metastasis-associated in colon cancer 1 (MACC1) by sponging miR-1304-5p, thereby increasing the proliferation and invasion of NSCLC cells. Taken together, this work revealed that circ-FOXM1/miR-1304-5p/PPDPF/MACC1 signaling was essential for the development and progression of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , ARN Circular/genética , Transactivadores/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA