Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.158
Filtrar
1.
Vet Microbiol ; 297: 110210, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39128433

RESUMEN

The Porcine reproductive and respiratory syndrome (PRRS) causes severe financial losses to the global swine industry. Due to continuous virus evolution, the protection against the PRRS provided by current vaccines is limited. In order to find new antiviral strategies, this study investigated the antiviral potential of antimicrobial peptides (AMPs) against PRRSV. Given the diversity of PRRSV strains and the limited effectiveness of existing vaccines in controlling PRRSV, this study evaluated the inhibitory effects of KLAK, Cecropin B, Piscidin1, and Caerin1.1 on 3 strains of PRRSV (lineage 5 classical strain, lineage 8 highly pathogenic strain, and lineage 1 NADC30-like strain). Caerin1.1 exhibited significant dose-dependent antiviral activity, with an effective concentration (EC50) of 7.5 µM. Caerin1.1 effectively inhibited PRRSV replication when added before or in early infection but showed reduced effectiveness when added in late infection, indicating its potential involvement in targeting early transcription mechanisms of viral RNA polymerase and significantly upregulating cytokine gene expression. In the NADC30 strain-based animal infection model, Caerin1.1 treatment significantly reduced lung viral loads and inflammation in the lungs of PRRSV-infected pigs, with a mortality rate of 0 % (0/5) in the treated group compared to 66.67 % (4/6) in the untreated group, indicating a reduction in the mortality rate. Additionally, compared with the untreated group, the Caerin1.1-treated group showed significant improvements, such as lighter fever, more daily weight gain, less clinical symptoms, less viral load in blood, and less virus oral shedding (P < 0.05). These findings reveal the potential of antimicrobial peptides as PRRSV therapeutic agents and suggest that Caerin1.1 is a promising candidate for a novel anti-PRRSV drug.

2.
Front Immunol ; 15: 1434011, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144143

RESUMEN

Background: Gamma-delta (γδ) T cells are a major immune cell subset in pigs. Approximately 50% of circulating T cells are γδ T cells in young pigs and up to 30% in adult sows. Despite this abundance, the functions of porcine γδ T cells are mostly unidentified. In humans and mice, activated γδ T cells exhibit broad innate cytotoxic activity against a wide variety of stressed, infected, and cancerous cells through death receptor/ligand-dependent and perforin/granzyme-dependent pathways. However, so far, it is unknown whether porcine γδ T cells have the ability to perform cytotoxic functions. Methods: In this study, we conducted a comprehensive phenotypic characterization of porcine γδ T cells isolated from blood, lung, and nasal mucosa. To further analyze the cytolytic potential of γδ T cells, in vitro cytotoxicity assays were performed using purified γδ T cells as effector cells and virus-exposed or mock-treated primary porcine alveolar macrophages as target cells. Results: Our results show that only CD2+ γδ T cells express cytotoxic markers (CD16, NKp46, perforin) with higher perforin and NKp46 expression in γδ T cells isolated from lung and nasal mucosa. Moreover, we found that γδ T cells can exhibit cytotoxic functions in a cell-cell contact and degranulation-dependent manner. However, porcine γδ T cells did not seem to specifically target Porcine Reproductive and Respiratory Syndrome Virus or swine Influenza A Virus-infected macrophages, which may be due to viral escape mechanisms. Conclusion: Porcine γδ T cells express cytotoxic markers and can exhibit cytotoxic activity in vitro. The specific mechanisms by which porcine γδ T cells recognize target cells are not fully understood but may involve the detection of cellular stress signals.


Asunto(s)
Citotoxicidad Inmunológica , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/virología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Linfocitos T Citotóxicos/inmunología , Biomarcadores , Infecciones por Orthomyxoviridae/inmunología , Perforina/metabolismo , Perforina/inmunología , Linfocitos Intraepiteliales/inmunología , Células Cultivadas
3.
Virus Res ; 348: 199443, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094475

RESUMEN

Atypical porcine pestivirus (APPV) is a novel member of the Pestivirus genus detected in association with congenital tremor (CT) type A-II outbreaks and from apparently healthy pigs, both as singular infection and as part of multi-pathogen infections. 'Classical' pestiviruses are known to cause immunosuppression of their host, which can increase susceptibility to secondary infections, severely impacting health, welfare, and production. To investigate APPV's effect on the host's immune system and characterise disease outcomes, 12 piglets from a natural APPV CT type A-II outbreak were experimentally infected with porcine reproductive and respiratory syndrome virus (PRRSV), a significant porcine pathogen. Rectal temperatures indicating febrile responses, viremia and viral-specific humoral and cellular responses were assessed throughout the study. Pathological assessment of the lungs and APPV-PRRSV co-localisation within the lungs was performed at necropsy. Viral co-localisation and pathological assessment of the lungs (Immunohistochemistry, BaseScope in situ hybridisation) were performed post-mortem. APPV status did not impact virological or immunological differences in PRRSV-infected groups. However, significantly higher rectal temperatures were observed in the APPV+ve/PRRSV+ve group over four days, indicating APPV increased the febrile response. Significant differences in the lung consolidation of the apical and intermediate lobes were also present, suggesting that APPV co-infection may augment lung pathology.

4.
Front Vet Sci ; 11: 1439015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39051013

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause significant economic losses to the global swine industry, yet effective prevention and control measures remain elusive. The development of novel antivirals is thus urgently needed. Rifampicin (RFP), a semisynthetic derivative of rifamycin, has been previously reported to inhibit the replication of certain mammalian DNA viruses as well as RNA viruses. In this study, we unveil RFP as a potent inhibitor of PRRSV both in Marc-145 cells (half-maximal inhibitory concentration 61.26 µM) and porcine alveolar macrophages (half-maximal inhibitory concentration 53.09 µM). The inhibitory effect of RFP occurred during viral replication rather than binding, internalization and release. We also demonstrated that RFP inhibits PRRSV proteins production in the early stage of infection, without inhibiting host protein synthesis. Moreover, RFP effectively restricted porcine epidemic diarrhea virus (PEDV) and porcine enteric alphacoronavirus (PEAV) infection in Vero cells. In summary, these findings indicate the promising potential of RFP as a therapeutic agent for PRRSV, PEDV and PEAV infection in pig farms.

5.
J Nanobiotechnology ; 22(1): 388, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956618

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent swine pathogen, which has caused adverse impact on the global swine industry for almost 30 years. However, due to the immune suppression caused by the virus and the genetic diversity in PRRSV, no virus-targeting broad neutralizing strategy has been successfully developed yet. Antiviral peptide and nanobody have attracted extensive attention with the ease in production and the efficacy in practice. In this study, four new fusion proteins named nanobody peptide conjugates (NPCs) were developed by combining PRRSV specific non-neutralizing nanobodies with CD163-derived peptides targeting the receptor binding domain (RBD) of PRRSV proteins. RESULTS: Four NPCs were successfully constructed using two nanobodies against PRRSV N and nsp9 individually, recombining with two antiviral peptides 4H7 or 8H2 from porcine CD163 respectively. All four NPCs demonstrated specific capability of binding to PRRSV and broad inhibitory effect against various lineages of PRRSV in a dose-dependent manner. NPCs interfere with the binding of the RBD of PRRSV proteins to CD163 in the PRRSV pre-attachment stage by CD163 epitope peptides in the assistance of Nb components. NPCs also suppress viral replication during the stage of post-attachment, and the inhibitory effects depend on the antiviral functions of Nb parts in NPCs, including the interference in long viral RNA synthesis, NF-κB and IFN-ß activation. Moreover, an interaction was predicted between aa K31 and T32 sites of neutralizing domain 4H7 of NPC-N/nsp9-4H7 and the motif 171NLRLTG176 of PRRSV GP2a. The motif 28SSS30 of neutralizing domain 8H2 of NPC-N/nsp9-8H2 could also form hydrogens to bind with the motif 152NAFLP156 of PRRSV GP3. The study provides valuable insights into the structural characteristics and potential functional implications of the RBD of PRRSV proteins. Finally, as indicated in a mouse model, NPC intranasally inoculated in vivo for 12-24 h sustains the significant neutralizing activity against PRRSV. These findings inspire the potential of NPC as a preventive measure to reduce the transmission risk in the host population against respiratory infectious agents like PRRSV. CONCLUSION: The aim of the current study was to develop a peptide based bioactive compound to neutralize various PRRSV strains. The new antiviral NPC (nanobody peptide conjugate) consists of a specific nanobody targeting the viral protein and a neutralizing CD163 epitope peptide for virus blocking and provides significant antiviral activity. The study will greatly promote the antiviral drug R&D against PRRSV and enlighten a new strategy against other viral diseases.


Asunto(s)
Anticuerpos Neutralizantes , Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Péptidos , Virus del Síndrome Respiratorio y Reproductivo Porcino , Receptores de Superficie Celular , Anticuerpos de Dominio Único , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Animales , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/química , Porcinos , Antígenos de Diferenciación Mielomonocítica/inmunología , Antígenos de Diferenciación Mielomonocítica/metabolismo , Receptores de Superficie Celular/inmunología , Antígenos CD/inmunología , Antígenos CD/metabolismo , Anticuerpos Neutralizantes/inmunología , Péptidos/química , Péptidos/farmacología , Péptidos/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Ratones , Replicación Viral/efectos de los fármacos , Línea Celular
6.
Front Microbiol ; 15: 1417404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962129

RESUMEN

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) causes substantial economic losses in the global swine industry. The current vaccine options offer limited protection against PRRSV transmission, and there are no effective commercial antivirals available. Therefore, there is an urgent need to develop new antiviral strategies that slow global PRRSV transmission. Methods: In this study, we synthesized a dicoumarol-graphene oxide quantum dot (DIC-GQD) polymer with excellent biocompatibility. This polymer was synthesized via an electrostatic adsorption method using the natural drug DIC and GQDs as raw materials. Results: Our findings demonstrated that DIC exhibits high anti-PRRSV activity by inhibiting the PRRSV replication stage. The transcriptome sequencing analysis revealed that DIC treatment stimulates genes associated with the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway. In porcine alveolar macrophages (PAMs), DIC-GQDs induce TYK2, JAK1, STAT1, and STAT2 phosphorylation, leading to the upregulation of JAK1, STAT1, STAT2, interferon-ß (IFN-ß) and interferon-stimulated genes (ISGs). Animal challenge experiments further confirmed that DIC-GQDs effectively alleviated clinical symptoms and pathological reactions in the lungs, spleen, and lymph nodes of PRRSV-infected pigs. Discussion: These findings suggest that DIC-GQDs significantly inhibits PRRSV proliferation by activating the JAK/STAT signalling pathway. Therefore, DIC-GQDs hold promise as an alternative treatment for PRRSV infection.

7.
Front Vet Sci ; 11: 1420466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962699

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) has been harming the pig industry worldwide for nearly 40 years. Although scientific researchers have made substantial efforts to explore PRRSV pathogenesis, the immune factors influencing PRRSV infection still need to be better understood. Infectious virus-antibody immune complexes (ICs) formed by PRRSV and sub-or non-neutralizing antibodies specific for PRRSV may significantly promote the development of PRRS by enhancing PRRSV replication through antibody-dependent enhancement. However, nothing is known about whether PRRSV infection is affected by non-infectious ICs (NICs) formed by non-pathogenic/infectious antigens and corresponding specific antibodies. Here, we found that PRRSV significantly induced the transcripts and proteins of interferon-α (IFN-α), IFN-ß, IFN-γ, IFN-λ1, and tumor necrosis factor-α (TNF-α) in vitro primary porcine alveolar macrophages (PAMs) in the early stage of infection. Our results showed that NICs formed by rabbit-negative IgG (RNI) and pig anti-RNI specific IgG significantly reduced the transcripts and proteins of IFN-α, IFN-ß, IFN-γ, IFN-λ1, and TNF-α in vitro PAMs and significantly elevated the transcripts and proteins of interleukine-10 (IL-10) and transforming growth factor-ß1 (TGF-ß1) in vitro PAMs. NICs-mediated PRRSV infection showed that NICs not only significantly decreased the induction of IFN-α, IFN-ß, IFN-γ, IFN-λ1, and TNF-α by PRRSV but also significantly increased the induction of IL-10 and TGF-ß1 by PRRSV and considerably enhanced PRRSV replication in vitro PAMs. Our data suggested that NICs could downregulate the production of antiviral cytokines (IFN-α/ß/γ/λ1 and TNF-α) during PRRSV infection in vitro and facilitated PRRSV proliferation in its host cells by inhibiting innate antiviral immune response. This study elucidated one novel immune response to PRRSV infection, which would enhance our understanding of the pathogenesis of PRRSV.

8.
Virol J ; 21(1): 150, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965549

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is endemic worldwide, seriously affecting the development of the pig industry, but vaccines have limited protective effects against PRRSV transmission. The aim of this study was to identify potential anti-PRRSV drugs. We examined the cytotoxicity of seven compounds formulated based on the mass ratio of glycyrrhizic acid to matrine and calculated their inhibition rates against PRRSV in vitro. The results showed that the seven compounds all had direct killing and therapeutic effects on PRRSV, and the compounds inhibited PRRSV replication in a time- and dose-dependent manner. The compound with the strongest anti-PRRSV effect was selected for subsequent in vivo experiments. Pigs were divided into a control group and a medication group for the in vivo evaluation. The results showed that pigs treated with the 4:1 compound had 100% morbidity after PRRSV challenge, and the mortality rate reached 75% on the 8th day of the virus challenge. These results suggest that this compound has no practical anti-PRRSV effect in vivo and can actually accelerate the death of infected pigs. Next, we further analyzed the pigs that exhibited semiprotective effects following vaccination with the compound to determine whether the compound can synergize with the vaccine in vivo. The results indicated that pigs treated with the compound had higher mortality rates and more severe clinical reactions after PRRSV infection (p < 0.05). The levels of proinflammatory cytokines (IL-6, IL-8, IL-1ß, IFN-γ, and TNF-α) were significantly greater in the compound-treated pigs than in the positive control-treated pigs (p < 0.05), and there was no synergistic enhancement with the live attenuated PRRSV vaccine (p < 0.05). The compound enhanced the inflammatory response, prompted the body to produce excessive levels of inflammatory cytokines and caused body damage, preventing a therapeutic effect. In conclusion, the present study revealed that the in vitro effectiveness of these agents does not indicate that they are effective in vivo or useful for developing anti-PRRSV drugs. Our findings also showed that, to identify effective anti-PRRSV drugs, comprehensive drug screening is needed, for compounds with solid anti-inflammatory effects both in vitro and in vivo. Our study may aid in the development of new anti-PRRSV drugs.


Asunto(s)
Alcaloides , Antivirales , Ácido Glicirrínico , Matrinas , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Quinolizinas , Replicación Viral , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Alcaloides/farmacología , Quinolizinas/farmacología , Quinolizinas/uso terapéutico , Porcinos , Antivirales/farmacología , Antivirales/uso terapéutico , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/uso terapéutico , Síndrome Respiratorio y de la Reproducción Porcina/tratamiento farmacológico , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Replicación Viral/efectos de los fármacos , Citocinas/metabolismo , Análisis de Supervivencia
9.
Front Microbiol ; 15: 1419499, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989028

RESUMEN

Rapid evolution of porcine reproductive and respiratory syndrome virus (PRRSV) is the bottleneck for effective prevention and control of PRRS. Thus, understanding the prevalence and genetic background of PRRSV strains in swine-producing regions is important for disease prevention and control. However, there is only limited information about the epizootiological situation of PRRS in the Xinjiang Uygur Autonomous Region, China. In this study, blood or lung tissue samples were collected from 1,411 PRRS-suspected weaned pigs from 9 pig farms in Changji, Shihezi, and Wujiaqu cities between 2020 and 2022. The samples were first tested by RT-quantitative PCR, yielding a PRRSV-2 positive rate of 53.6%. Subsequently, 36 PRRSV strains were isolated through initial adaptation in bone marrow-derived macrophages followed by propagation in grivet monkey Marc-145 cells. Furthermore, 28 PRRSV-positive samples and 20 cell-adapted viruses were selected for high-throughput sequencing (HTS) to obtain the entire PRRSV genome sequences. Phylogenetic analysis based on the nucleotide sequences of the ORF5 gene of the PRRSV strains identified in this study grouped into sub-lineages 1.8 and 8.7 the former being the dominant strain currently circulating in Xinjiang. However, the NSP2 proteins of the Xinjiang PRRSV strains shared the same deletion patterns as sub-lineage 1.8 prototype strain NADC30 with the exception of 4 strains carrying 2-3 additional amino acid deletions. Further analysis confirmed that recombination events had occurred in 27 of 37 PRRSVs obtained here with the parental strains belonging to sub-lineages 1.8 and 8.7, lineages 3 and 5, with the recombination events having occurred most frequently in the 5' and 3' termini of ORF1a and 5' terminus of ORF1b.

10.
Front Microbiol ; 15: 1422335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989029

RESUMEN

In China, the porcine reproductive and respiratory syndrome virus (PRRSV) has undergone several variations over the decades and contributed to the diversity of the clinical epidemic PRRSV strains. This has complicated the prevention and control of PRRS. In particular, the efficacy of the currently available commercial vaccines against the highly pathogenic NADC34-like strains is unclear. Therefore, the objective of this study was to evaluate the protection efficacy of three commercial PRRS modified-live virus (MLV) vaccines derived from classical PRRS VR2332 MLV and R98 MLV against challenge with a heterologous NADC34-like PRRSV strain, JS2021NADC34, which has high pathogenicity in pigs. PRRSV- and antibody-free piglets were immunized with the PRRS VR2332 MLV vaccine or either of two R98 MLV vaccines (from different manufacturers) and were challenged with the JS2021NADC34 strain 28 days after immunization. Rectal temperature, clinical symptoms, viremia and viral shedding from the nose, gross lesions in the thymus and lungs, microscopic lesions and viral distribution in the lungs, as well as the humoral immune response and mortality rates were recorded over a 14-day post-challenge period. The results showed that PRRS VR2332 MLV had better efficacy against the JS2021NADC34 challenge than PRRS R98 MLV, with vaccinated piglets in the former group showing transient and mild symptoms, mild pathological lesions in the lungs, mild thymic atrophy, and low viral levels in sera and nasal swabs, as well as better growth performance and a 100% survival rate. In contrast, two PRRS R98 MLVs exhibited limited efficacy against the JS2021NADC34 challenge, with the piglets in two R98 groups showing obvious clinical symptoms and pathological changes in the lungs and thymus; moreover, there were two deaths caused by PRRS in two R98 groups, respectively. Despite this, the mortality rate was lower than that of the unvaccinated piglets that were challenged with JS2021NADC34. The cumulative results demonstrate that PRRS VR2332 MLV was partly effective against the highly pathogenic PRRSV NADC34-like strain based on the observations over the 14-day post-challenge period. Thus, it might be a viable option among the commercially available vaccines for control of NADC34-like virus infections in swine herds.

11.
Front Immunol ; 15: 1352018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989282

RESUMEN

In this study, we investigated how Radix pseudostellariae polysaccharide (RPP) enhances the immune response of the inactivated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine through interactions with the microbiome and metabolome. We pretreated sows with 10 mg/kg body weight of RPP via drinking water for 7 days prior to intramuscular injection of the PRRSV vaccine. This significantly increased the concentrations of PRRSV GP5 protein antibody, interleukin (IL)-2, IL-4, IL-10, and interferon (IFN)-γ. Oral administration of RPP also significantly improved the abundance of beneficial bacteria in the stool, such as Parabacteroides distasonis, Prevotella_copri, Eubacterium_sp., and Clostridium_sp._CAG:226, and decreased the levels of potentially pathogenic bacteria, such as Paraeggerthella and [Clostridium] innocuum, compared to the vaccine alone. These bacterial changes were confirmed using quantitative real-time polymerase chain reaction (Q-PCR). Moreover, RPP treatment significantly increased the blood concentrations of L-theanine, taurodeoxycholic acid (TDCA), and N-arachidonoyl proline, and decreased the levels of L-glutamine, oclacitinib, lipoxin C4, and leukotriene C5 in sows after immunization (p< 0.05). The concentrations of various blood metabolites were validated using sandwich enzyme-linked immunosorbent assay (ELISA), confirming the accuracy of the metabolomics data. Intriguingly, the integration of microbiome and metabolome analyses highlighted the significance of Prevotella_copri and TDCA. We consequently developed a mouse immunity model using GP5 protein and discovered that oral administration of RPP significantly enhanced the levels of GP5 protein antibodies, IL-2, IL-4, IL-10, and IFN-γ in mouse serum. It also increased the number of CD3+ and CD3+CD4+ cells in the spleen. Additionally, Prevotella_copri was administered into the large intestine via the anus for 7 days prior to the intramuscular injection of the PRRSV GP5 protein. The results demonstrated a significant increase in TDCA and GP5 antibody concentration in the mouse serum, indicating that RPP modulates Prevotella_copri to elevate its metabolite TDCA, thereby enhancing the GP5 antibody level. In conclusion, oral administration of 10 mg/kg RPP optimizes gut flora diversity and blood metabolites, particularly Prevotella_copri and TDCA, thereby improving the immune response to the inactivated PRRSV vaccine.


Asunto(s)
Metaboloma , Polisacáridos , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Vacunas de Productos Inactivados , Vacunas Virales , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Vacunas Virales/inmunología , Femenino , Vacunas de Productos Inactivados/inmunología , Anticuerpos Antivirales/sangre , Citocinas/metabolismo , Microbiota/efectos de los fármacos , Microbiota/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Adyuvantes Inmunológicos
12.
Front Vet Sci ; 11: 1434539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993278

RESUMEN

China has the largest pig herd in the world which accounts for more than 50% of the global pig population. Over the past three decades, the porcine reproductive and respiratory syndrome virus (PRRSV) has caused significant economic loss to the Chinese swine industry. Currently, the prevalent PRRSV strains in the field are extremely complicated, and the NADC30-like strains, NADC34-like strains, and novel recombinant viruses have become a great concern to PRRS control in China. In this study, a novel NADC30-like PRRSV, named GS2022, was isolated from the lung of a dead pig collected from a farm that experienced a PRRS outbreak. The complete genome of GS2022 shares the highest identity with the NADC30 strain and contains a discontinuous deletion of 131 aa in nsp2. Novel deletion and insertion have been identified in ORF7 and 3'UTR. Recombination analysis revealed that the GS2022 is a potential recombinant of NADC30-like and JXA1-like strains. Both inter-lineage and intra-lineage recombination events were predicted to be involved in the generation of the GS2022. An infectious cDNA clone of GS2022 was assembled to generate the isogenic GS2022 (rGS2022). The growth kinetics of rGS2022 were almost identical to those of GS2022. The pathogenicity of the GS2022 and rGS2022 was evaluated using a nursery piglet model. In the infection groups, the piglets exhibited mild clinical symptoms, including short periods of fever and respiratory diseases. Both gross lesions and histopathological lesions were observed in the lungs and lymph nodes of the infected piglets. Therefore, we reported a novel recombinant NADC30-like PRRSV strain with moderate pathogenicity in piglets. These results provide new information on the genomic characteristics and pathogenicity of the NADC30-like PRRSV in China.

13.
Virulence ; 15(1): 2384564, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39072452

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly contagious disease that threatens the global swine industry. Recent studies have focused on the damage that PRRSV causes to the reproductive system of male pigs, although pathological research is lacking. Therefore, we examined the pathogenic mechanisms in male piglets infected with PRRSV. Gross and histopathological changes indicated that PRRSV affected the entire reproductive system, as confirmed via immunohistochemical analysis. PRRSV infected Sertoli cells and spermatogonia. To test the new hypothesis that PRRSV infection in piglets impairs blood - testis barrier (BTB) development, we investigated the pathology of PRRSV damage in the BTB. PRRSV infection significantly decreased the quantity and proliferative capacity of Sertoli cells constituting the BTB. Zonula occludens-1 and ß-catenin were downregulated in cell - cell junctions. Transcriptome analysis revealed that several crucial genes and signalling pathways involved in the growth and development of Leydig cells, Sertoli cells, and tight junctions in the testes were downregulated. Apoptosis, necroptosis, inflammatory, and oxidative stress-related pathways were activated, whereas hormone secretion-related pathways were inhibited. Many Sertoli cells and spermatogonia underwent apoptosis during early differentiation. Infected piglets exhibited disrupted androgen secretion, leading to significantly reduced testosterone and anti-Müllerian hormone levels. A cytokine storm occurred, notably upregulating cytokines such as tumour necrosis factor-α and interleukin-6. Markers of oxidative-stress damage (i.e. H2O2, malondialdehyde, and glutathione) were upregulated, whereas antioxidant-enzyme activities (i.e. superoxide dismutase, total antioxidant capacity, and catalase) were downregulated. Our results demonstrated that PRRSV infected multiple organs in the male reproductive system, which impaired growth in the BTB.


Asunto(s)
Barrera Hematotesticular , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Células de Sertoli , Testículo , Animales , Masculino , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Células de Sertoli/virología , Células de Sertoli/metabolismo , Barrera Hematotesticular/virología , Testículo/virología , Testículo/patología , Espermatogonias/virología , Apoptosis , Células Intersticiales del Testículo/virología , Citocinas/metabolismo , Testosterona/sangre , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética
14.
Zool Res ; 45(4): 833-844, 2024 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-39004861

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus (PRRSV), resulting in substantial economic losses in the swine industry. Modifying the CD163 SRCR5 domain, either through deletion or substitution, can eff1ectively confer resistance to PRRSV infection in pigs. However, large fragment modifications in pigs inevitably raise concerns about potential adverse effects on growth performance. Reducing the impact of genetic modifications on normal physiological functions is a promising direction for developing PRRSV-resistant pigs. In the current study, we identified a specific functional amino acid in CD163 that influences PRRSV proliferation. Viral infection experiments conducted on Marc145 and PK-15 CD163 cells illustrated that the mE535G or corresponding pE529G mutations markedly inhibited highly pathogenic PRRSV (HP-PRRSV) proliferation by preventing viral binding and entry. Furthermore, individual viral challenge tests revealed that pigs with the E529G mutation had viral loads two orders of magnitude lower than wild-type (WT) pigs, confirming effective resistance to HP-PRRSV. Examination of the physiological indicators and scavenger function of CD163 verified no significant differences between the WT and E529G pigs. These findings suggest that E529G pigs can be used for breeding PRRSV-resistant pigs, providing novel insights into controlling future PRRSV outbreaks.


Asunto(s)
Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Mutación Puntual , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Receptores de Superficie Celular , Animales , Porcinos , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Animales Modificados Genéticamente/genética , Línea Celular
15.
Autophagy ; : 1-22, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39081059

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is a major swine pathogen, which can survive host antiviral immunity with various mechanisms. PRRSV infection induces macroautophagy/autophagy, facilitating virus replication. MALT1, a central immune regulator, was manipulated by PRRSV to optimize viral infection at different stages of the virus cycle. In this study, the key role of MALT1 in autophagy regulation during PRRSV infection was characterized, enlightening the role of autophagy flux in favor of virus spread and persistent infection. PRRSV-induced autophagy was confirmed to facilitate virus proliferation. Furthermore, autophagic fusion was dynamically regulated during PRRSV infection. Importantly, PRRSV-induced MALT1 facilitated autophagosome-lysosome fusion and autolysosome formation, thus contributing to autophagy flux and virus proliferation. Mechanically, MALT1 regulated autophagy via mediating MTOR-ULK1 and -TFEB signaling and affecting lysosomal homeostasis. MALT1 inhibition by inhibitor Mi-2 or RNAi induced lysosomal membrane permeabilization (LMP), leading to the block of autophagic fusion. Further, MALT1 overexpression alleviated PRRSV-induced LMP via inhibiting ROS generation. In addition, blocking autophagy flux suppressed virus release significantly, indicating that MALT1-maintained complete autophagy flux during PRRSV infection favors successful virus spread and its proliferation. In contrast, autophagosome accumulation upon MALT1 inhibition promoted PRRSV reserve for future virus proliferation once the autophagy flux recovers. Taken together, for the first time, these findings elucidate that MALT1 was utilized by PRRSV to regulate host autophagy flux, to determine the fate of virus for either proliferation or reserve.Abbreviations: 3-MA: 3-methyladenine; BafA1: bafilomycin A1; BFP/mBFP: monomeric blue fluorescent protein; CQ: chloroquine; DMSO: dimethyl sulfoxide; dsRNA: double-stranded RNA; GFP: green fluorescent protein; hpi: hours post infection; IFA: indirect immunofluorescence assay; LAMP1: lysosomal associated membrane protein 1; LGALS3: galectin 3; LLOMe: L-leucyl-L-leucine-methyl ester; LMP: lysosomal membrane permeabilization; mAb: monoclonal antibody; MALT1: MALT1 paracaspase; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-κB: nuclear factor kappa B; nsp: nonstructural protein; ORF: open reading frame; pAb: polyclonal antibody; PRRSV: porcine reproductive and respiratory syndrome virus; PRRSV-N: PRRSV nucleocapsid protein; Rapa: rapamycin; RFP: red fluorescent protein; ROS: reactive oxygen species; SBI: SBI-0206965; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: 50% tissue culture infective dose; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1.

16.
Vet Microbiol ; 296: 110173, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38971119

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is the most economically significant disease caused by porcine reproductive and respiratory syndrome virus (PRRSV). Type I interferon (IFN) induces a large number of interferon-stimulated genes (ISGs) expression to inhibit PRRSV infection. To survive in the host, PRRSV has evolved multiple strategies to antagonize host innate immune response. Previous studies have reported that PRRSV N protein decreases the expression of TRIM25 and TRIM25-mediated RIG-I ubiquitination to suppress IFN-ß production. However, whether other PRRSV proteins inhibit the antiviral function of TRIM25 is less well understood. In this study, we first found that PRRSV NSP1α decreased ISGylation of TRIM25. Meanwhile, NSP1α significantly suppressed TRIM25-mediated IFN-ß production to promote PRRSV replication. Further studies demonstrated that PRRSV NSP1α reduced the protein level of TRIM25 in proteasome system but did not regulate the transcription level of TRIM25. In addition, the function of NSP1α in TRIM25 degradation did not rely on its papain-like cysteine protease activity. Taken together, PRRSV NSP1α antagonizes the antiviral response of TRIM25 by mediating TRIM25 degradation to promote PRRSV replication. Our data identify TRIM25 as a natural target of PRRSV NSP1α and reveal a novel mechanism that PRRSV induces TRIM25 degradation and inhibits host antiviral immune response.


Asunto(s)
Inmunidad Innata , Virus del Síndrome Respiratorio y Reproductivo Porcino , Complejo de la Endopetidasa Proteasomal , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Proteínas no Estructurales Virales , Replicación Viral , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Porcinos , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Interferón beta/genética , Interferón beta/metabolismo , Interferón beta/inmunología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular , Ubiquitinación , Humanos , Células HEK293 , Interacciones Huésped-Patógeno/inmunología
17.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000325

RESUMEN

One of the most significant diseases in the swine business, porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory problems in piglets and reproductive failure in sows. The PRRSV nucleocapsid (N) protein is essential for the virus' assembly, replication, and immune evasion. Stages in the viral replication cycle can be impacted by interactions between the PRRSV nucleocapsid protein and the host protein components. Therefore, it is of great significance to explore the interaction between the PRRSV nucleocapsid protein and the host. Nevertheless, no information has been published on the network of interactions between the nucleocapsid protein and the host proteins in primary porcine alveolar macrophages (PAMs). In this study, 349 host proteins interacting with nucleocapsid protein were screened in the PRRSV-infected PAMs through a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics approach. Bioinformatics analysis, which included gene ontology annotation, Kyoto Encyclopedia of Genes and Genomes database enrichment, and a protein-protein interaction (PPI) network, revealed that the host proteins interacting with PRRSV-N may be involved in protein binding, DNA transcription, metabolism, and innate immune responses. This study confirmed the interaction between the nucleocapsid protein and the natural immune-related proteins. Ultimately, our findings suggest that the nucleocapsid protein plays a pivotal role in facilitating immune evasion during a PRRSV infection. This study contributes to enhancing our understanding of the role played by the nucleocapsid protein in viral pathogenesis and virus-host interaction, thereby offering novel insights for the prevention and control of PRRS as well as the development of vaccines.


Asunto(s)
Interacciones Huésped-Patógeno , Macrófagos Alveolares , Proteínas de la Nucleocápside , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Mapas de Interacción de Proteínas , Proteómica , Espectrometría de Masas en Tándem , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virología , Proteómica/métodos , Proteínas de la Nucleocápside/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Biología Computacional/métodos , Ontología de Genes
18.
Vet Microbiol ; 295: 110154, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959808

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is one of the costliest diseases to pork producers worldwide. We tested samples from the pregnant gilt model (PGM) to better understand the fetal response to in-utero PRRS virus (PRRSV) infection. Our goal was to identify critical tissues and genes associated with fetal resilience or susceptibility. Pregnant gilts (N=22) were infected with PRRSV on day 86 of gestation. At 21 days post maternal infection, the gilts and fetuses were euthanized, and fetal tissues collected. Fetuses were characterized for PRRS viral load in fetal serum and thymus, and preservation status (viable or meconium stained: VIA or MEC). Fetuses (N=10 per group) were compared: uninfected (UNIF; <1 log/µL PRRSV RNA), resilient (HV_VIA, >5 log virus/µL but viable), and susceptible (HV_MEC, >5 log virus/µL with MEC). Gene expression in fetal heart, kidney, and liver was investigated using NanoString transcriptomics. Gene categories investigated were hypothesized to be involved in fetal response to PRRSV infection: renin- angiotensin-aldosterone, inflammatory, transporter and metabolic systems. Following PRRSV infection, CCL5 increased expression in heart and kidney, and ACE2 decreased expression in kidney, each associated with fetal PRRS susceptibility. Liver revealed the most significant differential gene expression: CXCL10 decreased and IL10 increased indicative of immune suppression. Increased liver gene expression indicated potential associations with fetal PRRS susceptibility on several systems including blood pressure regulation (AGTR1), energy metabolism (SLC16A1 and SLC16A7), tissue specific responses (KL) and growth modulation (TGFB1). Overall, analyses of non-lymphoid tissues provided clues to mechanisms of fetal compromise following maternal PRRSV infection.


Asunto(s)
Resistencia a la Enfermedad , Feto , Síndrome Respiratorio y de la Reproducción Porcina , Transcriptoma , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Embarazo , Animales , Porcinos , Femenino , Feto/inmunología , Feto/virología , Regulación de la Expresión Génica/inmunología , Miocardio/inmunología , Hígado/inmunología , Susceptibilidad a Enfermedades/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/veterinaria , Riñón/inmunología
19.
Vet Med Sci ; 10(4): e1536, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39016357

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes severe inflammatory response, respiratory disease and sow reproductive failure. Quercetin is among the widely occurring polypheno found abundantly in nature. Quercetin has anti-inflammatory, anti-oxidative and anti-viral properties. OBJECTIVES: This study aimed to explore the effect and mechanism of quercetin on PRRSV-induced inflammation in MARC-145 cells. METHODS: Observing the cytopathic effect and measurements of inflammatory markers in MARC-145 cells collectively demonstrate that quercetin elicits a curative effect on PRRSV-induced inflammation. Liquid chromatography-mass spectrometry was further used for a non-targeted metabolic analysis of the role of quercetin in the metabolic regulation of PRRSV inflammation in MARC-145 cells. RESULTS: It was shown that quercetin attenuated PRRSV-induced cytopathy in MARC-145 cells. Quercetin treatment inhibited PRRSV replication in MARC-145 cells in a dose-dependent manner. We also found that quercetin inhibited PRRSV-induced mRNA expression and secretion levels of tumour necrosis factor-α, interleukin 1ß and interleukin 6. Metabolomics analysis revealed that quercetin ameliorated PRRSV-induced inflammation. Pathway analysis results revealed that PRRSV-induced pathways including arachidonic acid metabolism, linoleic acid, glycerophospholipid and alanine, aspartate and glutamate metabolism were suppressed by quercetin. Moreover, we confirmed that quercetin inhibited the activation of NF-κB/p65 pathway, probably by attenuating PLA2, ALOX and COX mRNA expression. CONCLUSIONS: These results provide a crucial insight into the molecular mechanism of quercetin in alleviating PRRSV-induced inflammation.


Asunto(s)
Ácido Araquidónico , Glutamina , Inflamación , Virus del Síndrome Respiratorio y Reproductivo Porcino , Quercetina , Quercetina/farmacología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Animales , Línea Celular , Inflamación/virología , Inflamación/tratamiento farmacológico , Glutamina/metabolismo , Glutamina/farmacología , Ácido Araquidónico/metabolismo , Porcinos , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/tratamiento farmacológico , Chlorocebus aethiops
20.
BMC Vet Res ; 20(1): 255, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867209

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) infection during late gestation substantially lowers fetal viability and survival. In a previous genome-wide association study, a single nucleotide polymorphism on chromosome 7 was significantly associated with probability of fetuses being viable in response to maternal PRRSV-2 infection at 21 days post maternal inoculation. The iodothyronine deiodinase 2 (DIO2) gene, located ~ 14 Kilobase downstream of this SNP, was selected as a priority candidate related to fetal susceptibility following maternal PRRSV-2 infection. Our objectives were to identify mutation(s) within the porcine DIO2 gene and to determine if they were associated with fetal outcomes after PRRSV-2 challenge. Sequencing of the DIO2, genotyping identified variants, and association of DIO2 genotypes with fetal phenotypes including DIO2 mRNA levels, viability, survival, viral loads, cortisol and thyroid hormone levels, and growth measurements were conducted. RESULTS: A missense variant (p.Asn91Ser) was identified in the parental populations from two independent PRRSV-2 challenge trials. This variant was further genotyped to determine association with fetal PRRS outcomes. DIO2 mRNA levels in fetal heart and kidney differed by the genotypes of Asn91Ser substitution with significantly greater DIO2 mRNA expression in heterozygotes compared with wild-type homozygotes (P < 0.001 for heart, P = 0.002 for kidney). While Asn91Ser did not significantly alter fetal viability and growth measurements, interaction effects of the variant with fetal sex or trial were identified for fetal viability or crown rump length, respectively. However, this mutation was not related to dysregulation of the hypothalamic-pituitary-adrenal and thyroid axis, indicated by no differences in circulating cortisol, T4, and T3 levels in fetuses of the opposing genotypes following PRRSV-2 infection. CONCLUSIONS: The present study suggests that a complex relationship among DIO2 genotype, DIO2 expression, fetal sex, and fetal viability may exist during the course of fetal PRRSV infection. Our study also proposes the increase in cortisol levels, indicative of fetal stress response, may lead to fetal complications, such as fetal compromise, fetal death, or premature farrowing, during PRRSV infection.


Asunto(s)
Yoduro Peroxidasa , Mutación Missense , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Femenino , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Embarazo , Yodotironina Deyodinasa Tipo II , Genotipo , Feto/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA